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PREFACE

Computer graphics includes a large range of ideas, techniques, and algorithms

extending from generating animated simulations to displaying weather data to

incorporating motion-capture segments in video games. Producing these images

requires an array of artistic, technical, and algorithmic skills. Software can help by

offering a flexible user interface, but under the hood, mathematics is orchestrating

the images. Not everything in graphics begins with a mathematical result, but nearly

everything is founded on mathematical ideas, because ultimately algorithms direct

the computer to light up specified pixels on the screen.

The evolution of computer graphics started in the early 1970s, and since then key

mathematical ideas and techniques have risen to the surface and have proved their

worth in solving graphics problems. This text tries to lay out these ideas in a way

that is easily accessible to those interested in a sound footing in the field and to those

software engineers eager to fill in gaps where their understanding faltered.

Organized to mimic the flow of a standard graphics course, this manuscript grew

from the notes for an undergraduate graphics course taught regularly over a span of 20

years. Appropriatemathematical ideas are introduced alongwith the details of various

techniques. The style is more informal than formal, yet the approach includes thor-

ough derivations in the hope that context and careful arguments will build confidence

in constructing new approaches and new algorithms.

One or two courses in calculus should give the readers sufficient mathematical

maturity to work through the text, and even if their linear algebra background is lim-

ited to matrix multiplication, they should be able to develop some useful algebraic

and geometric tools. Standard mathematics courses rarely have the time to cover all

the important mathematical constructs used in graphics such as the description of

curves necessary for surface design, or homogeneous coordinates necessary for affine

xiii



xiv PREFACE

transformations. This text fills in those gaps and looks behind the results enough to

understand how they fit into the rest of mathematics. It does not rely on the rigor-

ous theorem/proof format, and instead uses intuition and example to develop careful

results. Although the mathematics is interesting in its own right, the text hopefully

does not lose sight of the ultimate goal which is to produce interesting and useful

images.

There are plenty of examples and exercises to help fix the ideas and several sug-

gestions of other directions to investigate. At the end of each chapter (except the last),

there is a section titled Complements and Details that collects a few historical notes,

several calculation details, and occasionally some ideas which may lead to interest-

ing tangents. The text is independent of any particular graphics system, but it does

have OpenGL in mind when presenting details of the viewing frustum in the chapter

on visibility. Otherwise, there are programming exercises throughout, which can be

done with almost any language and graphics interface.

Chapters 1–3 carefully develop vector geometry assuming very little background.

They highlight the difference between vectors and points and emphasize the connec-

tion between geometry and algebra. Coordinate-free expressions and homogeneous

coordinates are both introduced.

Chapters 4 and 5 examine transformations, both linear and affine. Along the way,

they develop basic matrix algebra, construct various transformations including the

perspective transformation, examine coordinate systems (world, local, and camera),

unravel Euler angles and quaternions, and consider alternate coordinate systems.

Chapters 6 and 7 develop modeling techniques through an exploration of poly-

gons (particularly triangles), polyhedra, parametric description of curves, Lagrange

interpolation, Bézier curves, splines, nonuniform rational B-splines (NURBS), and

surface construction.

Rendering is covered in Chapters 8 and 9, starting with a look at the view frus-

tum, hidden surface algorithms, and simple ray tracing. Then an elementary lighting

model is examined in detail before introducing shading, shadows, the bidirectional

reflectance distribution function (BRDF), the basics of radiosity, and texturemapping.

The final chapter collects three separate mathematical techniques that repre-

sent arguably different paradigms. Bresenham’s algorithm starts a discussion of

pixel-based mathematics, Perlin’s noise prompts a visit to random distributions, and

L-systems offer an alternative algebraic description of organic forms.

When used as a course text, the first five chapters as well as selections from the

last five could serve to cover an appropriate amount of material. The idea is to rely

on the text for the mathematics and supplement it with algorithms perhaps specific

to the available graphics systems. There are both mathematical and programming

exercises in each chapter. Throughout the examples in the text, the calculation results

are rounded to two or three decimal places. This still leads to round-off error, and

a good exercise for the student is to reconcile any perceived discrepancies in the

results.

In the way of acknowledgement, first note that most of the figures in the text

were prepared using Mathematica®. Second, many thanks go to my graphics stu-

dents over the years who prompted me to learn the nuances of the subject and who
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offered constructive feedback on my courses. Thanks also go to Cory Scott whose

comments on the completed manuscript were essential and to Craig Janke for cover

ideas along with continued encouragement. Finally, without my wife Deborah and

her unending support, this project would have dissolved on the screen.

Steven J. Janke

Colorado College, 2014





1
BASICS

It is rather amazing that a finite rectangular array of colored dots (called pixels as an
abbreviation of picture elements) is sufficient to display the nearly limitless collec-

tion of images we recognize as realistically or symbolically representing portions of

our world. The power of combinatorics helps us to explain the situation (millions of

possible colors for each pixel in the large display array), but we can hardly conceive

of all the images we have already seen let alone those that are yet to be seen. From

this reductionist viewpoint, the whole idea of computer graphics is to set the right

pixels to the right color. Easier said than done. Yes, a plain red square is easy, but

one that looks like it is made of bricks is tougher, and one that includes a human face

taxes the best of known algorithms.

Of course, the computer graphics enterprise includes any and all manipulations of

images. We can start from scratch and produce a photo-realistic image of a new air-

liner or perhaps construct a landscape design complete with a variety of plants.Maybe

the challenge is to translate CAT (computerized axial tomography) scan data into an

image of the brain or correct the color balance in a photo being readied for publica-

tion. To bring some order to the very long list of possibilities, it is helpful to consider

two main categories: either we are generating images, or we are processing existing

images. Both require mathematical tools, but the first category encompasses the broad

mathematical approaches necessary to understand three-dimensional descriptions of

objects and their interactions with light. The second category starts with an image

and draws on the mathematics of transformations and filters necessary to convert it

into a more useful visual representation. In this survey of mathematical tools that are

Mathematical Structures for Computer Graphics, First Edition. Steven J. Janke.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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2 BASICS

useful in computer graphics, we will focus on the first category where we can start
with the basics of mathematical descriptions and work through the generation and
manipulation of objects in space.

1.1 GRAPHICS PIPELINE

As we examine the steps necessary to produce a new image on the computer screen,
we are tracing what is often called the graphics pipeline. The pipeline analogy is
intended to highlight the stages we go through both in designing images and in
processing them on the computer to produce the final properly colored array of
pixels on the display screen. As one frame is being completed, the next is making its
way down the pipeline. Most modern hardware includes the main microprocessor
(central processing unit, CPU), the graphics microprocessor (graphics processing
unit, GPU), and various associated memory banks. The CPU and GPU work in
parallel, as the CPU supplies descriptions of objects to the GPU which in turn
processes the descriptions to determine which pixels on the screen need to be turned
on. The exact order of all the required steps depends on the hardware and on the
graphics software we use. However, we can make a more general description of
the pipeline to enumerate the stages of image generation and set the context for
understanding the associated mathematics. Our pipeline then looks like this:

1. Modeling.We need amathematical description of objects, background, and light
sources as well as a description of their placement in a scene. For more primitive
objects such as buildings which are more or less constructed out of simple plane
surfaces, the description includes a list of vertices and a list showing which
vertices determine individual faces. For curved surfaces, we may attempt an
accurate description (e.g., a sphere) or rely on an approximation with small flat
triangles. These descriptions are, of course, just the beginning, as we need also
to know the details of how the objects are placed in a scene and how light will
interact with them. Mathematically, a geometric description including vertices
and faces (surfaces) forms the kernel of our model, but certainly if the object is
a tree or if there is fog affecting the lighting, the description may well require
a deeper extension of the standard high school geometry. This modeling stage
can be done with design software, allowing artists to manipulate the scene to
reach the desired effect.

2. Transformation. Building a scene requires positioning objects relative to each
other and includes rotation, scaling, and translation. Transformations reposition
an object and convert its coordinate descriptions appropriately. Then, to view
the scene, imagine a camera placed somewhere in space looking in a particular
direction. (Alternatively, imagine your eye positioned in space looking at the
scene.) Another transformation adjusts the mathematical descriptions so that
they are relative to the camera position.

3. Visibility. Depending on where the camera is, we may not see the entire scene.
Rather, some parts are outside the field of view and consequently can be ignored
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when generating the image. Even those objects within the field of view usually

have some surfaces that are facing away from the camera and need not be con-

sidered. Some objects in the scene may be only partially visible since they fall

both inside and outside the field of view. These objects are clipped (often after

projection) so that only the relevant pieces continue down the graphics pipeline.

Dealing with only the visible portions of a scene improves the efficiency of

image generation because the calculations necessary to determine pixel color

are computationally expensive.

4. Projection. Once we position the camera (or our eye), the actual image of the

scene is produced on a two-dimensional surface in the camera (or on our retina).

The three-dimensional scene is projected onto a two-dimensional screen. It is

somewhat easier to imagine that there is a window placed just in front of our eye

or camera and the scene itself is painted on this window. Positions of points in

the scene, including how far away from the window they are, determine where

on the window they are projected. Done correctly, the projection preserves the

perspective in the scene and adds realism. If the dimensions of the window do

not match the display screen, yet another transformation is necessary to convert

window coordinates to display coordinates.

5. Rasterize. Mathematical descriptions of objects are usually continuous, allow-

ing line segments, for example, to have an infinite number of points. At some

stage of the graphics pipeline, the continuous line must be approximated by a

finite set of screen pixels. This process requires some care to avoid distorting

the line and introducing unintended artifacts, but then we have a finite set of

pixels rather than an infinite set of points. The task of determining the colors

of the pixels is now manageable and, if done appropriately, can maintain the

illusion of a continuous image.

6. Shading. Light determines the exact shade of color that an object reflects, and

that light depends on the position of light sources, their intensity, and their

color. Some objects may be casting shadows and others may actually be reflect-

ing light onto the rest of the scene. The geometry of light rays is essential for

making these shading calculations. Positioning light sources and determining

the material properties of objects occurs early in the pipeline, but it is late

in the process when color calculations are actually completed for individual

pixels.

7. Texturing. Describing the surface of an object as mathematically planar indi-

cates that it is flat and smooth. Yet surfaces can be rough or covered with pat-

terns of color. For example, in a computer game, the walls of a room may

well be made of stone, so it becomes important to determine how light reflects

off stone. In the texturing stage, this type of surface detail is added somewhat

artificially by either copying the detail from existing images (e.g., taking a

picture of real stone) or generating it mathematically with functional descrip-

tions (e.g., some function describing how bumpy stone really is). To determine

final colors for pixels, textures need to be generated and mapped to individual

pixels.



4 BASICS

Modeling Transform

Visibility

Projection Clipping

Rasterize Shading Texture

Figure 1.1 Graphics pipeline

This is the general notion of a graphics pipeline. The first stage, modeling, is often

done interactively and builds the contents of the image, while all the rest of the stages

taken together render the image on the screen. Depending on the hardware and soft-

ware, the order of the rendering stages may be slightly permuted, but the scope of the

process indicates the range of mathematical tools we need to explore (Figure 1.1).

1.2 MATHEMATICAL DESCRIPTIONS

To generate an image, we need tomathematically describe a scene. For a simple object

such as a cube, we can list the position of its vertices and then list which vertices

anchor each face. This is easy enough, but the positions of the vertices depend on

the coordinate system we are using and it is not obvious which one we should use.

Putting the origin of our coordinate system at the center of the cube makes describing

the vertex positions easier, but there may be other objects in the scene which are good

candidates for the origin. The answer may well be to use many coordinate systems

and develop means of combining them into an all-inclusive scene.

If next to the cube there is a more organic object such as a flower, then we have an

added difficulty because a flower is probably not well described by giving vertices and

faces. There could be such a description, but there is also a special system of symbols

(L-system) that was designed to capture the way plants grow, making a description

both easier and more succinct.

The cube may be made of wood, making the faces more bumpy than smooth and

making light reflect in a way that shows the grain. The scene description is now mov-

ing further and further from a simple list of vertices, and we will need additional

means of describing the detail.

The larger goals are to make the mathematical description as simple as possible,

as easy as possible to alter during the design process, and as independent of any fixed

coordinate system as possible. Then the resulting computer code will be general and

flexible.

To draw an object on the computer screen, we need to identify which pixels to

light up (and what color to make them). Since most computer monitors are rectangu-

lar, locating a pixel usually means specifying its horizontal and vertical position in

the rectangular array of pixels which make up the entire screen. This seems simple
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enough, but our common descriptions of objects are not usually in terms of the hor-
izontal and vertical distances to each point. A cartoon character’s head might be
described as “oval, with a button nose, and beady eyes.” And a tree may be “coni-
cal with short drooping branches covered with folded, heart-shaped leaves.” To draw
these objects on the screen, there is no escape from determining the horizontal and
vertical positions of appropriate pixels, but the challenge for the graphics programmer
is to find ways of describing the objects that are between the intuitive common way
and the hard-core quantitative way that lists the horizontal and vertical positions of
all the points. Unfortunately, qualitative descriptions of objects are not easily incor-
porated into computer programs, so it makes sense, at least at first, to concentrate on
more quantitative descriptions.

1.3 POSITION

In the geometry of Euclid, there are no coordinates. Instead, geometric objects are
compared to each other in order to understand their features; lines are compared to
other lines, and triangles to triangles. This approach is not sufficient for computer
graphics because we eventually need the absolute position of an object in order to
determine which pixels on the screen to turn on. In the seventeenth century, Descartes,
the philosopher and mathematician, made attempts to connect algebra and geometry,
and although he did not develop coordinate systems as we know them now, we still
refer to the rectangular coordinate system as the Cartesian coordinate system. This is
the default coordinate system for computer graphics and the one we are all familiar
with from high school (Figure 1.2).

In two dimensions, we have two perpendicular axes, the horizontal one labeled x
and the vertical one labeled y. They cross at a unique origin labeled 0. Each is a num-
ber line increasing either to the right or up. Any point in the plane has a coordinate
representation which is a pair of numbers (x, y) indicating how far to go horizontally
(negative distance indicates left of the origin) and then how far to go vertically (neg-
ative here means down from the origin). Note that this is a unique representation; any
pair of numbers determines exactly one point in the plane and any point determines
exactly one pair of numbers.

4

5

0

P = (4,5)

x

y

Figure 1.2 2D Cartesian coordinate system
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In computer graphics, the fundamental task is to locate points in a scene, and to

make that process easier and perhaps more intuitive, we define a new mathematical

object called a vector.

Definition 1.1 A two-dimensional vector is an object representing a displacement in
the plane. It has a length and a direction.

A vector is intended to describe how to get from one point to another. If our vector

has a length of five units and is pointing to the right, then it represents moving from

an arbitrary point to a point five units to the right. It is important to note that the vector

is not positioned at any particular place in the plane. It represents displacement, not

position. Once we apply the displacement to a point, we reach another point that is

positioned in the plane. Visually, vectors are represented as arrows; they have length

and direction. As we will soon see, a convenient way of describing a two-dimensional

vector mathematically is to give two numbers indicating its displacement in the hor-

izontal and vertical directions. Often the representative arrow is drawn with its tail at

the origin, say, and its head (the end with the arrow) positioned to show the displace-

ment. This can be a little confusing because the vector is really not positioned at any

particular point in the plane; setting the tail at the origin is just a default approach to

representing the vector visually (Figure 1.3).

We now can give a slightly different perspective on the standard Cartesian coor-

dinate system. To describe a two-dimensional (2D) coordinate system, we specify a

unique origin and two vectors. For the standard system, these vectors both have the

same unit length and are perpendicular to each other. The vector with direction along

the positive x-axis is usually referred to as i⃗, and the one in the direction of the positive
y-axis is denoted as j⃗. Describing any point in the plane is now a matter of indicating

how many unit steps in the direction of i⃗ and how many in the direction of j⃗ we need
to take to reach the point. For example, the point (4, 1.5) is the point we reach when

starting at the origin, then taking 4 unit steps in the x-direction, and finally 1.5 unit

steps in the y-direction. As you may have guessed, since i⃗ and j⃗ have unit length, the
algebra of vectors allows us to represent the point as 4⃗i + 1.5⃗j. This will prove to be

useful in making geometric calculations (Figure 1.4).

v

v

0
x

y

Figure 1.3 Vectors indicating displacement
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0
x

y

j

i

4 i + 1.5 j

Figure 1.4 Vectors i⃗ and j⃗

Without much effort, we can move to three-dimensional space by adding a third

axis labeled z perpendicular to the x- and y-axes. With our vector perspective, we

have added a new vector, often called k⃗. Now each point in space is represented by a

unique triple of numbers, or in terms of vectors as a combination of the three vectors

i⃗, j⃗, and k⃗.
The nature of the Cartesian coordinate system depends on the direction of the unit

vectors. The standard two-dimensional system has vector i⃗ pointing to the right along
the positive x-axis and the perpendicular vector j⃗ pointing up. However, we might

also let j⃗ point down. This is actually the default coordinate system for the computer

screen when using some standard programming languages. An easy transformation

can get us back to the standard systemwith j⃗ pointing up, and usually this is desirable.
As we will see later, we could pick the two vectors for a system so that they are not

perpendicular. These systems may prove useful in describing some objects, so we

will have to develop transformations that allow us to easily move between all these

various possibilities.

In three dimensions, there is one, often troubling, complication. There are two

geometrically different ways to add a third vector and this time the mathematical

consequences are not trivial. Basically, the third vector k⃗ could point in the direction

designated in Figure 1.5 or in the opposite direction. To standardize, we designate a

right-handed system to be one where if we position our right hand with the fingers

pointing in the direction of i⃗ and adjust so that when we curl our fingers they point

i

j

k

Figure 1.5 Right-handed coordinate system
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in the direction of j⃗, then our thumb points in the direction of k⃗. Figure 1.5 shows

a right-handed coordinate system. It is important to distinguish right-handed from

left-handed systems in order to keep track of whether vectors point out of or into an

object.

1.4 DISTANCE

Now that we have set up a coordinate system, we turn to the fundamental prob-

lem of determining the distance between two points. This is a job for the venerable

Pythagorean theorem, named after an itinerant teacher of ancient Greece who led

his devoted followers through a wide range of ideas drawn from topics as diverse as

number theory and vegetarian diets. He is credited for the famous theorem about right

triangles, but the result was undoubtedly known much earlier by at least Babylonian

scholars if not others [1].

Theorem 1.1 (Pythagorean Theorem). In a right triangle, the sum of squares of the
two legs equals the square of the hypotenuse.

Proof Sketch. First remember that a right triangle is one with a 90∘ angle. Figure 1.6
shows four identical right triangles with legs a and b. They are arranged in a large

square on the left and then rearranged in the same large square on the right. On the

left, the area not taken up by triangles is equal to c2, the area of the labeled square

in the middle. On the right, the area outside the triangles is in two pieces equaling

a2 + b2. Hence the Pythagorean theorem: a2 + b2 = c2. ◽

This result allows us to calculate the distance between any two points on the screen

or in an arbitrary plane. Simply, the distance is the length of the hypotenuse of a right

triangle. The two points are the opposite corners of a rectangle with sides parallel to

the vectors i⃗ and j⃗ which determine the coordinate system. The distance between the

corners of the rectangle is the length of the hypotenuse of a right triangle. The legs of

the right triangle are easy to find by taking differences of the Cartesian coordinates

for the two points. If one point has coordinates (x1, y1) and the other (x2, y2), then the

a

b
c

a

b

(a) (b)

Figure 1.6 (a,b) Visual proof of the Pythagorean theorem



DISTANCE 9

Pythagorean theorem gives

Distance =
√

(x1 − x2)2 + (y1 − y2)2

In three dimensions, the distance between points is not much harder to find once

we visualize two right triangles. Suppose the two points are labeled P1 and P2. This

time, they can be thought of as the opposite corners of a rectangular box where the

faces of the box are parallel to the three coordinate planes (Figure 1.7). The distance

between the points is the length of the hypotenuse of the right triangle ΔP1QP2. The

leg QP2 is just one edge of the box, called a in the figure. The leg P1Q is a diagonal of

one face of the box and hence the hypotenuse of triangleΔP1RQ. By the Pythagorean

theorem,

(P1Q)2 = b2 + c2.

Since (P1P2)2 = (P1Q)2 + (QP2)2, we finally have

(P1P2)2 = a2 + b2 + c2

where a, b, and c are all edges of the rectangular box.

The Pythagorean theorem is essential to computer graphics. Dropping perpendic-

ulars and forming right triangles is one of the most useful tools in the mathematics

toolbox. Triangles are everywhere in graphics, and, in fact, they are central to all of

geometry. Projections and visibility questions invariably involve drawing a triangle

usually including the eye position as a vertex. Complicated objects are usually built

from triangles because triangular faces are guaranteed to be planar; they can be drawn

in a plane. (This is unlike quadrilateral faces which might be twisted so that the four

vertices do not all lie in a plane.) So calculations with triangles are central to computer

graphics and we rely both on the Pythagorean theorem and on a generalization that

covers triangles of arbitrary angles. To reach this generalization, we use the cosine

function (reviewed in Appendix A).

P1

P2

Q

R

a

b
c

Figure 1.7 Distance in three dimensions
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A

B
CD a

b

c
d1

d2
γ

Figure 1.8 Law of cosines

Theorem 1.2 (Law of Cosines). In a triangle with sides a, b, and c, let the angle 𝛾

be opposite the side c. Then we have c2 = a2 + b2 − 2ab cos 𝛾 .

Proof Sketch. Note that 𝛾 is an angle inside the triangle, so we know it is less than

180∘. When 𝛾 = 90∘, then cos 𝛾 = 0 and we have a right triangle so the Pythagorean

theorem applies and the law of cosines reduces to it. In general, we try making right

triangles out of the original triangle to see why the law holds. There are actually two

cases: 𝛾 > 90∘ and 𝛾 < 90∘. Figure 1.8 shows the first case.

In the figure, the side AD is perpendicular to the baseline CB. Then we have three
triangles: the given triangleΔABC and two right trianglesΔADC andΔADB.With the

lower case letters indicating lengths, apply the Pythagorean theorem to the triangle

ΔADC to get

b2 = d2
1
+ d2

2
.

Applying the Pythagorean theorem to the second right triangle, ΔADB gives

c2 = d2
1
+ (d2 + a)2 = d2

1
+ d2

2
+ 2d2a + a2 = a2 + b2 + 2d2a

Notice that ∠ACD is the supplement of 𝛾 (i.e., they add to 180∘). This means

cos(∠ACD) = − cos 𝛾 , and since cos(∠ACD) = d2∕b, we now have the result c2 =
a2 + b2 − 2ab cos 𝛾 .

For the second case where 𝛾 < 90∘, we proceed just as above by drawing a new

side and building new right triangles. The algebra is just a little different (Section 1.5).
◽

Example 1.1 (Triangles in 3D). Suppose we have three vertices in three dimensions

complete with coordinates A = (3, 5, 4),B = (6, 2,−3),C = (−4, 6, 3). Although we

are in three dimensions, the triangle does lie in a single plane, so using the tools we

developed we can completely describe it. Applying the Pythagorean theorem, first

we get the lengths of all the sides:

|AB| = √
(3 − 6)2 + (5 − 2)2 + (4 − (−3))2 =

√
67 ≈ 8.185
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|AC| = √
(3 − (−4))2 + (5 − 6)2 + (4 − 3)2 =

√
51 ≈ 7.141

|BC| = √
(6 − (−4))2 + (2 − 6)2 + (−3 − 3)2 =

√
197 ≈ 14.036

Comparing the squares of the lengths, we can determine whether each angle is
larger or smaller than a right angle. For example, since 67 + 51 < 197, we know that

∠ABC must be larger than a right angle. That makes the other two smaller than a right

angle because the sum of all angles must be 180∘ (or 𝜋 radians).
Now, an application of the law of cosines gives us the actual angle:

197 = 67 + 51 − 2
√
67

√
51 cos(∠BAC) ⇒ cos(∠BAC) ≈ −0.676.

This indicates that ∠BAC ≈ 132.53∘. The same procedure gives the other two

angles: ∠ACB ≈ 25.46∘ and ∠ABC ≈ 22.03∘. ◽

Once we can completely describe the triangle, we should be able to determine
whether a light ray hits it. This is a common problem that we will solve later by first

finding where the light ray hits the plane of the triangle and then deciding whether

the intersection point is inside or outside the triangle. In order to solve this problem,
it helps to translate the tools we are using to the language of vectors, and this we do

in the next chapter.

1.5 COMPLEMENTS AND DETAILS

1.5.1 Pythagorean Theorem Continued

No one knows how Pythagoras proved his theorem because even the basic facts of

his life (about 500 BCE) are a bit sketchy. Since then, there have been many proofs

devised including a somewhat complicated one given by Euclid in Proposition 47 of
Book I of his Elements (about 300 BCE). Just a little later, the illustrated square on

the left in Figure 1.6 appeared in a Chinese manuscript, and in 1876 a New England

education journal published a proof apparently constructed by James A. Garfield who
later became President of the United States. Most of the proofs involve constructing

geometric figures in one way or another. (A more complete history of the theorem is

given in [1].)
For a slightly more algebraic approach to the proof in Figure 1.6, notice that the

area of the large square in the left half of the figure is (a + b)2. Yet, this must be equal

to the area of four triangles plus the area of the square in the middle (c2).

(a + b)2 = 4
(
1

2
ab

)
+ c2,

a2 + 2ab + b2 = 2ab + c2

a2 + b2 = c2
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One important number-theoretic consequence of the theorem emerges when we

draw the right triangle with both legs equal to 1. Then the hypotenuse is
√
2 and this

number was important to the Greeks because it was incommensurable. To us now,
this means the number is irrational; it cannot be represented as the quotient of two
integers. The discovery of irrational numbers was both progress and an annoyance to
the Greeks.

Other right triangles are equally surprising. If the legs are 3 and 4, then the
hypotenuse is 5. This set of three integers is called a Pythagorean triple and is used
frequently by carpenters to quickly construct a right angle. There are infinitely many
of these Pythagorean triples and a detailed theory surrounding them (see Exercises
for further examples).

1.5.2 Law of Cosines Continued

To derive the law of cosines, we noted that, if we do not have a right triangle, there
are two cases: one where 𝛾 > 90∘, and one where 𝛾 < 90∘. The first case was covered
in Figure 1.8, so now we consider the second case.

When 𝛾 < 90∘, our triangle looks like the one in Figure 1.9. We have constructed
two right triangles by adding the perpendicular AD. The Pythagorean theorem says

c2 = h2 + a2
2

b2 = h2 + a2
1

Note that a = a1 + a2 and a1 = b cos 𝛾 . By adding a2 to both sides of b2 = h2 + a2
1
,

we have

b2 + a2 = h2 + a2
1
+ a2 = h2 + a2

1
+ a2

1
+ 2a1a2 + a2

2

= c2 + 2a1(a1 + a2)

= c2 + 2(b cos 𝛾)a

Rearranging just a little gives the law of cosines.

A

BC Da1 a2

b c

d

h

𝛾

Figure 1.9 Law of cosines: 𝛾 < 90∘
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A

B

CD

𝛼

𝛽

𝛾

Figure 1.10 Law of sines

1.5.3 Law of Sines

Yes, there is a law of sines as well as a law of cosines.

Theorem 1.3 (Law of Sines). In a triangle ΔABC, where the angles at the ver-
tices are, respectively, 𝛼, 𝛽, and 𝛾 , and the sides opposite the vertices are a, b, and c,
respectively, we have

sin 𝛼

a
= sin 𝛽

b
= sin 𝛾

c
= 1

d
,

where d is the diameter of the circumcircle for the triangle.

Proof Sketch. Any triangle can be inscribed in a circle so that the three vertices are on
the circle (Appendix A). Figure 1.10 shows one such arbitrary triangle,ΔABC. Draw
diameter CD and dotted line DB. SinceΔCDB is inscribed in a semicircle, it is a right
triangle. The sine of ∠CDB is a

CD
. But angle 𝛼 equals angle ∠CDB because they cut

the same arc from the circle. Hence sin A = a
CD

or sinA
a

= 1

CD
. The same argument

for each angle shows the ratio of the sine to the side opposite is always the reciprocal
of the diameter.

The diameter in Figure 1.10 cuts through the triangle. There is a second case
where the diameter is outside the triangle. The argument changes only slightly (see
Exercises). ◽

The common ratio of the sine to the side opposite is equal to the reciprocal of the
diameter of the circumcircle for the triangle.

1.5.4 Numerical Calculations

One slight hitch for the graphics programmer is the fact that calculating the square
root and trigonometric functions (e.g., sine, cosine, and tangent) takes time. Modern
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processors incorporate floating point operations much more efficiently that they once
did, but still, floating point arithmetic is slower than integer arithmetic.Making graph-
ics programs run quickly requires attention to the length of calculations.

Consider the square root first. If the task is to simply compare distances, using the
square of the distances works equally well. However, if the square root is actually
needed, then often an approximation can work. To illustrate, suppose we need to
calculate

√
x. Start with a guess, say g0. Then x∕g0 should be g0 if it is the square

root. It probably is not, so take a next guess g1 = (g0 +
x

g0
)∕2; this is the mean of the

first guess and the quotient. Similarly, we can define successive guesses. For example,

to find
√
120, let 10 be the first guess. Then g1 = 11 and g2 = 10.95. This last guess is

accurate to two decimal places. (This algorithm for square root is actually Newton’s
method applied to the square root function.) Of course, this approximation is useful
only if the time required to execute it is reasonably short.

Calculating the sine and cosine causes similar timing issues. One solution is to
precalculate a table of common values and simply look up the answer when needed.
For example, we could calculate the sine and cosine for all angles of radian measure
2𝜋∕n where 1 ≤ n ≤ 64. If we need more accuracy, we can recall the Taylor series
expansion (from calculus) of sine and cosine for small angles. The first few terms of
these expansions (for radian measure) give

sin(𝜃) ≈ 𝜃 − 𝜃3

6
+ 𝜃5

120

cos(𝜃) ≈ 1 − 𝜃2

2
+ 𝜃4

24

The Taylor series approximations are more accurate for small angles, so one scheme
is to precalculate a table as before, let 𝜃 be the difference between the desired
angle and the closest angle in the table (say 𝛼), approximate the sine or cosine
of 𝜃, and then use the addition formulas for sine and cosine to get sin(𝛼 + 𝜃) or
cos(𝛼 + 𝜃).

1.6 EXERCISES

1. The standard Cartesian coordinate system has the vectors i⃗, j⃗, and k⃗ positioned
to form a right-handed system. We can replace any or all of these vectors with
one pointing in the opposite direction. This gives us a total of eight different
coordinate systems. Determine which of these are right-handed systems.

2. Consider an isosceles right triangle. (This is one where both legs are equal.)
Construct a square on each of the three sides. The Pythagorean theorem says
that the sum of the areas of the two smaller squares equals the area of the larger
square. By dividing each square into triangles equal to the initial triangle, estab-
lish the theorem in this special case.

3. For another proof of the Pythagorean theorem, consider Figure 1.11. Triangle
ΔABC is a right triangle with the right angle at C. Each of the smaller triangles
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A B

C

x

Figure 1.11 Alternate proof of Pythagorean theorem

is a right triangle and each is similar toΔABC. This means that the ratio of sides

in one triangle equals the ratio of sides in another. Find two of these equations

which when added together give the Pythagorean theorem.

4. The vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) form a triangle. Find the perpendic-

ular distance from the origin (0, 0, 0) to this triangle using right triangles.

5. Find the three angles of the triangle with vertices A = (−1, 1, 2), B = (5, 3, 1),
C = (2, 6,−4).

6. The four vertices (2 +
√
2, 2 +

√
2, 2), (1 − 3

√
2, 1 + 3

√
2, 1), (−6,−6,−2),

and (2, 1,−6) form four triangles in space. Determine which of the four, if any,

are right triangles.

7. Given two points in the plane, where are all the points that are at the same

distance from both these selected points? Given three points in the plane that

are not on a line, where are all the points equidistant from all three?

8. Describe all points that are at a fixed distance from a solid square in the plane.

(The distance from a point to the square is the minimum distance between the

point and any point on the square.)

9. For some right triangles, the two legs and the hypotenuse are all integers.

For example, sides 3, 4, 5 form a right triangle. We call the triple (3, 4, 5) a
Pythagorean triple. Of course, any multiple of these three numbers [such as

(6, 8, 10)] also forms a Pythagorean triple. Find two Pythagorean triples that

are not multiples of (3, 4, 5) or of each other.

10. Pick two positive integers s and t such that one is odd, one is even, and s > t.
Show that x = 2st, y = s2 − t2, and z = s2 + t2 form a Pythagorean triple as

defined in the previous exercise. If, in addition, s and t do not have a common

divisor greater than 1, the triple is said to be primitive and all primitive triples

can be found in this way.

11. The vectors i⃗ and j⃗ define the two-dimensional coordinate system. Suppose we

replace j⃗ = (0, 1) with the vector𝑤 = ( 1√
2
,

1√
2
). In this new coordinate system,

what are the coordinates of the point with old coordinates (2, 3)?
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12. If we use the vectors 2⃗i and 3⃗j to define a Cartesian coordinate system and we

move the origin to the point (−1, 6) in the original coordinate system, what are

coordinates of the point with old coordinates (4, 7)? Give equations showing

how to convert from old coordinates to new coordinates.

13. Referring to Figure 1.10, the diameter for the circle passes through the triangle.

It could have passed outside the triangle. Complete the proof of the law of sines

in this second case.

14. By drawing a perpendicular from the vertex A to the opposite side in a triangle,

form two right triangles and show that a = b cos 𝛾 + c cos 𝛽. Then use the law

of sines to show sin(𝛽 + 𝛾) = sin 𝛽 cos 𝛾 + sin 𝛾 sin 𝛽.

1.6.1 Programming Exercises

1. Write a program displaying a right triangle along with squares drawn on each

of the three sides in order to illustrate the Pythagorean theorem. Allow the user

to dynamically change the shape of the right triangle.

2. The left diagram in Figure 1.6 has a square in the middle turned at an angle.

We can replicate the same diagram inside this smaller square by drawing four

more right triangles. To construct the new triangles, divide the side of the

smaller square in the same ratio (a ∶ b) as the division on the side of the larger
square. The process can be repeated many times to give an image of spiralling

squares. Write a program to produce this image with as many spiralling squares

as the user wishes. Also allow input for the ratio (a ∶ b). The key is to find the

vertices of each smaller square.
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VECTOR ALGEBRA

Vectors are essential for computer graphics. As we saw in Chapter 1, they represent

displacement as we describe an object by moving from point to point. If we wish to

move from point A to point B, an arrow drawn starting at point A and ending at point

B tells us which direction to go and how far to go. This arrow is the vector and has

both direction and length.

Displacement alone is not sufficient reason to develop the notion of a vector. It

turns out that we can define operations between vectors that connect with geometric

operations. For example, adding two vectors means adding two displacements and we

can geometrically understand what it should mean to add displacements. Although

not as intuitive, we can also define the multiplication of two vectors in such a way

that there are geometric interpretations of the result. The plan then is to develop an

algebra of vectors that corresponds to geometric operations and may make the task

of describing geometric objects for images just a little easier.

Vectors are especially useful because they are independent of any particular coor-

dinate system. A displacement in a given direction makes sense regardless of which

coordinate system we use. It may be that in a particular coordinate system the dis-

placement description is “two units to the left and one unit up” while in another

system, perhaps one rotated relative to the first, the description is very different. The

vector description might change, but the direction and length of the vector does not.

So there is some hope that vector algebra will be general enough to help describe

objects without the added detail of which coordinate system we are in. This can make

graphics programs more efficient, even though at some stage of a calculation actually

Mathematical Structures for Computer Graphics, First Edition. Steven J. Janke.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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finding the direction and length of a vector does require settling on some coordinate

system.

2.1 BASIC VECTOR CHARACTERISTICS

When we talk about points and vectors more abstractly, we will keep them separate

symbolically by using upper case letters (e.g., A) for points and a small arrow over

lower or upper case letters (e.g., 𝑣 or V⃗) for vectors. When we need to describe a par-

ticular point or a particular vector, we simply use Cartesian coordinates for a default

description and use ordered pairs (x, y) in two dimensions and ordered triples (x, y, z)
in three dimensions. With this notation, there is still ambiguity between points and

vectors, but usually the context resolves the confusion.

For studying geometric transformations, matrices play an essential role, and it

makes sense to represent vectors and points as columns of numbers (just small matri-

ces). So in two dimensions, a vector 𝑣 which represents a displacement of five units

to the left and three units up is represented as a column matrix with two entries.

𝑣 =
[
−5
3

]
A point with x coordinate −5 and y coordinate 3 is represented exactly the same

way. Since it is awkward to write columns of coordinates in normal text, we will

use the ordered pair or ordered triple notation as well as the column matrix notation

depending on which is clearer.

Starting in two dimensions, let point A have coordinates (3, 2) and B (7, 4). Then
let 𝑣 be the vector from point A to point B.

𝑣 =
[
7

4

]
−

[
3

2

]
=

[
4

2

]
Here, we take the coordinates ofB and subtract the coordinates ofA, component by

component, to get (4, 2). The vector 𝑣 is the displacement: four units in the x-direction
and two units in the y-direction. The description is relative to a default Cartesian

coordinate system.

To find the length and direction of the vector 𝑣, consider the vector as the

hypotenuse of a right triangle (Figure 2.1) with angle 𝛼 describing the direction.

The length of 𝑣 is denoted by |𝑣|, and using the Pythagorean theorem we get|𝑣| = √
42 + 22 =

√
20. We find the direction angle from the sine or cosine (or

both). For 𝑣, sin(𝛼) = 2√
20

and hence 𝛼 ≈ 26.57∘ (measured counterclockwise from

the horizontal direction which points to the right).

It is important to note that the vector 𝑣 denotes a displacement and therefore could

represent the displacement between two other points, say A1 = (2, 1) and B1 = (6, 3).
That is, the vector is not tied down in space.
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v

α

B = (7, 4)

A = (3, 2)

4

2

Figure 2.1 Vector length

π/3

P0

P1P2

w

Figure 2.2 Regular polygon

Example 2.1 (Building a Regular Polygon). To see how vectors might prove useful

in describing objects, imagine an image of a regular hexagon. It is not too hard to

calculate the coordinates for the six vertices especially if the hexagon is centered at

the origin in a coordinate system. However, it is also easy to see how we could move

from vertex to vertex regardless of where we place the first vertex. Let the vector �⃗�

be the displacement indicated in Figure 2.2. When added to our initial point, say P0,

this will give us the next vertex P1.

Now, if we can rotate the vector �⃗� counterclockwise by 60∘ (𝜋∕3 radians), then

adding it to P1 will give us vertex P2. Repeating this procedure produces all the other

vertices. Notice that this approach can build the hexagon image no matter where we

begin and no matter what original direction we choose. Yes, we do need to learn

how to rotate a vector, but that turns out to be relatively straightforward and will be

addressed in a later chapter. ◽
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2.1.1 Points Versus Vectors

To define 𝑣 above, we subtracted two points (A from B). With Cartesian coordi-

nates for the points, it does make sense to subtract the coordinates component-wise

to get the displacement. However, adding two points is another matter. Adding the

coordinates together gives another point, but this resulting point does depend on

which coordinate system we are using. For example, adding the two points A and

B from above gives the point C = A + B = (3, 2) + (7, 4) = (10, 6). Now imagine the

coordinate system is shifted two units to the left to give a second Cartesian coordinate

system. In this system, A = (5, 2) and B = (9, 4), giving C∗ = (14, 6). This point C∗

has coordinates (12, 6) in the first coordinate system, so it is definitely a different point

from the original C. Addition depends on which coordinate systemwe are in, so addi-

tion of two points is not well defined if we want to stay independent of coordinate

systems.

However, adding a point and a vector does make sense because we are starting at

a location (which is dependent on the coordinate system) and moving in the direction

of the vector by an amount equal to the vector length. This does give us a unique

point regardless of which coordinate system we are in. If we start with point A =
(3, 2) in the first coordinate system and add vector 𝑣 = (4, 2), then the result is point

B = (7, 4). In the second coordinate system, A = (5, 2), and when we add 𝑣 = (4, 2),
we get B = (9, 4). The coordinates of this B relative to the first coordinate system are

indeed (7, 4). We have the same point (Figure 2.3).

As we will see in the next section, adding two vectors together makes sense alge-

braically and geometrically. The two approaches coincide by giving the same answers

once we interpret them algebraically and geometrically.With points, however, it is not

immediately obvious how to define addition, for example, so that the algebraic sum

agrees with a geometric sum. This is the advantage of vector algebra, where algebraic

calculations coincide with geometric operations allowing numerical computations to

result in graphical transformations.

2.1.2 Addition

Intuitively, the idea of adding two vectors is to follow one displacement with the other.

The result will be the sum of the two displacements. Using Cartesian coordinates, an

C = (10, 6) C* = (14, 6)

A = (3, 2)

B = (7, 4)

0* 0
x

y

Figure 2.3 Adding points
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algebraic addition of E⃗ = (2, 8) and F⃗ = (5, 1) is done component-wise to give

E⃗ + F⃗ =
[
2

8

]
+

[
5

1

]
=

[
7

9

]
Geometrically, this corresponds to starting at some point, say A, and placing the

vector E⃗ so that it starts at A; the tail of the arrow is at A. The head of the arrow then
ends at B. Placing the tail of F⃗ at B leaves the head of F⃗ pointing to C. The geometric

sum, E⃗ + F⃗, is the vector beginning at A and pointing to C.

Giving coordinates toA, sayA = (−1, 6), and placing the vector E⃗ so that it starts at

A determines gives the coordinates B = (1, 14). Then positioning F⃗ gives coordinates

C = (6, 15). The geometric sum, E⃗ + F⃗, is the vector beginning at A and pointing to
C; this is a displacement of (7, 9). The algebraic and geometric definitions of addition
coincide.

Another way of visualizing the vector E⃗ + F⃗ is to imagine both E⃗ and F⃗ in what we
might call the default position where the tails of both vectors start at (0, 0). Then form
a parallelogram with E⃗ and F⃗ as two adjacent sides. The sum, E⃗ + F⃗, is the diagonal
of the parallelogram starting at (0, 0).

Both the algebraic and geometric approaches make it clear that E⃗ + F⃗ = F⃗ + E⃗
(Figure 2.4).

2.1.3 Scalar Multiplication

If we position the vector 𝑣 in its default position starting at (0, 0) and ending at (4, 2),
then by recalling analytic geometry, the slope of the line containing the vector is
2∕4 = 0.5; slope is the change in y over the change in x. The ratio of the vector coordi-
nates determines the slope, which in turn gives the direction when in two dimensions.
(The slope is the tangent of the direction angle.) Therefore, if we multiply each coor-
dinate by the same number, we do not change the vector’s direction although we do

E

F

E + F

E

F

A

B

C

Figure 2.4 Vector addition
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v
u = 𝛼 v

Figure 2.5 Scalar multiplication

change its length. The vector u⃗ = (12, 6) points in the same direction as 𝑣. We use the

notation 𝛼𝑣 to denote multiplication of each component of 𝑣 by 𝛼, some real number.

This is called scalar multiplication (Figure 2.5).

Geometrically, scalar multiplication simply changes the length of the vector.

If 𝛼 < 0, then scalar multiplication also changes the vector direction to the opposite

direction; the vector −2𝑣 points in the opposite direction from 𝑣.

2.1.4 Subtraction

Subtraction actually follows from addition. To find the difference of two vectors,

say G⃗ − H⃗, think of subtracting the two displacements. Algebraically, we notice that

G⃗ − H⃗ = G⃗ + (−1)H⃗.We are really adding a scalar multiple of H⃗ (giving−H⃗, a vector

in the opposite direction) to the vector G⃗. Geometrically, G⃗ − H⃗ is the vector we can

add to H⃗ to get G⃗ (Figure 2.6).

If G⃗ and H⃗ are in their default positions and we again imagine a parallelogram

with G⃗ and H⃗ as adjacent sides, then G⃗ − H⃗ is a diagonal of the parallelogram going

from the end of H⃗ to the end of G⃗.

2.1.5 Vector Calculations

So far, we have defined vectors and developed an arithmetic on vectors which includes

addition and scalar multiplication. The point of this arithmetic using displacements

is to more efficiently find various points on graphics objects. So, often we do some

calculation using vectors and then apply the resulting displacement to an actual point

to get another point.

G

H−H

G−H G−H

Figure 2.6 Vector subtraction
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Example 2.2 (Midpoint of a Line Segment). Finding the midpoint of a line segment

is not a hard calculation; it is almost intuitive that we simply want the average of the

Cartesian coordinates at the two ends of the segment. However, we need to be careful

because, as we have seen, adding two points together is not a well-defined operation.

With vectors, it becomes a little clearer what we are actually doing. Let 𝑣 be the vector

from point A to point B. Then 1

2
𝑣 represents half the displacement from A to B, so

if we add it to the point A, we will have the midpoint of the line segment between A
and B. Let A = (1.2, 4.5) and B = (3.3, 6.1). Then 𝑣 = (2.1, 1.6) and 1

2
𝑣 = (1.05, 0.8).

Therefore, the midpoint M is

M = A + 1

2
𝑣 =

[
1.2

4.5

]
+

[
1.05

0.8

]
=

[
2.25

5.3

]
Notice that the coordinates of M are indeed the averages of the coordinates of the

end points (A and B). Actually, other scalar multiples of the displacement 𝑣 will give

other points on the line segment. If we let 0 ≤ 𝛼 ≤ 1 and use 𝛼𝑣 as our displace-

ment, then the resulting point P = A + 𝛼𝑣 will be on the line segment. If 𝛼 is outside

this range, P is on the line containing the line segment, but not inside the segment.

Algebraically, we get

P = A + 𝛼𝑣 = A + 𝛼(B − A) = (1 − 𝛼)A + 𝛼B,

where we replaced 𝑣 with the difference of the coordinates for B and A, since this is
how we calculate displacement. The resulting formula for P is what we call an affine
combination of the points A and B. For 𝛼 unrestricted, we get all the points on the

line through A and B. For 𝛼 restricted between 0 and 1, we get all the points on the

line segment from A to B. With 𝛼 = 1

2
, we get the midpoint P = 1

2
A + 1

2
B and it is

the average of the coordinates for the two points (Figure 2.7).

The formulaP = (1 − 𝛼)A + 𝛼Bmakes some intuitive sense andwe derived it from

simply adding a vector to a point. However, it pays to be careful here because the

formula looks as though we added multiples of two points together and we know

that addition of two points is not well defined. It turns out that, in this case, where

the scalar multiples add to one [(1 − 𝛼) + 𝛼 = 1], the addition is well defined. For

A

B

M

0.5 v

Figure 2.7 Midpoint



24 VECTOR ALGEBRA

more detail on when these expressions are algebraically and geometrically correct,
see Section 2.3. ◽

Example 2.3 (Normalized Vectors). Sometimes the interesting feature of a vector is
its direction, not its length. For example, we usually only need to know the direction
of a light source, not how far away it is. We can find a vector in the right direction by
subtracting the coordinates of a point on the object of interest from the coordinates of
the light source. Calculating with this vector is often more efficient if it has length 1,
in other words, if it is a unit vector. Since the original length of the vector is not
important to us, we canmultiply by a scalar to get another vector in the same direction,
but of a different length. What scalar should we use to guarantee that the result is a
unit vector? Well, we use the reciprocal of the original length. Let 𝑣 be the original
vector. Then letting 𝛼 = 1∕|𝑣|, we have a new vector 𝛼𝑣 with

|𝛼𝑣| = 1|𝑣| |𝑣| = 1

We have used the fact that |𝛼𝑣| = 𝛼|𝑣|, which follows from the definition of vector
length. The process of converting a vector to a unit vector in the same direction is
called normalization, and we simply multiply the original vector by the reciprocal of

its length. The vector �⃗� = (3, 4) has length |�⃗�| = √
32 + 42 = 5, and normalizing it

gives a new vector n⃗ = 1

5
(3, 4) =

( 3

5
,
4

5

)
. The length of n⃗ is

√( 3

5

)2 + ( 4

5

)2 = 1 and,

because it is a positive multiple of �⃗�, it has the same direction as �⃗�. ◽

2.1.6 Properties

The definitions of addition and scalar multiplication give us two operations on vec-
tors. (As we noted, subtraction is a special case of addition: 𝑣 − �⃗� = 𝑣 + (−1) ⋅ �⃗�.)
There are some important properties of the two key operations between vectors that
are somewhat intuitive and can be proved from the relevant definitions.

Result 2.1 Let 𝑣 and �⃗� be vectors, and let 𝛼 and 𝛽 be scalars. Then the following
properties hold for vector addition and vector scalar multiplication:

1. Commutativity: 𝑣 + �⃗� = �⃗� + 𝑣

2. Associativity: (u⃗ + 𝑣) + �⃗� = u⃗ + (𝑣 + �⃗�)
3. There is a unique vector 0⃗ such that 𝑣 + 0⃗ = 𝑣

4. For each 𝑣 there is a vector −𝑣 such that 𝑣 + (−𝑣) = 0⃗

5. 1 ⋅ 𝑣 = 𝑣

6. (𝛼𝛽)𝑣 = 𝛼 (𝛽𝑣)
7. Distributivity I: 𝛼(𝑣 + �⃗�) = 𝛼𝑣 + 𝛼�⃗�

8. Distributivity II: (𝛼 + 𝛽)𝑣 = 𝛼𝑣 + 𝛽𝑣.

These properties along with our definitions of vector, vector addition, and vector
scalar multiplication form a mathematical object called a vector space. In computer
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graphics, our more geometric definition of a vector is key, but mathematical results
from general vector spaces can come into play to extend how useful vectors are in
describing images.

2.1.7 Higher Dimensions

Nothing we have done is specific to two dimensions.We can define vectors in an anal-
ogous manner for any number of dimensions. In three dimensions, for example, the
vector s⃗ = (−1, 5, 2) indicates a displacement that decreases x by one unit, increases
y by five units, and increases z by two units. This time the direction of the vector is a
direction in space, so two direction angles (or two cosines) are necessary to describe
the direction of s⃗. There are several ways of specifying angles, but one way is to
position the vector so that its tail is at the origin and then specify an angle around
the z-axis. Finally, give the angle between the vector and the z-axis. (This is the idea
behind spherical coordinates.)

It takes two applications of the Pythagorean theorem to determine that the length

of s⃗ is
√
(−1)2 + 52 + 22 =

√
30, and we normalize s⃗ bymultiplying each component

by 1∕
√
30, giving the unit vector

1√
30
(−1, 5, 2) ≈ (−0.18, 0.92, 0.37).

2.2 TWO IMPORTANT PRODUCTS

2.2.1 Dot Product

The power of vectors starts to become even more convincing when we notice that a
simple calculation gives the cosine of the angle between two vectors. To see this, let
𝑣 = (x1, y1) and �⃗� = (x2, y2). Place 𝑣 and �⃗� in their default positions with their tails
at (0, 0). Let 𝜃 be the angle between 𝑣 and �⃗� (Figure 2.8).

To find the cosine of 𝜃, use the law of cosines: c2 = a2 + b2 − 2ab cos 𝜃. In the
current situation, a = |𝑣| and b = |�⃗�|. For c, notice that it is the length of the vector
𝑣 − �⃗�. (It is also the length of �⃗� − 𝑣.) Considering the vector coordinates and the
Pythagorean theorem, we have

a =|𝑣| = √
x2
1
+ y2

1

v

w

v−w

(x1,y1)

(x2,y2)(0,0)
𝜃

Figure 2.8 Angle between vectors
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b =|�⃗�| = √
x2
2
+ y2

2

c =|𝑣 − �⃗�| = √
(x1 − x2)2 + (y1 − y2)2

Now we can apply the law of cosines and simplify.

c2 = a2 + b2 − 2ab cos 𝜃

(x1 − x2)2 + (y1 − y2)2 = (x2
1
+ y2

1
) + (x2

2
+ y2

2
) − 2|𝑣‖�⃗�| cos 𝜃

cos 𝜃 =
x1x2 + y1y2|𝑣‖�⃗�|

For example, if 𝑣 = (1, 1) and �⃗� = (1, 0), then |𝑣| = √
2 and |�⃗�| = 1. The cosine

of the angle 𝜃 between the two vectors is

cos 𝜃 = 1 ⋅ 1 + 1 ⋅ 0√
2 ⋅ 1

= 1√
2

This corresponds to an angle of ±45∘ (or ±𝜋∕4 radians).
The following definition draws on the geometry of two vectors.

Definition 2.1 (Dot Product). If 𝜃 is the angle between two vectors 𝑣 and �⃗�, then
the dot product, 𝑣 ⋅ �⃗�, is the quantity |𝑣‖�⃗�| cos(𝜃).

This definition encapsulates the geometric idea that the dot product is proportional

to the cosine of the angle between the vectors, but with the previous derivation we

have a theorem that gives an algebraic meaning to the dot product if we have Cartesian

coordinates for the vectors. The result is a convenient way to compute the dot product.

Theorem 2.1 (Formula for Dot Product). Let 𝑣 = (x1, y1) and �⃗� = (x2, y2). Then
𝑣 ⋅ �⃗� = x1x2 + y1y2.

The theorem depends on a coordinate system and can be thought of as an algebraic

definition of dot product whereas Definition 2.1 does not depend on a coordinate

system and is a geometric definition.

Example 2.4 (Perpendicular Vectors). We can use the dot product to find vectors

perpendicular to others. We know that the cosine of 𝜋∕2 radians (90∘) is 0. If we have
a vector C⃗ = (x, y), then it is easy to see that the vector D⃗ = (−y, x) is perpendicular
to it. Since C⃗ ⋅ D⃗ = x(−y) + yx = 0, the cosine of the angle between the vectors is 0

(as long as the vectors do not have zero length). This implies the angle between the

vectors is 𝜋∕2. Of course, there are many choices for D⃗ that make it perpendicular

to C⃗; we just selected a convenient one. ◽
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In Chapter 1, we applied the law of cosines to a triangle in three dimensions.

Indeed, in three dimensions, triangles still lie in a plane. This means that we can use

the derivation of dot product to deal with three dimensional vectors and the angles

between them. The dot product simply gets generalized to three coordinates. If 𝑣 =
(x1, y1,z1) and �⃗� = (x2, y2, z2), then the dot product is defined to be 𝑣 ⋅ �⃗� = x1x2 +
y1y2 + z1z2 (see Exercises).

Example 2.5 (Angle between Vectors in Space). Let A⃗ = (2, 1, 5) and B⃗ =
(−1, 3, 1). These are vectors in three dimensional space and, if we imagine both with

their tails at the origin, they determine a plane through the origin. In that plane, we

can consider the angle between the two vectors and calculate the cosine.

A⃗ ⋅ B⃗ = (2 ⋅ (−1)) + (1 ⋅ 3) + (5 ⋅ 1) = 6

|A⃗| = √
22 + 12 + 52 =

√
30

|B⃗| = √
(−1)2 + 32 + 12 =

√
11

cos(𝜃) = A⃗ ⋅ B⃗|A⃗| ⋅ |B⃗| = 6√
30 ⋅ 11

≈ 0.33

Now, the inverse cosine function gives us 𝜃 ≈ 1.23 radians (or 70.7∘). There are
two minor sources of ambiguity here. First, angles are positive or negative depending

on whether we move counterclockwise or clockwise. With the angle between vec-

tors, the sign of the angle is usually irrelevant. If one vector did move toward or away

from the other, we need to look at other information to determine the sign. Second,

there are really two angles between two vectors: one less than (or equal to) 𝜋∕2 rad,

and one greater than (or equal to) 𝜋∕2 radians. When we take the inverse cosine,

we can always take 𝜃 to be less than or equal to 𝜋∕2 and this is usually the one we

are interested in. Simply subtract from 𝜋 if the other choice is needed. Finally, note

that in this example we measured angles in radians; trigonometric functions in pro-

gramming languages usually expect radians and to convert from degrees, we multiply

by 𝜋∕180. ◽

By using the definition of the dot product and applying a little algebra, we can

discover some useful properties when calculating with the vector dot product:

Result 2.2 (Properties of the Dot Product). Let 𝛼 be a scalar. Then the following
properties hold for the dot product.

1. 𝑣 ⋅ �⃗� = �⃗� ⋅ 𝑣
2. 𝑣 ⋅ (r⃗ + s⃗) = 𝑣 ⋅ r⃗ + 𝑣 ⋅ s⃗
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3. 𝑣 ⋅ (𝛼�⃗�) = 𝛼(𝑣 ⋅ �⃗�)
4. 𝑣 ⋅ 𝑣 = |𝑣|2.

Example 2.6 (Snowflake Curve). A snowflake curve (or Koch curve) is a fractal

constructed by starting with an equilateral triangle and recursively replacing seg-

ments. Each edge in the triangle is replaced by a segment with part of a smaller

equilateral triangle positioned in the middle third of the original edge (Figure 2.9).

The smaller triangle is one-third the size of the original.

Once each of the three segments of the original triangle are replaced in this manner,

the new figure has 12 edge segments. (In the figure, the original segment AB has been

replaced by segments AC,CD,DE, and EB.) Now, each of the 12 new segments is

replaced in a similar manner with a yet smaller equilateral triangle, and the process

is repeated ad infinitum.

To design an algorithm for this construction, we need to find the coordinates of

points C,D,E once we know the coordinates of A and B. As an example, take A to be

the point (1, 1) and letB be the point (7, 2). Then the vector fromA toB is V⃗AB = (6, 1).
But the point C is one-third of the way from A to B because we wanted the smaller

equilateral triangle to be one-third the size of the larger. This means the displacement

from A to C is 1

3
(6, 1), and hence we add this to A in order to get the coordinates

of C.

C =

[
1

1

]
+ 1

3

[
6

1

]
≈

[
3

1.33

]

Similar reasoning shows that E is two-thirds of the way from A to B, so E =
(
5,

5

3

)
≈

(5, 1.67).
To find D, we let X be the point half way between A and B. Hence, X = (4, 1.5).

The point D is on a line through X that is perpendicular to the segment AB. The
distance from D to X is the height of the smaller triangle. The strategy for finding D

A

B

C

D E

X

Figure 2.9 Constructing the snowflake curve
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is to find the displacement from X. We need a vector with the right length and the

right direction.

The direction is such that the vector should be perpendicular to V⃗AB. That means

the dot product of V⃗AB with the new vector must be zero. By careful guessing, we

notice the vector (−1, 6) fits the bill. So does (1,−6), but this vector points below
the segment AB and the point D is above the segment. So (−1, 6) is the vector we

want. (Later, we will develop a method using rotations to guarantee we pick the right

direction without having to think about whether it points above or below a segment.)

The vector (−1, 6) is in the right direction, but its length is not correct; it has length√
37. Normalizing gives us a vector in the same direction with length 1:

1√
37
(−1, 6).

The final length of the vector we seek is the height of the small equilateral trian-

gle. From geometry, this is
√
3

2
times the side of the triangle which is one-third of

the distance from A to B. Hence, the height is h =
√
3

2
⋅ 1

3
⋅
√
37. We now have our

displacement vector: V⃗XD = h ⋅ 1√
37
(−1, 6) ≈ (−0.29, 1.73). The coordinates of D are

found by adding the displacement vector V⃗XD to the coordinates of X.

D = X + V⃗XD ≈ (4, 1.5) + (−0.29, 1.73) = (3.71, 3.23)

As a final check, we can compute the angle between V⃗CD and V⃗CE. Since these

vectors should be the sides of an equilateral triangle, the angle between them should

be 𝜋∕3 radians (60∘) with a cosine of 0.5. From the previous calculations, V⃗CD ≈
(3.71, 3.23) − (3, 1.33) ≈ (0.71, 1.90) and V⃗CE = 1

3
(6, 1) ≈ (2, 0.33). The dot product

is V⃗CD ⋅ V⃗CE ≈ 2.05. Dividing by the lengths of the two vectors (which should be

equal) gives cos 𝛼 ≈ 0.5. ◽

2.2.2 Cross Product

With a little ingenuity, we can create a variety of operations between two vectors. Yet,

an operation is most useful if it has a geometric interpretation. The dot product that we

just defined is an operation between two vectors that gives a real number as the result

and that real number has some geometric meaning; it is connected with the cosine of

the angle between the vectors. Another operation called the cross product produces a
new vector rather than a real number. In fact, the new vector is perpendicular to each

of the original two vectors. The geometric interpretation here makes this operation a

useful one.

We are now considering vectors in three dimensions, and if we start with two

such vectors, say A⃗ and B⃗, then we would like to produce a new vector C⃗ that is

perpendicular to both A⃗ and B⃗. Note that this means C⃗ is perpendicular to the plane

determined by A⃗ and B⃗. Using the symbol × to denote the cross product, we have

C⃗ = A⃗ × B⃗. We now have to figure out how to determine C⃗.

To start, take the vector i⃗ which is a unit vector pointing in the direction of the

positive x-axis. This vector has coordinates (1, 0, 0). Similarly, j⃗ = (0, 1, 0) and
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k⃗ = (0, 0, 1) are unit vectors along the y- and z-axes, respectively. We originally
defined these vectors to be perpendicular to each other, and now we can verify this
because the dot product of any two of them is zero. It seems reasonable that the

cross product of i⃗ and j⃗ should be the vector k⃗. But notice that −k⃗, a unit vector

in the opposite direction from k⃗, is also a vector perpendicular to both i⃗ and j⃗. So
in defining the cross product, we need to use the order of the product to determine
which of two directions is the correct one. This will allow us to distinguish, for
example, a direction pointing into an object from one pointing out (Figure 2.10).

To fix the direction we want for the cross product, we use the right-hand rule
introduced for the three-dimensional Cartesian coordinate systems. If we point the
fingers of our right hand in the direction of the first vector and curl them toward the
second vector, then our thumb points in the direction of the cross product. This leads
us to the following:

i⃗ × j⃗ = k⃗ j⃗ × i⃗ = −k⃗

j⃗ × k⃗ = i⃗ k⃗ × j⃗ = −i⃗

k⃗ × i⃗ = j⃗ i⃗ × k⃗ = −j⃗

There is a somewhat degenerate case when the two vectors are equal. Since a single
vector does not lie in a unique plane, so we cannot decide on a perpendicular vector,

we say A⃗ × A⃗ = 0⃗. This may seem like an arbitrary choice, but as we will see, it turns

out to have a consistent geometric interpretation. We now have i⃗ × i⃗ = 0⃗, j⃗ × j⃗ = 0⃗,

and k⃗ × k⃗ = 0⃗.
For the mutually perpendicular unit vectors, i⃗, j⃗, k⃗, we might agree that the cross

products should have unit length, but in general it is not obvious what we would like
the length of the cross product to be. Instead of worrying about this right now, we
focus first on how the algebra of vectors should work with the cross product. Consider

two vectors A⃗ = (2, 4,−1) and B⃗ = (3,−2, 5). We can decompose these into the unit

vectors i⃗, j⃗, k⃗, as follows:

A⃗ = 2⃗i + 4⃗j − 1k⃗

B⃗ = 3⃗i − 2⃗j + 5k⃗

i

j

k = i × j

Figure 2.10 Vectors i⃗, j⃗, k⃗
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Suppose we take the cross product just like we were multiplying two algebraic

expressions together. This means we will use the distributive property for an algebra,

the cross products for the unit vectors (⃗i, j⃗, k⃗), and also the fact that A⃗ × A⃗ = 0⃗ to get:

A⃗ × B⃗ = (2⃗i + 4⃗j − 1k⃗) × (3⃗i − 2⃗j + 5k⃗)

= (2 ⋅ 3)(⃗i × i⃗) + (2 ⋅ (−2))(⃗i × j⃗) + (2 ⋅ 5)(⃗i × k⃗)

+ (4 ⋅ 3)(⃗j × i⃗) + (4 ⋅ (−2))(⃗j × j⃗) + (4 ⋅ 5)(⃗j × k⃗)

+ ((−1) ⋅ 3)(k⃗ × i⃗) + ((−1) ⋅ (−2))(k⃗ × j⃗) + ((−1) ⋅ 5)(k⃗ × k⃗)

= (−4)k⃗ + 10(−j⃗) + 12(−k⃗) + 20⃗i + (−3)⃗j + 2(−i⃗)

= 18⃗i − 13⃗j − 16k⃗

= (18,−13,−16)

This new vector (18,−13,−16) should be perpendicular to both A⃗ and B⃗, so check
the dot products:

A⃗ ⋅ C⃗ = (2, 4,−1) ⋅ (18,−13,−16) = 36 − 52 + 16 = 0

B⃗ ⋅ C⃗ = (3,−2, 5) ⋅ (18,−13,−16) = 54 + 26 − 80 = 0

Since the cosine of the angle between the vectors is zero, the angle is 𝜋∕2 radians
(90∘). This new vector, the cross product, is perpendicular to both A⃗ and B⃗! When

working with a flat face of some three-dimensional object, we now have a way of

finding a vector that is perpendicular to that face. Just find two vectors that are parallel

to the face and take their cross product.

If we carry out the same computation as we did above with two general vectors

(and their Cartesian coordinates), we get an algebraic definition of the cross product

(Figure 2.11).

A

B

A × B

Figure 2.11 Perpendicular vectors
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Definition 2.2 (Algebraic Definition of Cross Product). Let A⃗ = (x1, y1, z1) and
B⃗ = (x2, y2, z2). Then A⃗ × B⃗ is a new vector with coordinates ((y1z2 − z1y2),
(z1x2 − x1z2), (x1y2 − y1x2)).

Example 2.7 (3D Triangle). Suppose A = (1, 3,−1), B = (4, 5, 8), C = (2, 2, 6) are
the vertices of a triangle in space. Then V⃗AB = (3, 2, 9) and V⃗AC = (1,−1, 7) are two
vectors parallel to the plane of the triangle. (Note: There are many ways to find two
such vectors.) Now,

V⃗AB × V⃗AC = ((2 ⋅ 7 − 9 ⋅ (−1)), (9 ⋅ 1 − 3 ⋅ 7), (3 ⋅ (−1) − 2 ⋅ 1)) = (23,−12,−5)

The vector (23,−12,−5) is perpendicular to the triangle ΔABC. ◽

Calculating with the cross product differs from calculating with real numbers in

one notable way. The vector A⃗ × B⃗ is not the same as the vector B⃗ × A⃗. That is, the
cross product operation is not commutative. We also chose A⃗ × A⃗ = 0⃗, which still
seems arbitrary. This choice does mean that any two parallel vectors have a cross
product equal to the zero vector. For, if two vectors are parallel, then one is a multiple
of the other and when we apply the definition of cross product, all three coordinates
of the result are zero. This will make more geometric sense once we interpret the
length of the cross-product vector.

The following facts summarize the algebra of cross products.

Result 2.3 (Facts about the Cross Product). Let 𝛼 and 𝛽 be scalars and let A⃗, B⃗, C⃗
be vectors. Then the following relationships hold:

1. A⃗ × B⃗ = −(B⃗ × A⃗)
2. A⃗ × A⃗ = 0⃗

3. (𝛼A⃗) × (𝛽B⃗) = (𝛼𝛽)(A⃗ × B⃗)
4. A⃗ × (B⃗ + C⃗) = (A⃗ × B⃗) + (A⃗ × C⃗).

So far, we understand A⃗ × B⃗ as a vector perpendicular to A⃗ and B⃗. Now we need to

focus on the length of A⃗ × B⃗. Since we know the Cartesian coordinates for the cross
product, we can calculate the length and then use some algebra to make things a little

more understandable. Keep in mind that 𝛼 is the angle between the vectors A⃗ and B⃗.

|A⃗ × B⃗|2 = (y1z2 − z1y2)2 + (z1x2 − x1z2)2 + (x1y2 − y1x2)2

= (x2
1
+ y2

1
+ z2

1
)(x2

2
+ y2

2
+ z2

2
) − (x1x2 + y1y2 + z1z2)2

= |A⃗|2|B⃗|2 − (A⃗ ⋅ B⃗)2

= |A⃗|2|B⃗|2 − |A⃗|2|B⃗|2cos2(𝛼)

= |A⃗|2|B⃗|2(1 − cos2(𝛼))

= |A⃗|2|B⃗|2sin2(𝛼)
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Now we have it. The length of the cross product is related to the angle between

the vectors as summarized in the following theorem.

Theorem 2.2 |A⃗ × B⃗| = |A⃗‖B⃗| sin(𝛼) where 𝛼 (0 ≤ 𝛼 ≤ 𝜋 radians) is the angle
between A⃗ and B⃗.

We have the actual length of A⃗ × B⃗, but what does it represent? Geometrically, A⃗
and B⃗ form adjacent sides of a parallelogram. Interestingly enough, the length of A⃗ ×
B⃗ is the area of this parallelogram. To see this, notice that |A⃗| is the length of the base
of the parallelogram and |B⃗| sin(𝛼) is the height of the parallelogram (Figure 2.12).

Now our assumption that A⃗ × A⃗ = 0⃗ makes more sense because, if A⃗ = B⃗, then the

parallelogram collapses and the area is zero. We can now think of the cross product

in geometric rather than algebraic terms.

Definition 2.3 (Geometric Definition of Cross Product). The cross product A⃗ × B⃗ is
a vector perpendicular to both A⃗ and B⃗ with length equal to the area of the parallel-
ogram formed by A⃗ and B⃗.

Compare this definition with the algebraic one (Definition 2.2) and notice that

there are no coordinates mentioned in the geometric definition. The geometry is inde-

pendent of any coordinate system. Theorem 2.2 actually highlights the equivalence

between the geometric and algebraic definitions; the algebraic definition leads to the

same length for the cross product as claimed in the geometric definition.

Remembering how to calculate the cross product can be annoying, but there is a

compact mnemonic rule that might help. When solving linear equations, the deter-

minant of a matrix can play a key role, and here it serves as a template for the cross

product. Simply, for a 2 × 2 matrix of numbers, the difference of the products on the

diagonals is the determinant. Using vertical lines to denote the determinant, we have

||||a b
c d

|||| = a ⋅ d − b ⋅ c

Each coordinate in the definition of cross product looks like a determinant of some

2 × 2 matrix. We can keep track of which matrix is appropriate by starting with a

B

A

α

|B|sin(α)

Figure 2.12 Cross product and area
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3 × 3 matrix. Put the unit coordinate vectors in the first row, the coordinates of the

first vector in the second row, and the coordinates of the second vector in the third
row. So if we want to calculate A⃗ × B⃗, where A⃗ = (x1, y1, z1) and B⃗ = (x2, y2, z2), we
can use the following determinants:|||||||

i⃗ j⃗ k⃗
x1 y1 z1
x2 y2 z2

||||||| =
||||y1 z1
y2 z2

|||| i⃗ −
||||x1 z1
x2 z2

|||| j⃗ +
||||x1 y1
x2 y2

|||| k⃗

This formula is one way for finding the 3 × 3 determinant by breaking it into 2 × 2
determinants. Notice that to find the smaller matrices, we delete the first row of the

larger matrix and then one of the columns. For example, the second smaller matrix
is the larger one with the first row and second column deleted. Finally, take special

notice of the minus sign in front of the second determinant on the right; the first

determinant is added, the second subtracted, and third added. The use of determinants
for the cross product just gives a more visual way of remembering the cross product

calculations.

Example 2.8 (Area of a Triangle). Let P = (1, 0, 1), Q = (2, 2, 4), and R =
(3,−4, 6) be the vertices of a triangle in space. Define the vectors A⃗ = Q − P =
(1, 2, 3) and B⃗ = R − P = (2,−4, 5). Then the length of A⃗ × B⃗ is the area of the
parallelogram formed by the vectors. So the area of the triangle ΔPQR is one-half

of the cross product length. Using the determinant method to find the cross product,

we find the square of the length as follows:

|A⃗ × B⃗|2 = |||| 2 3

−4 5

||||
2

+ (−1)2
||||1 3

2 5

||||
2

+
||||1 2

2 −4
||||
2

= 222 + 12 + 82 = 549

So the length of the cross product is
√
549 ≈ 23.43 and the area of the triangle is

one-half of this which is about 11.72. ◽

2.3 COMPLEMENTS AND DETAILS

2.3.1 Vector History

The connection between algebra and geometry has been an enduring thread through-
out the development of mathematics. Once the Pythagorean theorem came into view,

the conceptual relationship between the sides of a right triangle and the equation
a2 + b2 = c2 was ready to be exploited. Although the Greeks certainly understood

that the hypotenuse of a right triangle with two sides equal to 1 was related to the

solution of the equation x2 = 2, it took a while, of course, for the general connec-
tion between algebraic equations and geometric constructions to come into focus.

The Greeks can also be credited with the beginning notions of vectors because, when
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considering the velocities of objects, they began thinking in terms of a parallelo-

gram of velocities. The algebraic notion of addition was tentatively connected with

the physical (geometric) notion of velocity and this concept evolved throughout the

sixteenth and seventeenth century when those struggling to understand physics con-

sidered quantities such as forces.

Descartes in the seventeenth century furthered the algebra–geometry connection

with his ideas for coordinates and their algebraic manipulation. Although he did not

quite invent modern analytic geometry (the study of geometric objects using coordi-

nates), he did make strides in drawing the appropriate connections. Both Leibnitz and

Newton in quite different ways continued the thread when they grappled with spatial

problems in the natural world.

In the beginning of the nineteenth century, several mathematicians, including

Gauss and Argand, developed geometrical interpretations of the complex numbers

which bordered on the algebra of vectors. Although the term radial vector was in

common use at the time, the actual term vector in its modern connotation was not

introduced until 1844 when the famous Irish mathematician Sir William Rowan

Hamilton published a paper on his newly discovered quaternions, an algebraic

generalization of the complex numbers. (Quaternions turn out to be useful in

graphics and are detailed in a later chapter.) Hamilton split the quaternion into two

parts, the scalar part and the vector part, and the terminology endured as part of the

mathematical vocabulary.

The study of vectors spread in fits and starts until a book published in 1901 offered

a comprehensive look at the new vector analysis. This book was written by Edwin

B. Wilson, a student of the well-known Yale physicist J. Willard Gibbs who was

instrumental in the development of vectors analysis. Gibbs had given several courses

on the subject and earlier in 1881 printed up some of his notes for circulation. Wilson

based his book on these notes and on lectures that Gibbs gave in a Yale course.

This was the first generally available book entirely devoted to vectors and their

algebra.

Physicists took the lead in developing vector analysis, but the connection between

algebra and geometry branched in several mathematical directions. Projective geom-

etry had already taken a decidedly algebraic turn, and a field now called algebraic
geometry became focused on studying special points and curves. Drawing on the

work of Hermann Grassmann in the mid-nineteenth century, a field called geomet-
ric algebra grew to include the study of several specialized algebras which again

have geometrical significance particularly in physics. Some of the basics of geometric

algebra prove promising for work in computer graphics.

2.3.2 More about Points Versus Vectors

As noted earlier, the addition of two vectors makes sense, but the addition of two

points does not. Adding two vectors gives us a unique vector, but adding two points

gives a point that is dependent on the coordinate system we use. We were able to

make sense of adding a vector to a point by starting at the point and applying the

displacement described by the vector. The result was a unique point. However, now
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we are in an awkward situation because finding the midpoint M of a line segment

from A to B gave us the following expression.

M = A + 1

2
(B − A) = 1

2
A + 1

2
B

The midpoint is the sum of a point and a vector, but it equals an expression that

looks like the sum of two points (multiplied by scalars). A sum of scalar multiples of

vectors,
∑n

i=1 𝛼i𝑣i, alwaysmakes sense in vector algebra, but a sum of scalar multiples

of points,
∑n

i=1 𝛼iPi, onlymakes sensewhen it can be rewritten as a point plus a vector.

Take the simpler case of three terms and put it in the correct form: point plus vector.

𝛼1P1 + 𝛼2P2 + 𝛼3P3 = (𝛼1 + 𝛼2 + 𝛼3)P1 + 𝛼2(P2 − P1) + 𝛼3(P3 − P1)

The right-hand side of the equality is the sum of a multiple of P1 and scalar multi-

ples of two vectors; this has the form 𝛽P1 + �⃗�. The result will be a unique point if we

can make sense of 𝛽P1. Unfortunately, this scalar multiple of a point does not make

sense for arbitrary values of 𝛽 because, for example, when 𝛽 = 2, we are really adding

two points (both equal to P1). It does make sense if 𝛽 = 1, for then we simply have

the point P1 and the sum becomes P1 plus a vector. In this case, 𝛼1 + 𝛼2 + 𝛼2 = 1.

When the sum of the coefficients, 𝛼i, is 1, the expression is an affine combination.

Generalizing to an arbitrary number of points and coefficients gives the following

result:

Result 2.4 (Affine Combination of Points). If
∑n

i=1 𝛼i = 1 where the 𝛼i are scalars,
then P =

∑n
i=1 𝛼iPi is a well-defined point.

Our combination of points can also make sense if 𝛽 = 0. In this case, 𝛽P1 can be

interpreted either as the origin or as the zero vector. In both cases, the coordinates are

all zero, but if we interpret the result as the origin, then it is a point with coordinates

dependent on the coordinate system. So we choose to interpret 𝛽P1 as the zero vector

and then our original sum reduces to a sum of vectors which is another vector. If∑n
i=1 𝛼i = 0, we interpret

∑n
i=1 𝛼iPi as a vector.

This diversion into the interpretation of a sum ofmultiples of points gives us amore

solid footing to work with both vectors and points in describing geometric objects.

2.3.3 Vector Spaces and Affine Spaces

The properties listed in Result 2.1 came from the definition of vectors as displace-

ments and from the definitions of vector addition and scalar multiplication. Mathe-

matically, we have a set of objects (vectors) and two operations (addition and scalar

multiplication). We can take one step up the abstraction stairway and say that, when-

ever we have a set of objects and two operations such that all the properties from

Result 2.1 hold, we have what is called a vector space. The properties (along with

others such as the existence of a zero vector) are really axioms which along with the
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objects and operations form a system that acts like the vectors we have been explor-

ing. By studying vector spaces in general, any structure we uncover then applies to

our particular flavor of a vector space where vectors are displacements.

As an example of another vector space, consider the quadratic polynomials: a2x2 +
a1x + a0. We can add two such polynomials and multiply any one of them by a scalar

in the obvious way. In fact, the notation (a2, a1, a0) serves to completely describe a

quadratic polynomial, so they indeed look like vectors. The properties we have noted

for displacements hold similarly for polynomials, and any result that follows from

these properties holds equally for either set of objects. The study of linear algebra

is largely focused on finding properties of abstract vector spaces and many of these

properties arise from understanding howwemight transform vectors, perhaps by rota-

tion, into other vectors. Some of these transformations (linear transformations) can

be represented by matrix multiplication; multiplying a vector by a matrix gives a new

vector. The study of matrices and their effect on vectors gives a more detailed view

of vector spaces in general.

One key idea in the study of vector spaces starts with independent vectors. A set

of vectors is independent if no vector in the set can be written as a linear combi-

nation (sum of scalar multiples) of the others. For example, in two dimensions, the

displacement vectors (1, 2) and (−1, 5) are independent because neither is a multiple

of the other. However, the set {(1, 2), (−1, 5), (−1, 12)} is not independent because

(−1, 12) = (1, 2) + 2(−1, 5).
In two dimensions, the particular set {(1, 0), (0, 1)} is independent and it has the

distinction that any other two-dimensional vector is a linear combination of these

two. For example, (5,−3) = 5(1, 0) + (−3)(0, 1). The set {(1, 0), (0, 1)} is a basis
for the vector space of two dimensional vectors. It is not quite as easy to see that
{(1, 2), (−1, 5)} is also a basis. In two dimensions, any two nonzero vectors that are

not multiples of each other form a basis. In three dimensions, bases must have three

vectors and none of the three can be combinations of the other two.

In computer graphics, we consider both points and vectors. Starting with a set of

points, the subtraction of any two gives a vector, and the collection of points and

vectors forms an affine space. We can take an affine combination of points to get

another point and we can define an affinely independent set of points analogous to

the way we define an independent set of vectors. No point in an affinely independent

set is an affine combination of the others. As we will see a little later, these kinds of

point sets are very useful in defining barycentric coordinates which give a particularly
important way to locate points.

Comparing affine spaces and vector spaces adds to both the theoretical and prac-

tical foundations of computer graphics. We have already noticed the similarities and

differences between combinations of points and combinations of vectors. For one

more example, consider the roles of the zero point and the zero vector. The zero vec-

tor is unique in that when added to any vector it gives the same vector back. On the

other hand, a zero point depends on the coordinate system and is therefore not unique;

it does not stand out from any other point. It may be a little hard to understand how

these theoretical distinctions can affect themore practical side of graphics, but they do

offer a broader perspective on the nature of graphics descriptions and transformations.
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2.4 EXERCISES

1. Using vectors, find the midpoint of the line segment from A = (50, 100) to
B = (170, 150).

2. Find four points that divide the line segment from A = (80, 300) to

B = (450, 60) into five equal parts.

3. Let D = (4, 1),E = (−3, 6), and F = (2,−3) be vertices of a triangle. Find the

length of each side and the three angles in this triangle.

4. The vectors 𝑣 = (1, 1) and �⃗� = (
√
2, 0) form two adjacent sides of a paral-

lelogram. Show first that the two vectors have the same length. Find vectors

representing the two diagonals and show that they are perpendicular to each

other.

5. The four points A = (3, 1),B = (13, 3),C = (12, 8),D = (2, 6) are the vertices

of a quadrilateral. Show that the quadrilateral is a rectangle.

6. With the vertices from Exercise 5, use vectors to find the point in the center of

the rectangle and show that the coordinates are just the average of the coordi-

nates for the four vertices.

7. A triangle has vertices A, B, and C. Let M be a point on the median two-thirds

of the way from A to the midpoint of the opposite side. By expressing M as a

point plus a vector, show that M = 1

3
A + 1

3
B + 1

3
C.

8. Using the algebraic definition of the dot product, prove Property 2 of Result 2.2.

9. The vector �⃗� = (3, 4) can be expressed as the sum of scalar multiples of the

vectors (6, 0) and (0, 12). That is, �⃗� = 1

2
(6, 0) + 1

3
(0, 12). Show that �⃗� can also

be written as the sum of scalar multiples of the vectors (2, 7) and (8, 1).

10. Using vectors, show that for any rhombus (a parallelogram with equal sides),

the two diagonals are perpendicular.

11. Let u⃗ = (x1, y1, z1) and �⃗� = (x2, y2, z2) be two three-dimensional vectors. With

the vectors in their default position, consider the triangle formed by the origin

and the ends of the two vectors. Apply the law of cosines to show that u⃗ ⋅ �⃗� =
x1x2 + y1y2 + z1z2.

12. Imagine you have placed your eye at position (3, 1, 3) in space and you can

barely see the entire line segment from K = (8, 5, 12) to L = (9, 5,−8) without
moving your head. Find the angle the line segment extends at your eye. We can

call this the viewing angle.

13. Let S = (5, 1,−2),T = (−1, 2, 7), and U = (2,−4, 3) be vertices of a triangle

in three dimensions. Find the length of each side and the three angles in this

triangle.
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14. The triangle with vertices (2, 0, 0), (0, 2, 0), (0, 0, 2) is symmetrically placed

with respect to the coordinate axes. Using the cross product, find a vector

perpendicular to the triangle and also find the area of the triangle. Show that the

perpendicular vector you found has the same direction as the vector (1, 1, 1).

15. Using the vectors A⃗ = (2, 2, 5), B⃗ = (−1, 4, 2), and C⃗ = (−3,−1, 6), verify

Property 4 of Result 2.3.

16. The vector A⃗ × (B⃗ × C⃗) is called the vector triple product. Argue geometrically

that this vector must be in the plane formed by B⃗ and C⃗. In fact, show alge-

braically that A⃗ × (B⃗ × C⃗) = (A⃗ ⋅ C⃗)B⃗ − (A⃗ ⋅ B⃗)C⃗.

2.4.1 Programming Exercises

1. Write a program to draw the snowflake curve described in Example 2.6. Starting

with an equilateral triangle, the first iteration replaces each line segment in the

triangle with the pattern shown in the example. Allow the user to specify how

many iterations to perform. As an added option, change the replacement pattern

so that the smaller triangle points inside instead of outside the current figure.
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Much, if not most, of the graphics pipeline relies on asking geometric questions about
objects in a scene. At the modeling stage, it is helpful to know where the middle of

a face is or whether four vertices lie in a plane. If we think of light as traveling in

rays, then asking where a ray intersects an object is key to understanding the shade of

the object and the shadow it casts. The task now is to take the notion of a vector and

use it as efficiently as possible to make geometric calculations. The goal is threefold:

express the calculations simply so that producing an algorithm is relatively easy, make
the calculations general so that the algorithms are easily extended, and keep an eye

on the number of elementary arithmetic operations in each larger calculation so that

the resulting computer code runs quickly.

Vectors fit Euclidean geometry particularly well, which means that linear struc-

tures such as lines and planes along with circular structures (with fixed radii) are the
focus of attention. We certainly want to eventually extend our reach to more organic

shapes, sowe look for ways that vector calculations change our perspective in describ-

ing nonlinear forms.

3.1 LINES AND PLANES

3.1.1 Vector Description of Lines

One way to describe a line is to say it contains two particular points, say P0 and P1.

This allows us to construct the line (actually draw it on a piece of paper), but it does

Mathematical Structures for Computer Graphics, First Edition. Steven J. Janke.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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not saymuch about the other points on the line. Analytic geometry takes the Cartesian
coordinates of the points and produces a more complete description. Assuming the
line is two dimensional and the coordinates are P0 = (−1, 2) and P1 = (5, 6), then the
point-slope form of the line yields

y − 2

x − (−1)
= 6 − 2

5 − (−1)
=⇒ y = 2

3
x + 8

3

This description gives the coordinates for all the points on the line and hence is
more useful when having to plot pixels on the display screen. A version of the
line equation, 3y − 2x = 8, gives what we call an implicit description of the line,
because it does not explicitly describe how to calculate one coordinate from another
(although a little algebra is all that is needed). There is not a single implicit equation
for three-dimensional lines, so we turn to vector descriptions which generalize
easily.

For two-dimensional lines, the vector description is simple. First, calculate the
vector 𝑣 = P1 − P0 = (6, 4). The direction of this vector is parallel to the line and
any multiple, t𝑣, is also parallel. We call 𝑣 the direction vector for the line. Starting
at point P0 and adding the direction vector gives us a point, P0 + t𝑣, on the line. If
0 ≤ t ≤ 1, then the point is on the line segment between P1 and P2; for t = 0, we get
P0 and for t = 1, we get P1. For values of the parameter t that are larger than 1 or less
than 0, the points are on the extension of the line segment. If P is an arbitrary point
on the line, we can write

Line equation: P = P0 + t𝑣 (3.1)

We can split this parametric description into two coordinate equations. If we let P =
(x, y), then using the coordinates of P0, we have

x = −1 + 6t

y = 2 + 4t

Solving for t in the first equation and substituting in the second gives the implicit
form we saw before, 3y − 2x = 8. In the parametric descriptions, t is the multiplier
for 𝑣 and tells us where we are on the line. The implicit line equation, on the other
hand, does not directly describe relative locations on the line. Instead, the ratio of the
coefficients for y and x in the implicit equation gives the slope of the line.

Still thinking in terms of vectors, the direction vector 𝑣 = (6, 4) is, of course,
parallel to the line and therefore n⃗ = (4,−6) is perpendicular to the line because
n⃗ ⋅ 𝑣 = 0. Every vector parallel to the line must be perpendicular to n⃗. In particular,
if P = (x, y) is a point on the line, the vector �⃗� = (P − P0) is parallel to the line and
perpendicular to n⃗. (Figure 3.1.)

n⃗ ⋅ �⃗� = 0 =⇒ 4 ⋅ (x − (−1)) + (−6) ⋅ (y − 2) = 0

=⇒ 3y − 2x = 8
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Figure 3.1 Vectors on a line

Again, we get the implicit form of the line equation, but we can also see that the

coefficients (3,−2) describe a vector perpendicular to the line.
We now have two vector descriptions of the two-dimensional line:

1. With two points, take 𝑣 = (P1 − P0), then any point on the line takes the form

P0 + t𝑣;

2. With a single point P0 and a vector n⃗ perpendicular to the line (called a normal
vector), we know n⃗ ⋅ (P − P0) = 0 describes any point P on the line.

Example 3.1 (Line Perpendicular to a Line Segment). Imagine we are drawing a

tilted rectangle where the base edge is the line segment from P0 = (3.5,−2.2) to
P1 = (8, 1.5). The vector 𝑣 = P1 − P0 = (4.5, 3.7) is parallel to this line segment.

The two edges perpendicular to the base are both in the same direction, which is

represented by a vector n⃗ perpendicular to 𝑣. There are many choices for n⃗, but one
choice is n⃗ = (−3.7, 4.5) because then n⃗ ⋅ 𝑣 = 0. Vector n⃗ is normal to the base line

segment. The equation of the line representing an edge through P0 perpendicular to

the base is

P = P0 + tn⃗ =
[
3.5

−2.2

]
+ t

[
−3.7
4.5

]
The other edge is through the point P1.

P = P1 + tn⃗ =
[
8

1.5

]
+ t

[
−3.7
4.5

]
The point P2 is on the second edge, so P2 = P1 + tn⃗. Suppose we wanted the edge

from P1 to P2 to be five units long. Then, the length of the vector tn⃗ needs to be five
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units. Since |n⃗| = √
(−3.7)2 + 4.52) ≈ 5.83, we conclude that t = 5

5.83
≈ 0.86.

P2 =
[
8

1.5

]
+ 0.86

[
−3.7
4.5

]
≈

[
4.82

5.37

]
To find the equation of the dotted line in the middle of the rectangle, we find

the midpoint M of the base by setting M = P0 + 0.5 ⋅ 𝑣 = (5.75,−0.35). Then the
equation of the line is

P = M + t ⋅ 𝑣 =
[
5.75

−0.35

]
+ t

[
−3.7
4.5

]
The final vertex P3 of the rectangle is left for the exercises (Figure 3.2). ◽

The vector description generalizes easily to three-dimensional lines. In fact,
the equation P = P0 + t𝑣 makes no mention of how many coordinates we have.
If there are three coordinates, then 𝑣 is a three-dimensional vector instead of a
two-dimensional vector and we can split the vector equation into three parametric
equations, one for each coordinate. If P0 = (5,−2, 1) and P1 = (3, 3, 4), then
𝑣 = P1 − P0 = (−2, 5, 3). The vector equation is split into the following coordinate
equations:

x = 5 − 2t

y = −2 + 5t

z = 1 + 3t

We can solve each of these equations for t to get the two equations:

x − 5

−2
=

y + 2

5
= z − 1

3
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This is the analog of the single implicit equation we saw for two-dimensional
lines.

We were able to give a perpendicular vector for two-dimensional lines and calcu-

late the direction vector by knowing that the dot product of the two had to be zero.
In three dimensions, there are an infinite number of vectors perpendicular to any
vector. This means we need to specify at least two perpendicular vectors that are not
multiples of each other before we have described a direction vector.

Example 3.2 (Three-dimensional Line). Suppose P0 = (−7, 5, 8),P1 = (−3, 9, 0),
and P2 = (1, 6, 8) are three points in space. To find the equation of the line
through P0 perpendicular to both segments P0P1 and P0P2, we find vectors

u⃗ = P1 − P0 = (4, 4,−8) and �⃗� = P2 − P0 = (8, 1, 0). Then, since the direction
vector 𝑣 is perpendicular to u⃗ and �⃗�, it is parallel to u⃗ × �⃗� = (8,−64,−28). We can
take 𝑣 = (2,−16,−7) because it is a multiple of the cross product. The equation of
the line is then

P = P0 + t𝑣 =
⎡⎢⎢⎣
−7
5

8

⎤⎥⎥⎦ + t
⎡⎢⎢⎣

2

−16
−7

⎤⎥⎥⎦
The parametric coordinate equations are

x + 7

2
=

y − 5

−16
= z − 8

−7

If z = 0, then we are on the xy plane and solving the last equality for y gives
y ≈ −13.29. Similarly, x ≈ 4.71. The line intersects the xy plane at the point

(4.71,−13.29, 0). ◽

3.1.2 Vector Description of Planes

A similar vector approach works to describe planes in three dimensions. Two points
determine a line, and a single vector (parallel to the line) determines its direction.

It takes three points to determine a plane and two vectors (parallel to the plane) to
determine its orientation. Start with three points on the plane, P0,P1,P2. The two
vectors 𝑣1 = P1 − P0 and 𝑣2 = P2 − P0 determine the position of the plane (as long
as the three points are not collinear). The cross product n⃗ = 𝑣1 × 𝑣2 is a vector that
is perpendicular to the plane; n⃗ is a normal vector. This perpendicular vector alone

determines the plane’s orientation, whereas it takes two vectors parallel to the plane
to do the same job (Figure 3.3).

Since every vector in the plane must be perpendicular to the normal, we take an
arbitrary vector in the plane, say �⃗� = P − P0, where P0 is a given point on the plane

andP = (x, y, z) is an arbitrary point in the plane. Then the dot product with the normal
must be zero.

Plane equation: n⃗ ⋅ (P − P0) = 0 (3.2)
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Figure 3.3 Vectors determine a plane

Example 3.3 (Plane Containing Three Points). With the three points, P0 =
(1, 1, 1), P1 = (4,−2, 5), and P2 = (3, 8,−1), form the vectors A⃗ = P1 − P0 =
(3,−3, 4) and B⃗ = P2 − P0 = (2, 7,−2). Then

n⃗ = A⃗ × B⃗ =
||||−3 4

7 −2
|||| i⃗ −

||||3 4

2 −2
|||| j⃗ +

||||3 −3
2 7

|||| k⃗ = (−22, 14, 27)

This vector by itself describes the plane’s orientation, so one point on the plane and
a normal vector should also describe the plane.

Taking P0 = (1, 1, 1) and P = (x, y, z) gives the vector �⃗� = P − P0. This should be
perpendicular to the normal n⃗, so we have n⃗ ⋅ �⃗� = 0.

n⃗ ⋅ �⃗� = (−22, 14, 27) ⋅ (x − 1, y − 1, z − 1) = 0

=⇒ −22x + 14y + 27z = 19

This is the implicit equation of a plane. ◽

Using any of the three points to form vector �⃗� in the last example gives exactly
the same equation. The coefficients in front of the variables x, y, and z are, of course,
the coordinates of the normal vector. Since any multiple of a normal vector is still
normal, these coefficients could differ but the resulting equation is equivalent.

Example 3.4 (Plane Perpendicular to a Line). To find a plane containing
P0 = (−10, 3, 5) and perpendicular to the line through P0 and P1 = (2, 7, 2), note that
the vector n⃗ = P1 − P0 = (12, 4,−3) is normal to the plane. So the vector equation
is (12, 4,−3) ⋅ (P − (−10, 3, 5)) = 0 and the implicit coordinate equation is

12x + 4y − 3z = −123

Notice that the constant term in the implicit equation is calculated by considering
the vector from the origin to P0 and taking the dot product of this vector with the
normal. ◽
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3.2 DISTANCES

Finding the distance between two objects in a scene, whether they are two space

ships or a player’s foot and a boulder, can be reduced to finding distances between

various combinations of points, lines, and planes. To design algorithms using vectors,

it turns out that determining the projection of one vector onto another is a key step. In

Figure 3.4, the dotted line from the head of 𝑣 is perpendicular to �⃗�. We can imagine

that the distance d in the figure is the length of the shadow of vector 𝑣 when the light

source is directly overhead. More accurately, we say d is the length of the projection

of 𝑣 onto �⃗�.

If 𝛼 is the angle between the two vectors, then cos 𝛼 is the ratio of d to the length

of 𝑣. Figure 3.4 shows the situation when 𝛼 is less than 𝜋∕2 radians. If the angle is

larger than 𝜋∕2 radians, then the cosine will be negative and we will take the absolute
value. Using the definition of the dot product, we have

| cos 𝛼| = d|𝑣| =⇒ d = |𝑣| ⋅ | cos 𝛼| =⇒ d = |𝑣 ⋅ �⃗�||�⃗�| (3.3)

3.2.1 Point to a Line

To find the distance between a point and a line, we need the distance along a perpen-

dicular to the line. So the idea in two dimensions is to find any vector from the point

and the line and project it on the normal vector.

Example 3.5 (Distance from a Point to a Line in Two Dimensions). To find the

distance between the pointP2 = (3, 4.6) and the line betweenP0 = (−2.1, 5) andP1 =
(7, 9), first find the vectorP1 − P0; subtracting coordinates gives (9.1, 4) and therefore
the vector n⃗ = (−4, 9.1) is normal to the line. Next, the vector from P2 to the point P0

is 𝑣 = (−5.1, 0.4). Now, the length of the projection of 𝑣 onto n⃗ is the distance from

the point P2 to the line. That distance is

d = |𝑣 ⋅ n⃗||n⃗| = 24.04√
98.81

≈ 2.42

Notice that 𝑣 is the vector from P2 to P0. If we had taken the vector from P0 to P2,

then the dot product would have been negative. The negative cosine means that angle
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𝛼 would have been greater than 𝜋∕2 radians. The length of the projection is really the
absolute value of the quantity calculated (Figure 3.5). ◽

A line in space has many normal vectors, so when we are looking for the distance

between a point and a three dimensional line, it is not immediately obvious how to

find an appropriate normal. Instead, we first describe the line with its equation: P =
P0 + t𝑣. Figure 3.6 shows the point P0 on the line with a vector from the line to the

point P2, a⃗ = P2 − P0. The vector 𝑣 is in the direction of the line. If we project a⃗ onto

𝑣, we will have the distance from P0 to Q, where Q is at the foot of the perpendicular

from P2 to the line. The points P0, Q, and P2 determine a right triangle and since we

can find the length of the hypotenuse, |a⃗|, and the length of the leg from projection,

(a⃗ ⋅ 𝑣)∕|𝑣|, the distance d follows from the Pythagorean theorem.

Example 3.6 (Distance from a Point to a Line in Three Dimensions). Suppose P0 =
(3,−1, 5) is on a line and the vector 𝑣 = (4, 2, 1) is in the direction of the line. If we

want the distance between the line and the point P2 = (−2, 2, 6), then we calculate|a⃗| = |(−2, 2, 6) − (3,−1, 5)| = √
35. The projection of a⃗ onto 𝑣 is

a⃗ ⋅ 𝑣|𝑣| = |(−5, 3, 1) ⋅ (4, 2, 1)|√
42 + 22 + 12

= 13√
21

P0

P1

P2

Q
d

v

a

Figure 3.6 Vectors on plane
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Now, we can find the second leg, d, of the right triangle. We have

d =

√√√√√(
√
35)2 −

(
13√
21

)2

≈ 5.19

This is the distance from the point to the line. ◽

For another approach, look again at Figure 3.6. Let b⃗ be the vector from P0 to Q.

The length |b⃗| is just the projection length that we calculated in the example. The

vectors a⃗ and b⃗ form a parallelogram, and the area of that parallelogram is |a⃗ × b⃗|.
For the base of the parallelogram, we have |b⃗|, which when multiplied by the height
d gives the area. So,

d = |a⃗ × b⃗||b⃗| (3.4)

Although this is a concise formula for the distance, the calculation of the cross product
requires six multiplications and we still need to take the square root for the length.
When compared to the way we calculated d in the example, it appears that this second
approach takes more computational effort.

3.2.2 Point to a Plane

Turning now to a plane, a single normal vector determines the orientation, and con-
sequently finding the distance to a point is easy. Take a vector from any point on the
plane, say P0, to a given point P1 off the plane. Then, the projection of this vector
onto the normal vector for the plane gives the distance from the point to the plane.

Example 3.7 (Distance from a Point to a Plane). To find the distance from the plane
x − y + 3z = 10 to the point P1 = (4,−7, 1), first find a point P0 on the plane. Any
point on the plane will work, so, for example, take y = 0 and z = 0, which easily
gives x = 10. Since the vector (1,−1, 3) is normal to the plane, we project the vector
from P0 to P1 onto it.

d = |((4,−7, 1) − (10, 0, 0)) ⋅ (1,−1, 3)||(1,−1, 3)| = 4√
11

≈ 1.21

If, instead of the implicit equation for a plane, we are given the vector equation or
just a point and a normal, we can immediately calculate d using the formula above
(Figure 3.7). ◽

3.2.3 Parallel Planes and Line to a Plane

We can count the various situations that might arise when finding distances between
points, lines, and planes. There are six cases: point to point, point to line, point to
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plane, line to line, line to plane, and plane to plane. We have covered distances from

a point so what is left are those three cases with lines and planes. These cases make

sense only if the two objects (lines or planes) do not intersect; that is, they are parallel.

For example, two planes are parallel if their normal vectors are parallel, and we

can determine this if their normals are multiples of each other. Similar to what we

have done before, projecting a vector (from the first plane to the second) onto the

common normal gives the distance between the planes.

The same idea works for a line and a plane. If the direction vector for the line

is perpendicular to the normal to a plane, then the line and plane do not intersect.

Projecting a vector (from the line to the plane) onto the normal vector again gives the

distance between the line and the plane.

Example 3.8 (Distance between Two Parallel Planes). We have two parallel planes

with a common normal vector n⃗ = (8, 2,−5). One plane contains the point P0 =
(1, 1, 2) and the other contains the point P1 = (7,−2, 1). To find the distance between
the planes, we calculate the coordinates of 𝑣 = P1 − P0 = (6,−3,−1) and then project
it onto the normal vector n⃗.

d = |(6,−3, 1) ⋅ (8, 2,−5)||(8, 2,−5)| = 37√
93

≈ 3.84

Notice that the order we subtract the points to get 𝑣 does not matter (Figure 3.8). ◽

If we are thinking about computation efficiency, notice that, if we normalize the

vector n⃗ so that it has length 1, then no division is required to calculate the projection

and hence the distance. Of course, it takes three divisions to normalize a vector, but

if we will be using it many times, it might be worth it.

Example 3.9 (Distance from a Line to a Plane). Instead of two planes, suppose we

have one containing the point P0 = (1, 1, 2)with normal n⃗ = (8, 2,−5). Consider now
the line P = (5, 11, 3) + t(1,−4, 0). The direction vector 𝑣 = (1,−4, 0) is perpendic-
ular to the normal and hence parallel to the plane. By projecting a vector from P0
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to a point on the line, say P1 = (5, 11, 3), we can find the distance between the line

and the plane. This time, normalize the vector n⃗ first, giving n⃗∗ = 1√
93
(8, 2,−5) ≈

(0.83, 0.21,−0.52)

d = |(5 − 1, 11 − 1, 3 − 2) ⋅ n⃗∗||n⃗∗| = |(4, 10, 1) ⋅ (0.83, 0.21,−0.52)| ≈ 4.9

In this case, picking any point on the line gives the same distance. If the line was not

parallel to the plane, this would not be true. ◽

3.2.4 Line to a Line

In two dimensions, two lines either intersect or they are parallel. In three dimensions,

it is also possible that they do not intersect and they are not parallel; these are skew

lines. Suppose that for two nonintersecting lines we have found exactly where the

lines come closest to each other. That is, we have a point Q1 on the first line and a

point Q2 on the second line such that the distance between the two points is as close

as possible for any points on the lines. Then the vector �⃗� = Q2 − Q1 must be perpen-

dicular to each line. If it is not, then suppose it is not perpendicular to the second line.

Find a point P on the second line such that the vector 𝑣 = P − Q1 is perpendicular.

Considering the triangle ΔQ1PQ2, it is clear that segment Q1P is shorter than Q1Q2,

so Q2 should be repositioned.

The procedure for finding the shortest distance will be to take any vector from the

first line to the second and project it onto a vector perpendicular to both lines. As you

no doubt guessed, the cross product will give us the perpendicular vector. The cross

product of the two direction vectors for the lines gives the normal to both lines.

Example 3.10 (Distance between two Skew Lines). Let two lines have direction

vectors 𝑣1 = (−1, 5, 1) and 𝑣2 = (0, 2, 6). The point P1 = (4, 3, 5) is on the first line
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and the point P2 = (8,−2, 10) is on the second. We need the cross product to find a

vector normal to both lines.

𝑣1 × 𝑣2 =
||||5 1

2 6

|||| i⃗ −
||||−1 1

0 6

|||| j⃗ +
||||−1 5

0 2

|||| k⃗ = (28, 6,−2)

Then projection of the vector P2 − P1 = (4,−5, 5) onto this normal gives the

distance (Figure 3.9).

d = |(4,−5, 5) ⋅ (28, 6,−2)||(28, 6,−2)| = 72√
824

≈ 2.51

If the distance turned out to be zero, then the lines actually intersect (Figure 3.9). ◽

The last example used the power of vector geometry to find the distance between

the two lines with only a modest amount of calculation, but it did not identify the

points Q1 and Q2 that actually give us this distance. In some applications, it can be

necessary to actually find these points. There are a few different algorithms we can

design for locating the points, and most start by finding a vector between any two

arbitrary points on the two lines. Let P1 and P2 be given points on the two lines,

respectively, and let R1 and R2 be arbitrary points on the two lines. We calculate the

vector �⃗� between R1 and R2.

R1 = P1 + t1𝑣1

R2 = P2 + t2𝑣2

�⃗� = (R2 − R1) = (P2 − P1) + t2𝑣2 − t1𝑣1

The vector �⃗� is a function of the two parameters t1 and t2. One way then to find the

vector of shortest length is to use calculus to minimize this function of two variables.

Another way is to use the fact that the vector �⃗� must be perpendicular to both lines.

Consequently, the dot product of �⃗� with each of the direction vectors must be zero.

This leads to two linear equations for t1 and t2, which we can solve directly. (An

equivalent way to proceed is to calculate the cross product of the two direction vectors
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and note that �⃗� must be parallel to it. That is, the coordinates of �⃗� must be in the

same ratio as the cross product coordinates.)

Example 3.11 (Two Skew Lines Continued). Referring to Example 3.10, we have

�⃗� = (4,−5, 5) + t2(0, 2, 6) − t1(−1, 5, 1)

�⃗� ⋅ 𝑣1 = −24 + 16t2 − 27t1 = 0

�⃗� ⋅ 𝑣2 = 20 + 40t2 − 16t1 = 0

Solving these last two equations gives t1 ≈ −1.553 and t2 ≈ −1.121. Plugging
these in to the line equations gives the two points that are closest together.

Q1 = (4, 3, 5) + (−1.553)(−1, 5, 1) ≈ (5.55,−4.77, 3.45)

Q2 = (8,−2, 10) + (−1.121)(0, 2, 6) ≈ (8,−4.24, 3.27)

It is straightforward to check that the distance between these points is approximately

2.51 as we calculated before. ◽

3.3 ANGLES

A light ray strikes plane faces of an object at a particular angle and this angle helps

us to determine the brightness and color of the face. From our perspective of lines

and planes, we need to calculate the angle between a line and a plane. First, to clarify

which angle is the appropriate one, we draw the normal to the plane. The angle 𝛼

between the line and the normal is determined by the dot product of the line’s direc-

tion vector and the normal. If the direction vector is oriented as in Figure 3.10, the

dot product will be positive and 𝛼 ≤ 𝜋∕2 radians. The complement, 𝜋∕2 − 𝛼, gives

the angle 𝛽 between the line and the plane. If the direction vector is in the opposite

direction, then the dot product will be negative and we adjust to get 𝛼 ≤ 𝜋∕2. Looking
at Figure 3.10, the normal vector and the line’s direction vector along with the point

of intersection P form a second plane, and it is in this plane that we see the normal,

the line, and hence the angles 𝛼 and 𝛽.

Example 3.12 (Angle with the Coordinate Axes). Consider the plane given by the

point P0 = (−1, 3, 4) and the normal vector (2, 8, 5). We wish to find the angles each

coordinate axis makes with this plane. The x-axis has direction vector i⃗ = (1, 0, 0), so
letting 𝛼x be the angle with the normal, we have

cos(𝛼x) =
(1, 0, 0) ⋅ (2, 8, 5)√

12 + 0 + 0
√
22 + 82 + 52

= 2√
93

≈ 0.207
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This means 𝛼x is about 1.36 radians (77.91∘), giving 𝛽x ≈ 0.21 radians (12.09∘).
Since the y-axis has direction vector (0, 1, 0), we have cos 𝛼y ≈ 0.830, 𝛼y ≈ 0.59

radians, and 𝛽y ≈ 0.98 radians. Finally, for the z-axis, cos 𝛼z ≈ 0.518, 𝛼z ≈ 1.03, and

𝛽z ≈ 0.54.

The special simple form of the direction vectors in this example leads to a some-

what surprising result. The sum of the squares of the three cosines equals 1: 0.2072 +
0.8302 + 0.5182 ≈ 1.0 Indeed, the three dot products we calculate just give the three

coordinates of the normal vector and when we square them and add them up we get

the square of the normal vector’s length. This is exactly the square of the denominator,√
93. ◽

The normal determines the orientation of a plane, so to find the angle between

two planes, we just find the angle between their normals (Figure 3.11). This is a dot

product calculation. It is important to note here that the angle we are calculating is

the angle we see when we cut the two planes with another plane perpendicular to

the line of intersection for the original planes. It is not the angle between any two

vectors where one comes from each plane. (By choosing carefully, we can find two

such vectors with an arbitrarily small angle between them.)

When we address shading of object surfaces in a later chapter, we will use our

angle calculations to determine both the appropriate color for a face and whether we

can even see the face at all.

n1

n2 θ

Figure 3.11 Angle plane to plane
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3.4 INTERSECTIONS

It is important to be able to calculate intersections between various objects. The main

idea is simple: intersection points must satisfy each equation defining the intersecting

objects. A point of intersection for two lines, for example, is on both lines and there-

fore satisfies the two equations, one for each line.

3.4.1 Intersecting Lines

Lines in a plane or in space have the same vector description. The expression P =
P0 + t𝑣 serves to describe any line. If the point P0 and the vector 𝑣 have only two

coordinates, then we are describing lines in the plane.With three coordinates, we have

lines in space. To find the intersection of two lines, we simply set the two descriptions

equal to each other:

P = P1 + t1𝑣1

P = P2 + t2𝑣2

P1 + t1𝑣1 = P2 + t2𝑣2 =⇒ t1𝑣1 − t2𝑣2 = P2 − P1

The two line descriptions have two different parameters, t1 and t2, because there is no
guarantee that the same value for both parameters would work to describe the point

P in the context of each line. If our lines are in a plane, the last equation above can be

split into two linear equations (one for the x coordinates and one for the y coordinates)
with the two parameters as unknowns. Of course, if our lines are in space, there are

three equations.

For two-dimensional lines, the two linear equations in two unknowns are easy to

solve with one of the linear algebra techniques. Cramer’s rule (Appendix B) gives

a little more formal approach, which in this two-variable case can easily be turned

into a decent algorithm. Whichever technique we use, a little adjustment can usually

reduce the number of arithmetic operations to improve efficiency. There are really

three cases any complete algorithm needs to identify. The two lines may be parallel

and hence not intersect, or theymay actually coincide and hence give rise to an infinite

number of intersection points, or they may intersect in a single point.

For three-dimensional lines, there are three equations because there are three coor-

dinates, but only two unknowns, parameters t1 and t2. The fact that lines in space can
be skew (neither parallel nor intersecting) results in an over-constrained system of

equations with possibly no solution. Another vector approach avoids this complica-

tion and draws on the techniques for finding the distance between lines. If the lines

do indeed intersect, then the two closest points (one on each line) will actually coin-

cide. Searching for the smallest distance between two points is a job for calculus,

and there is in fact an approach to finding the intersection that uses calculus to first

find the closest points (see Exercises). However, we earlier saw that the closest points

must form a vector perpendicular to both lines. Using this geometric observation, we

can build a purely vector approach to the problem.
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Start with the equation t1𝑣1 − t2𝑣2 = P2 − P1, and, since each side is a vector, the

cross products of each side with the vector 𝑣2 must be equal. Hence, recalling that

the cross product of a vector with itself is zero,

(t1𝑣1 − t2𝑣2) × 𝑣2 = t1(𝑣1 × 𝑣2) = (P2 − P1) × 𝑣2

Now, to turn the vector equation into an equation with real numbers, we take the dot

product of each side with the vector (𝑣1 × 𝑣2).

t1(𝑣1 × 𝑣2) ⋅ (𝑣1 × 𝑣2) = ((P2 − P1) × 𝑣2) ⋅ (𝑣1 × 𝑣2)

t1 =
((P2 − P1) × 𝑣2)) ⋅ (𝑣1 × 𝑣2)|𝑣1 × 𝑣2|2 (3.5)

If we had crossed both sides with 𝑣1 in the beginning, then we would have an

expression for t2. A full geometric interpretation of the final expression for t1 is some-

what elusive, but we can bring a little understanding to the numerator. Notice that if

the two lines are actually in the same plane, then (P2 − P1) × 𝑣2 and 𝑣1 × 𝑣2 are par-

allel vectors. The cosine of the angle between them is 1 and the dot product is just

the product of their lengths. A little algebra shows that this is just Cramer’s formula

for t1.
If it turns out that 𝑣1 × 𝑣2 = 0, then the lines are parallel. Otherwise, we will find

the parameters for points that are closest together. From there, we can determine if

the lines intersect.

Example 3.13 (Intersection of Two Three-Dimensional Lines). Begin with two

direction vectors 𝑣1 = (1, 1, 2) and 𝑣2 = (0, 2, 3) along with the respective points

P1 = (1, 0, 3) and P2 = (−1, 1, 0). Then 𝑣1 × 𝑣2 = (−1,−3, 2) and 𝑣1 ⋅ 𝑣2 = 8. The

vector (P2 − P1) = (−2, 1,−3) and (P2 − P1) × 𝑣2 = (9, 6,−4). Now we can use the

formula to find t1.

t1 =
(9, 6,−4) ⋅ (−1,−3, 2)

14
= −2.5

To get t2, we use (P2 − P1) × 𝑣1 = (5, 1,−3) and calculate

t2 =
(5, 1,−3)) ⋅ (−1,−3, 2)

14
= −1.0

We return to the original lines to find the two points closest together.

P1 + t1𝑣1 = (1, 0, 3) + (−2.5)(1, 1, 2) = (−1.5,−2.5,−2)

P2 + t2𝑣2 = (−1, 1, 0) + (−1.0)(0, 2, 3) = (−1,−1,−3)

We conclude that the lines do not intersect because the two calculated points are

different. The vector n⃗ = (−1,−1,−3) − (−1.5,−2.5,−2) = (0.5, 1.5,−1) should be
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Figure 3.12 Two skew lines labeled

perpendicular to both lines and, indeed, the dot product with each of the line direction

vectors is zero. The length of n⃗ is
√
3.5 ≈ 1.87, so the two lines are this far apart

(Figure 3.12).

If we now move the first line in the direction of n⃗ by a distance 1.87, the two lines

should intersect. We can move the line simply by moving P1 because the direction

vector stays the same. So let P∗
1
= P1 + n⃗ = (1.5, 1.5, 2). We should recalculate with

this new line, but since we moved the first line in the direction of n⃗, we should not

have changed the positions of the two closest points. The parameters t1 and t2 should
be exactly as before. Therefore, the two new points are

P∗
1
+ t1𝑣1 = (1.5, 1.5, 2) + (−2.5)(1, 1, 2) = (−1,−1, 3)

P2 + t2𝑣2 = (−1, 1, 0) + (−1.0)(0, 2, 3) = (−1,−1,−3)

The two lines now intersect at the point (−1,−1, 3).
Turning this procedure for finding an intersection into an algorithm is not hard,

but as with all algorithms dealing with floating point numbers (real numbers, not just

integers), calculations are approximations. Consequently, determining whether the

distance between the lines is zero involves checking if the distance is less than some

small number. ◽

3.4.2 Lines Intersecting Planes

To determine the light intensity reflecting off a surface, we only need to know the

angle between a line (or vector) to the light source and the plane of the particular

object face. Ray tracing (detailed in a later chapter), however, is different. There we

need to know precisely where on a flat polygonal face the light ray strikes, and hence

is either reflected or refracted. For a line and a plane, we know that an intersection

point P must be on the line, and therefore P = P0 + t𝑣 for some value of t. The point
P is also on the plane, so we have n⃗ ⋅ (P − Q0) = 0, where n⃗ is the normal to the plane

and Q0 is a given point on the plane. Substituting the first expression for P into the
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second equation gives

n⃗ ⋅ (P − Q0) = n⃗ ⋅ (P0 + t𝑣 − Q0) = n⃗ ⋅ ((P0 − Q0) + t𝑣) = 0

We solve this equation for t, giving

t =
−n⃗ ⋅ (P0 − Q0)

n⃗ ⋅ 𝑣
(3.6)

Now all we need is to substitute back into the line equation to find P.

Example 3.14 (Intersection of a Line and Plane). Consider the line given by P0 =
(1.2, 4,−1.8) and 𝑣 = (7, 5.5, 2). To find where it intersects the plane described by the
point Q0 = (2, 1, 1) and normal n⃗ = (3.4, 3, 5), we first calculate t.

t = −(3.4, 3, 5) ⋅ ((1.2, 4,−1.8) − (2, 1, 1))
(3.4, 3, 5) ⋅ (7, 5.5, 2)

= 7.72

50.3
≈ 0.153

The point of intersection is then calculated from the line equation

P = (1.2, 4,−1.8) + (0.153)(7, 5.5, 2) ≈ (2.27, 4.84,−1.49)

We can verify that the point is indeed on the plane by subtracting Q0 to get a vector

that should be perpendicular to the normal. Taking the dot product should give zero

(approximately). ◽

There is one more step if we are trying to determine where on a face the light ray

intersects. It is possible that the ray misses the face entirely. That is, it intersects the

plane of the face, but it is not inside the polygonal boundary of the face. Checking to

see whether the point of intersection is actually inside the face requires a little more

analysis, which we will begin to do later in this chapter.

3.4.3 Intersecting Planes

Two planes can intersect in two ways. They can either intersect in a line, or

they can intersect everywhere (if they are identical). Of course, there is a third

possibility—they may be parallel and not intersect at all. Parallel planes are easy to

detect because their normals are parallel; that is, the normals are multiples of each

other. If the planes are parallel, then checking the distance between them determines

if they intersect. A distance of zero indicates they coincide, and any positive distance

indicates they do not intersect (Figure 3.13).

When two planes do intersect to form a line, we notice immediately that the direc-

tion vector for that line is parallel to both planes and therefore must be perpendicular
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Figure 3.13 Two planes intersect

to the normal to each plane. Once again, the cross product proves its worth. Taking

the cross product of the two normals gives a vector in the direction of the line. We

then know the line has the form

P = P0 + t(n⃗1 × n⃗2) (3.7)

All we need to finish the description of the line is the point P0. This is just any

point on the line. Since there are an infinite number of points on the line, it should

not be that hard to explicitly find one, but it is a little awkward computationally. First,

note that since the line of intersection is in both planes, our point P0 must be on both

planes. In short, it satisfies the equation for each plane. If the planes have normals n⃗1
and n⃗2 with points Q1 and Q2 on the respective planes, we have the following two

relations:

n⃗1 ⋅ (P0 − Q1) = 0

n⃗2 ⋅ (P0 − Q2) = 0

These are vector equations and, if we replaced the points with their coordinate

representations, we would have two equations with three unknowns, the coordinates

of P0. Now if we knew the line of intersection is not parallel to the xy plane, then there
has to be a point on the line with z = 0. (If it is parallel, there must be a point with

coordinate y = 0 or x = 0.) Setting z = 0 reduces the two equations to two variables

and we can solve them.

Example 3.15 (Two Intersecting Planes). Suppose the normals to two planes

are n⃗1 = (1, 0, 5) and n⃗2 = (3,−2, 2) with respective points Q1 = (1, 6,−2) and

Q2 = (2, 1, 0). First, find the direction vector for the line by taking the cross product.

𝑣 = (1, 0, 5) × (3,−2, 2) = (10, 13,−2)

Then look for a point on the line. Since 𝑣 is not parallel to the xy plane [i.e., it is not

perpendicular to the normal vector (0, 0, 1)], we set the z coordinate of P0 to zero.
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n⃗1 ⋅ ((x, y, 0) − (1, 6,−2)) = (x − 1) + 10 = 0

n⃗2 ⋅ ((x, y, 0) − (2, 1, 0)) = 3(x − 2) − 2(y − 1) = 0

Solving gives P0 = (−9,−15.5, 0) and the line of intersection is P =
(−9,−15.5, 0) + t(10, 13,−2). ◽

Our calculations for finding a point on the line may seem a little ad hoc, even
though it can be turned into an algorithm. For a more general approach, we could pick
a third plane guaranteed to intersect our line by taking the plane perpendicular to the
line direction vector and containing the origin (0,0,0). Then, finding the intersection
of three planes (next example) will find a point on the line.

Three planes can intersect in various ways. We can have no intersections (at least
two planes are parallel or they intersect in three parallel lines), or infinite intersec-
tions (the planes coincide or intersect in a line), or a single point of intersection
(Figure 3.14). For the first two possibilities, checking the normals determines the
situation. For the last possibility, the vector approach supplies three equations:

n⃗1 ⋅ (P − P1) = 0

n⃗2 ⋅ (P − P2) = 0

n⃗3 ⋅ (P − P3) = 0

The point P = (x, y, z) has three unknown coordinates, which turns the three vector
equations into three linear equations in x, y, and z. The equations can be solved with
any of the techniques from linear algebra. In particular, we can convert the three
equations to a single matrix equation if we let M be the matrix with the normal vectors
as rows. (Details of the conversion and solution are given in Section 3.7.) Using the
matrix inverse to solve the matrix equation yields a vector formula for the point of
intersection.

P = 1

detM
[(n⃗1 ⋅ P1)(n⃗2 × n⃗3) + (n⃗2 ⋅ P2)(n⃗3 × n⃗1)

+ (n⃗3 ⋅ P3)(n⃗1 × n⃗2)] (3.8)

Figure 3.14 Three planes intersect
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The points P1, P2, P3 are not vectors, so the dot products in the formula look suspi-

cious. Yet if we consider P1, P2, P3 as vectors from the origin to the points, then the

calculations make sense.

Example 3.16 (Intersection of Three Planes). Let us take an example where it is

relative easy to watch the calculations evolve. We will pick the following three unit

normals along with points on the associated planes:

n⃗1 =

(
0,

1√
2
,

1√
2

)
P1 = (1,−1, 2)

n⃗2 =

(
1√
3
,
1√
3
,

1√
3

)
P2 = (0, 2, 1)

n⃗3 =

(
1√
2
, 0,

1√
2

)
P3 = (4, 0,−2)

The dot products turn out to be (n⃗1 ⋅ P1) =
1√
2
, (n⃗2 ⋅ P2) =

√
3, and (n⃗3 ⋅ P3) =

√
2.

The determinant of M, the matrix with the normals in the rows, can be calculated as

follows:

detM =

|||||||||||

0
1√
2

1√
2

1√
3

1√
3

1√
3

1√
2

0
1√
2

|||||||||||
= − 1√

2
⋅ (0) + 1√

2
⋅

(
− 1√

6

)
= − 1

2
√
3

The point of intersection is then found from Formula 3.8.

P = −(2
√
3)

[
1√
2

(
1√
6
, 0,

−1√
6

)
+

√
3
(−1

2
,
−1
2
,
1

2

)
+

√
2

(
0,

1√
6
,
−1√
6

)]
= (2, 1, 0)

The first plane in this example has the implicit equation
1√
2
(y + z − 1) = 0. The point

P = (2, 1, 0) does satisfy the equation and hence lies on the plane. It is easy to check
that the point also lies on the other two planes and is the point of intersection for

all three planes. The vector viewpoint really did not give any special insight into

this problem. Although the final formula for the point of intersection can be given

in terms of vectors, it is not clear how to interpret it in a way that gives geometric

insight. In Section 3.6, a new coordinate system (homogeneous) gives another view

of this problem that does bring a little more insight. ◽



ADDITIONAL KEY APPLICATIONS 61

3.5 ADDITIONAL KEY APPLICATIONS

3.5.1 Intersection of Line Segments

In a graphics context, lines can represent light rays, but the edges of objects are usually

line segments, not fully infinite lines. This means that two lines may intersect, but line

segments on those lines may not. Determining whether two segments intersect is key,

for instance, in deciding whether two-dimensional objects collide or not. Looking

deeper into this problem does highlight a fewmore useful techniques in the associated

vector geometry.

To set up the situation, supposewe have two lines L1 and L2 with segments on each.

The first segment has end points P0 and P1 while the segment on the second line has

end points Q0 and Q1. Once we form vectors 𝑣1 = (P1 − P0) and 𝑣2 = (Q1 − Q0),
we can describe each line. L1 has equation P = P0 + t1𝑣1, and line L2 has equation

P = Q0 + t2𝑣2.
We know that if 0 ≤ t1 ≤ 1, then the point P is actually on the first line segment.

Assuming the two lines actually do intersect, using the earlier techniques will find

t1 and t2 for the point of intersection. If both these parameters are between 0 and 1,

then the intersection point is on both segments and the segments do intersect. This

will work, but there is a bit of computation necessary to find the parameters and cover

the various cases. Another more efficient approach can decide whether the segments

intersect without actually finding the intersection.

Focus first on two dimensions. A line divides the two-dimensional space into two

regions, one above the line and one below the line. (For a nearly vertical line, perhaps

left and right are better directions.) For the line L1, we have a normal vector n⃗1. The
normal “points” to one side of the line. Any multiple of the normal vector is still

perpendicular to the line, so the normal may be pointing above the line or it may be

pointing below the line. Once we pick the normal, we have distinguished between the

two sides of the line (Figure 3.15).

A point R that is not on the line is on one side or the other. The vector �⃗� = R − P0

is not necessarily perpendicular to L1, but it does point to one side of the line or

the other. The dot product �⃗� ⋅ n⃗1 is positive if R is on the side of the line pointed

to by the normal vector n⃗1. If it is on the other side, the dot product is negative.

n1

v1

v2

Above

BelowP0

L1

R1

R2

Figure 3.15 Side of line
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The key idea here is that, if we take the end points of a segment on the second

line L2 and form vectors with P0, the dot products with normal n⃗1 will determine

if they are on the same side of L1 or not. If the two dot products are both positive or

both negative, they are on the same side of the line. Otherwise, they are on opposite

sides.

Result 3.1 If the vectors from a point on a line to two points R1 and R2 are 𝑣1 and 𝑣2,
then the two points are on the same side of the line if and only if the dot products 𝑣1 ⋅ n⃗
and 𝑣2 ⋅ n⃗ have the same sign. If either dot product is zero, then the corresponding
point is on the line.

Example 3.17 (Intersection of Two Line Segments (2D)). Consider two line seg-

ments with end points, direction vectors, and normals as given below:

P0 = (1, 4) P1 = (6, 2) 𝑣1 = (5,−2) n⃗1 = (2, 5)

Q0 = (4, 3) Q1 = (5, 5) 𝑣2 = (1, 2) n⃗2 = (−2, 1)

Note that we could have taken the direction vectors and the normals in the opposite

directions as well.

To determine whether the two line segments intersect, we first check if P0 and P1

are on the same side of line L2.

n⃗2 ⋅ (P0 − Q0) = 7 > 0

n⃗2 ⋅ (P1 − Q0) = −5 < 0

Since the dot products have different signs, they are on different sides of the line

containing the second segment. It is still possible that the segments intersect. Now,

checking Q0 and Q1 against line L1 gives

n⃗1 ⋅ (Q0 − P0) = 1 > 0

n⃗1 ⋅ (Q1 − P0) = 13 > 0

These end points are on the same side of L2 and consequently the segments do not

intersect. The algorithm here hinges on the fact that the segments intersect only if the

two end points of each segment are on opposite sides of the line containing the other

segment.

Just to check the result, we can find the intersection of the two lines. We have

L1 ∶ P = (1, 4) + t1(5,−2)

L2 ∶ P = (4, 3) + t2(1, 2)
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Setting the two line equations equal to each other gives a system of two equations

in t1 and t2. Using Cramer’s rule gives

t1 =

|||| 3 −1
−1 −2

|||||||| 5 −1
−2 −2

||||
= 7

12
t2 =

|||| 5 3

−2 −1
|||||||| 5 −1

−2 −2
||||
= −1

12

Since t1 is between 0 and 1, the intersection point is inside the first line segment,

but t2 is negative, indicating the intersection is outside the segment. The two segments

do not intersect. This second approach finds the intersection and then compares with

each segment; this requires more computation that the first algorithm. ◽

A three-dimensional line does not split space into two regions but a plane does,

and the same technique we have just discovered works to determine if two points are

on the same side of a plane. Form vectors from a fixed point on the plane to the two

points and take dot products with a normal to the plane. If the dot products have the

same sign, the points are on the same side of the plane.

For line segments in space, an algorithm for determining whether two line seg-

ments intersect can proceed by first determining whether the two segments lie in the

same plane: that is, whether the four end points all lie in the same plane. Three points

determine a plane, so with three of the four end points, we find a normal to the plane.

Now find the vector from one of the three points to the fourth point. If the dot product

of this vector with the normal is zero, all four points lie in a plane. If not, then the

segments cannot intersect.

If the two line segments do lie in the same plane, then the algorithm could con-

tinue as we did in two dimensions if we could find normals to each line segment

that are parallel to the plane. The cross product of a line’s direction vector and the

plane’s normal will give such a normal to the line. This reduces the problem to the

two-dimensional case.

Example 3.18 (Intersection of Two Line Segments (3D)). Consider two line seg-

ments in space with the following end points and direction vectors:

P0 = (−1, 5, 0) P1 = (2, 0, 1) 𝑣1 = (3,−5, 1)

Q0 = (−1,−1, 3) Q1 = (3, 3,−1) 𝑣2 = (4, 4,−4)

To find the normal to the plane containing P0,P1, and Q0, we find the cross product of

𝑣1 with the vector �⃗� = (Q0 − P0) = (0,−6, 3). The result is 𝑣1 × �⃗� = (−9,−9,−18),
so for simplicity we pick the normal n⃗ = (1, 1, 2).

To check whether Q1 is in the plane of the other three, we find the dot product of

(Q1 − P0) = (4,−2,−1) and n⃗. The result is 0, implying that all four points lie in a

plane.
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Normals to the two line segments are calculated with cross products:

n⃗1 = 𝑣1 × n⃗ = (−11,−5, 8)

n⃗2 = 𝑣2 × n⃗ = (12,−12, 0)

First, test P0 and P1 against the second line:

(P0 − Q0) ⋅ n⃗2 = (0, 6,−3) ⋅ (12,−12, 0) = −72 < 0

(P1 − Q0) ⋅ n⃗2 = (3, 1,−2) ⋅ (12,−12, 0) = 24 > 0

P0 and P1 are on opposite sides of the second line. Similarly, we check Q0 and Q1.

(Q0 − P0) ⋅ n⃗1 = (0,−6, 3) ⋅ (−11,−5, 8) = 54 > 0

(Q1 − P0) ⋅ n⃗1 = (4,−2,−1) ⋅ (−11,−5, 8) = −42 < 0

Q0 and Q1 are on opposite sides of the first line. We conclude that the two line seg-

ments intersect. ◽

The ability to determine whether two points are on the same side of a line is quite

useful. It leads nicely to an algorithm for determining whether a point falls inside a

triangle. Each side of the triangle determines a line, and the third vertex is on one side

of this line. If the point in question is on the opposite side of the line, then it cannot

be inside the triangle. The algorithm, then, is to test each side against the extra vertex

and the given point.

Example 3.19 (Inside a Triangle). Suppose we have a triangle in two dimensions

with vertices P0 = (4, 9), P1 = (8, 15), and P2 = (10, 13). We wish to check if Q =
(6, 13) is inside the triangle. Of course, a little algebra and the point-slope equation for
each line can usually answer the question, but for an algorithm that tries to minimize

calculations, we test each side against the point (6, 13).
The side with vertices P0 and P1 is on a line with direction vector (4, 6). The vector

(−6, 4) is normal. Comparing Q with P2 gives

(Q − P0) ⋅ (−6, 4) = (2, 4) ⋅ (−6, 4) = 4 > 0

(P2 − P0) ⋅ (−6, 4) = (6, 4) ⋅ (−6, 4) = −20 < 0

The two points are on opposite sides of P0P1, so Q cannot be inside the triangle.

We can stop here; there is no need to check the other sides. ◽

We can actually expand this algorithm to three-dimensional triangles. We sim-

ply need to find normals that lie in the plane of the triangle. This requires cross

products which can be a little expensive computationally. There are several other algo-

rithms that can detect whether a point is inside a triangle or outside it. One approach
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projects the three dimensional triangle onto one of the coordinate planes. This turns

the three-dimensional problem into a two-dimensional problem. Another approach,

which we examine in detail when we study triangles in depth, uses barycentric coor-

dinates which are particularly important in graphics applications.

3.5.2 Intersection of Line and Sphere

Another useful graphics object is the sphere and, although perfect spheres may not be

in a scene, they can serve as convenient boundaries for regions of the scene. If a light

ray does not intersect the boundary of the sphere, then it certainly does not intersect

any object inside.

If C is the center of a sphere and P is an arbitrary point on the sphere, then the

expression |(P − C)| = r describes the sphere. In terms of dot products, we have the

equivalent description (P − C) ⋅ (P − C) = r2. To find the intersection of a line with

a sphere, we first visualize a cross section of the sphere and line as in Figure 3.16.

Single out the point E (for eye) on the line where we might imagine an observer is

standing, the point P where the line intersects the sphere, and the point C at the center

of the sphere. It may be that the line actually misses the sphere, but if it does intersect,

it could just touch the sphere in a single point (i.e., it is tangent to the sphere) or it

could pass through the sphere intersecting at two distinct points.

A point of intersection is simultaneously on the line and the sphere. Plugging the

line description P = E + t𝑣 into the description of a sphere gives

(P − C) ⋅ (P − C) = (E + t𝑣 − C) ⋅ (E + t𝑣 − C) = r2

The dot product simplifies to give the following quadratic equation in t:

t2|𝑣|2 + 2((E − C) ⋅ 𝑣)t + |(E − C)|2 = r2 (3.9)

The well-known quadratic formula will give us 0, 1, or 2 solutions.

There is another approach that saves a few computations and still finds the inter-

section closest to E. In the figure, the triangleΔEQC is a right triangle; Q is the vertex

of the right angle. Let vector �⃗� = C − E be the hypotenuse of the triangle and let 𝑣

be a direction vector of length 1 for the line from E through P. (If the line does not
intersect the sphere, then there is no P.)

v
w

E

P a
d

r

Q

C

Figure 3.16 Line and sphere
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By projecting �⃗� onto the vector 𝑣, we can find the side EQ of the right triangle

ΔEQC. The length of EQ is L = �⃗� ⋅ 𝑣, since the length of 𝑣 is 1. The Pythagorean

theorem gives the final side, a = |�⃗�|2 − L2.

If the line does not intersect the sphere, then a > r and we can stop the algorithm.

Otherwise, the smaller right triangle ΔCQP has sides a and d with hypotenuse r, so
d2 = r2 − a2. We take the square root to get d and then P = E + (L − d)𝑣.

Example 3.20 (Intersection of Line and Sphere). Suppose there is a sphere of radius

4 centered at the point (5, 8,−4). We are standing with our eye at the point (−3, 2, 1)
looking in the direction (4, 4,−3).

𝑣 = 1√
41

(4, 4,−3) ≈ (0.625, 0.625,−0.469)

�⃗� = (8, 6,−5)

L = (8, 6,−5) ⋅ (0.625, 0.625,−0.469) ≈ 11.1

Continuing, we have

a2 = |�⃗�|2 − L2 ≈ 1.79

d2 = r2 − a2 ≈ 14.21

Since a < r, we know there is an intersection.

P = (−3, 2, 1) + (11.1 − 3.77)(0.625, 0.625,−0.469) ≈ (1.58, 6.58,−2.44)

Using the quadratic equation (3.9) (note that (E − C) = −�⃗�), we get

t2 − 2(11.1)t + (125 − 16) = 0

One of the solutions to this (t = 7.33) matches the intersection found above. Notice

that using the quadratic equation requires figuring out which of two solutions is clos-

est to the eye. If the sphere is opaque, we cannot see the other point. ◽

3.5.3 Areas and Volumes

The definition of the cross product led naturally to the area of a parallelogram.

Theorem 2.2 showed that the length of 𝑣1 × 𝑣2 is the area of the parallelogram

formed by the two vectors; we have 𝑣1 × 𝑣2 = |𝑣1‖𝑣2| sin 𝛼, where 𝛼 is the angle

between the vectors.

For a triangle with vertices A, B, and C, taking the cross product of any two vectors

representing sides of the triangle will give us the area of a parallelogram that has
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v1

v2

A B

C

Figure 3.17 Triangle area

twice the area of the triangle. (The diagonal of the parallelogram divides it into two

congruent triangles.) So setting 𝑣1 = B − A and 𝑣2 = C − A, we have

Area of ΔABC = 1

2
|𝑣1 × 𝑣2| (3.10)

This works fine for triangles in three dimensions where we have defined the cross

product, but interestingly, it also works for two-dimensional triangles. The key is to

treat the triangle as a three-dimensional triangle lying in the xy plane. That is, the z
coordinate is zero (Figure 3.17).

Example 3.21 (Area of 2DTriangle). Suppose a triangle has verticesA = (2, 6),B =
(7, 5), and C = (8, 10). Then take 𝑣1 = (B − A) = (5,−1) and 𝑣2 = (C − A) = (6, 4).
Now boost the coordinates to three dimensions and take the vectors as 𝑣1 = (5,−1, 0)
and 𝑣2 = (6, 4, 0).

𝑣1 × 𝑣2 =
||||−1 0

4 0

|||| i⃗ −
||||5 0

6 0

|||| j⃗ +
||||5 −1
6 4

|||| k⃗ = (0, 0, 26)

Area of ΔABC = 1

2
|𝑣1 × 𝑣2| = 13

The example makes it clear that the cross product is always going to have zero com-

ponents for x and y. Consequently, the area is simply one-half of the determinant of a

2 × 2 matrix with the two-dimensional vectors in each row. Also in this example, the

vertices were given in counterclockwise order which guaranteed that the cross prod-

uct had a positive z coordinate. If the vertices appear in clockwise order, the cross

product will be negative. ◽

Two vectors determine a parallelogram and three vectors (not in the same plane)

determine a solid figure called a parallelepiped. Multiplying the area of the parallel-

ogram by the height of the parallelepiped will give the volume.

From Figure 3.18, the vectors a⃗ and b⃗ are edges of the parallelogram and c⃗ deter-

mines the height of the solid. To find the height, let 𝜃 be the angle between the cross

product a⃗ × b⃗ and the vector c⃗. Since the cross product is perpendicular to the plane
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a

b

c

a × b

θ

Figure 3.18 Parallelepiped

of the parallelogram, |c⃗| cos 𝜃 is the height of the parallelepiped, assuming 𝜃 is less

than 𝜋∕2 radians.

Volume = Height × Area = |c⃗| cos 𝜃|a⃗ × b⃗| = c⃗ ⋅ (a⃗ × b⃗) (3.11)

The expression on the right is called the triple scalar product. If 𝜃 is greater than 𝜋∕2,
we will have to take the absolute value.

Example 3.22 (Volume of Parallelepiped). The four points P0 = (1, 1, 2),
P1 = (5,−1,−3), P2 = (6, 0, 4) and P3 = (3, 8, 2) determine the corner edges P0P1,

P0P2, P0P3 of a parallelepiped. To find the volume, set up the appropriate vectors

and find the triple scalar product.

a⃗ = (P1 − P0) = (4,−2,−5)

b⃗ = (P2 − P0) = (5,−1, 2)

c⃗ = (P3 − P0) = (2, 7, 0)|c⃗ ⋅ (a⃗ × b⃗)| = |(2, 7, 0) ⋅ (−9,−33, 6)| = |(−249)| = 249

In this example, the angle between the cross product a⃗ × b⃗ and c⃗ is greater than 𝜋∕2,
so we took the absolute value of the scalar triple product. ◽

3.5.4 Triangle Geometry

Many of the classical results in geometry take on a slightly different cast when refor-

mulated in terms of vectors. For example, the classical result that the medians of a

triangle meet in a point two-thirds of the way from any vertex to the opposite side is

easy to verify with vectors.

Example 3.23 (Intersection of Three Medians). Start with a triangle formed by the

points A, B, and C. The line between A and B is represented by the vector equation
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Figure 3.19 Medians

P = A + t(B − A). The midpoint MAB of the side AB is

MAB = A + 1

2
(B − A) = 1

2
A + 1

2
B

So the vector representing the median from vertex C to the midpoint of AB is given by

𝑣C = 1

2
A + 1

2
B − C

The right-hand side looks like a sum of points, and we know that adding points is in

general not a legitimate operation. Yet, the expression here is really the difference of

two points so it does make sense.

To get a point M two-thirds of the way along a median, we add two-thirds of the

vector to the point C.

M = C + 2

3
𝑣C = C + 2

3

(
1

2
A + 1

2
B − C

)
= 1

3
(A + B + C)

It should be easy to see that if we take any of the other two medians of the triangle

and find the point two-thirds of the way along, we get exactly the same point M. All

three medians must intersect at M (Figure 3.19). ◽

3.5.5 Tetrahedron

Example 3.24 (Coordinates of Tetrahedron). A tetrahedron is an object with four

identical faces each of which is an equilateral triangle. To use a tetrahedron in a

graphics scene, we need the coordinates of the four vertices, and vector geometry

can move the process along a little faster than using trigonometry alone.

To fix the position and size of the tetrahedron, let us center it at the origin and

make the edge lengths 1. We will start by constructing a tetrahedron sitting on the xz
plane and then drop it to put the origin in the center.
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Since each face is an equilateral triangle, center a face at the origin with one

vertex on the x-axis. Then the coordinates of the three vertices are A = (x1, 0,−z),
B = (x1, 0, z), and C = (x2, 0, 0).

The length of side ABmust be 1, so 4z2 = 1, which gives z = 1

2
. The angle between

the vectors from the origin to A and B is 2𝜋∕3 radians, so the cosine is − 1

2
. The dot

product gives (x1, 0,−z) ⋅ (x1, 0, z) = x2
1
− z2. Dividing the dot product by the length

of the two vectors gives the cosine.

x2
1
− z2

x2
1
+ z2

= −1

2
=⇒ x1 = −

√
3

6

We take the negative square root because the vertices A and B are below the x-axis
(Figure 3.20).

The vector from the origin to C must be the same length as the one from the

origin to B.

x2
2
= x2

1
+ z2 = 1

3
=⇒ x2 =

√
3

3

We have A = (−
√
3

6
, 0,− 1

2
), B = (−

√
3

6
, 0,

1

2
), and C = (

√
3

3
, 0, 0).

The vertex D has coordinates (0, y, 0). The coordinate y must be positioned so that

the edgesAD,BD, andCD all have length 1. In particular, |CD|2 = (
√
3

3
)2 + y2 + 02 =

1 and this implies that y =
√
2√
3
(Figure 3.21).

All that is left now is to center the tetrahedron at the origin. If wemimic the analysis

for the medians of a triangle, we can determine where all the altitudes of a tetrahedron

intersect. To form an altitude, we take a vector from D to P, the middle of the opposite

face. Since P is the point where the medians of each face meet, it has coordinates
1

3
(A + B + C). A vector from one vertex to the midpoint of the opposite face is an

z

x

C = (x2, 0, 0)

B = (x1, 0, z)A = (x1, 0, −z)

Figure 3.20 Equilateral triangle
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Figure 3.21 Tetrahedron

altitude for the tetrahedron and we have

𝑣 = 1

3
(A + B + C) − D

By observation, it appears that if we go three-quarters of the way along the altitude,
we get a point P∗, which will be the same regardless of which altitude we take. It is
the intersection of all four altitudes and is the center of the tetrahedron.

P∗ = D + 3

4
𝑣 = 1

4
(A + B + C + D)

Substituting the coordinates as we currently have them gives P∗ = (0, 1
4

√
2√
3
, 0). We

have to drop the tetrahedron along the y-axis 1

4

√
2√
3
units.

The coordinates are now as follows:

A =

(
−

√
3

6
,−

√
2

4
√
3
,−1

2

)
B =

(
−

√
3

6
,−

√
2

4
√
3
,
1

2

)

C =

(√
3

3
,−

√
2

4
√
3
, 0

)
D =

(
0,

√
6

4
, 0

)
Since this tetrahedron is centered at the origin, we can make it larger by multiply-

ing each coordinate by the same constant scalar. ◽

3.6 HOMOGENEOUS COORDINATES

The whole idea of the vector approach to geometry is to find descriptions of objects
that are intuitive, simple, and as efficient as possible. So far, our vector descriptions
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of lines and planes are rather simple, but there is a little asymmetry especially with

the constant term. A line is described as P = P0 + t𝑣, where 𝑣 is the direction vector.
The point P0 has to be treated differently than the vector 𝑣. In an attempt to restore

some symmetry, it helps to introduce a new coordinate system called homogeneous
coordinates.

3.6.1 Two Dimensions

In two dimensions, instead of two coordinates representing a point in the plane, we

add a third coordinate. Hence, instead of (xc, yc), we use (xh, yh, 𝑤h) to represent a

point where we have added subscripts to denote either Cartesian or homogeneous

coordinates. To convert from homogeneous coordinates to our conventional Cartesian

coordinates, we divide by the third coordinate.

Homogeneous: P = (xh, yh, 𝑤h) =⇒ Cartesian: P =
(

xh

𝑤h
,

yh

𝑤h

)
There are two things to notice here. First, it looks like there is trouble if 𝑤h is

zero. We will sort this out in Section 3.7. Second, homogeneous coordinates are not

unique. For example, using homogeneous coordinates, the point P = (1, 2, 1) is the
same as the point P = (2, 4, 2). Unlike Cartesian coordinates which are unique, there
are an infinite number of homogeneous coordinates for each point. This may seem

like a major disadvantage, but it is overcome by the ease with which we can calculate

using homogeneous coordinates.

Recall that, in two dimensions, a line can be described by the vector description

n⃗ ⋅ (P − P0) = 0. Converting this to an expression with Cartesian coordinates gives

ax + by = c, where a and b are the coordinates of the normal, n⃗, and c = apx + bpy,

where P0 = (px, py). If we replace the Cartesian coordinates with the homogeneous

ones, we have

ax + by = c =⇒ a

(
xh

𝑤h

)
+ b

(
yh

𝑤h

)
= c =⇒ axh + byh − c𝑤h = 0

The last equation is the homogeneous equation for a line. If we think of the homoge-

neous coordinates of a two-dimensional point as a three-dimensional vector and also

set n⃗ = (a, b, c), then our description of the line becomes a little simpler:

Two-dimensional Homogeneous Line equation: n⃗ ⋅ P = 0 (3.12)

In fact, since P = (xh, yh, 𝑤h) is just an arbitrary point, it is the normal vector n⃗
that really describes the line. (To be entirely consistent with the notation, we should

probably write P⃗ because it is considered a vector. However, leaving the arrow off

keeps it clear that it is a geometric point.)
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Example 3.25 (A Line Through Two Points). Two points determine a line
and, using homogeneous coordinates, the points (3, 2, 1) and (5, 7, 3) determine
a two-dimensional line. Using the homogeneous equation for a line, we have
n⃗ ⋅ (3, 2, 1) = 0 and n⃗ ⋅ (5, 7, 3) = 0. Following the interpretation of homogeneous
coordinates as vectors, the two equations say that n⃗ is perpendicular to the two
vectors (3, 2, 1) and (5, 7, 3). Vector n⃗ must be parallel to the cross product.

n⃗ = (3, 2, 1) × (5, 7, 3) = (−1,−4, 11)

Any multiple of this vector would also work, but since we are thinking of the coordi-
nates as homogeneous, all such multiples represent the same object and, in our case,
that object is a normal to our line. Actually, we can think of the triple (−1,−4, 11) not
just as a normal but as the line itself. With homogeneous coordinates, we are blur-

ring the distinction between points and lines. Vectors represent both objects, and now
there is a nice duality between them.

The equation of the line is

n⃗ ⋅ P = 0 =⇒ −xh − 4yh + 11𝑤h = 0

This is the line x + 4y = 11 in Cartesian coordinates. ◽

Example 3.26 (Intersection of Two Lines). Now, consider two vectors (2, 2,−1) and
(6,−5, 2) not as points as we just did, but now as lines. They then represent the lines
2x + 2y − 1 = 0 and 6x − 5y + 2 = 0. An intersection point P is on both lines, so we
have (2, 2,−1) ⋅ P = 0 and (6,−5, 2) ⋅ P = 0. So P must be a vector perpendicular to
the two homogeneous line vectors. This vector is the cross product (−1,−10,−22)
which represents the Cartesian point ( 1

22
,
10

22
) and is easily verified as the point of

intersection for the two lines.
In homogeneous coordinates, the same approach gives us the line through two

points and the intersection of two lines. The symmetry is appealing even though the
approach may not be more computationally efficient. ◽

3.6.2 Three Dimensions

Stepping up to three dimensions is easy. Every point has homogeneous coordinates
of the form (xh, yh, zh, 𝑤h), and the conversion to conventional Cartesian coordinates
just requires dividing by 𝑤h. If we think of a homogeneous normal vector as having
four coordinates in three dimensions, our vector equation for a plane in space is

Three-dimensional Homogeneous Plane equation: n⃗ ⋅ P = 0 (3.13)

Again, it is really the single vector n⃗ that describes the plane. The plane in
three dimensions is analogous to the line in two dimensions. The plane is a
two-dimensional object in three-dimensional space and the line is a one-dimensional
object in two-dimensional space.
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Two planes do not intersect in a single point, but three may determine a unique

intersection point. In this case, we have three equations

n⃗1 ⋅ P = 0

n⃗2 ⋅ P = 0

n⃗3 ⋅ P = 0

There are four unknown components for the homogeneous coordinates of P and we

have only three equations. However, since we are using homogeneous coordinates,

we may still be in business. The three equations say that P is perpendicular to all three

normals. We need some generalization of cross product in order to pin down P. This
is not too hard because we can use our standard cross product as a template. There,

the cross product was formally the determinant of a 3 × 3matrix with the first row just

the three vectors i⃗ = (1, 0, 0), j⃗ = (0, 1, 0), k⃗ = (0, 0, 1). The coefficients of the result-
ing vector were just 2 × 2 determinants. Now that we are considering homogeneous

coordinates in 3D space, we have four components so the natural generalization of

cross product is to find the determinant of a 4 × 4 matrix with the first row filled with
basis vectors e⃗1 = (1, 0, 0, 0), e⃗2 = (0, 1, 0, 0), e⃗3 = (0, 0, 1, 0), and e⃗4 = (0, 0, 0, 1).

Example 3.27 (Three Intersecting Planes). Consider three planes given by

(−4, 2, 0, 2), (1, 1, 1, 5), and (−8, 2, 1, 1). Their intersection is then the point vector
that is perpendicular to all three planes and is given by the determinant. (See

Appendix B for details on finding the determinant of a 3 × 3 matrix.)

P =

||||||||
e⃗1 e⃗2 e⃗3 e⃗4
−4 2 0 2

1 1 1 5

−8 2 1 1

|||||||| =
||||||
2 0 2

1 1 5

2 1 1

|||||| e⃗1 −
||||||
−4 0 2

1 1 5

−8 1 1

|||||| e⃗2

+
||||||
−4 2 2

1 1 5

−8 2 1

|||||| e⃗3 −
||||||
−4 2 0

1 1 1

−8 2 1

|||||| e⃗4

=(−10,−34,−26, 14)

Checking the first equation, we get

n⃗1 ⋅ P = (−4, 2, 0, 2) ⋅ (−10,−34,−26, 14) = 0

In Cartesian coordinates, the plane (−4, 2, 0, 2) is −2x + y + 1 = 0 and P =
1

14
(−10,−34,−26). It is easy to verify that P is indeed on the plane. We can similarly

verify that P is on the other two planes. ◽

Example 3.28 (A Plane Through Three Points). Just as in the two-dimensional case,
there is a duality between points and lines in three dimensions. In the last example,
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three planes intersected in a point. Now, focus on three points determining a plane.
Suppose P1 = (2, 5,−3, 2), P2 = (−8, 2, 1, 4), and P3 = (4,−2, 2, 6).

n⃗ ⋅ P1 = 0

n⃗ ⋅ P2 = 0

n⃗ ⋅ P3 = 0

This time, n⃗ is the vector perpendicular to the three vectors representing the homo-
geneous points. The generalized cross product again gives the perpendicular vector.

P =

||||||||
e⃗1 e⃗2 e⃗3 e⃗4
2 5 −3 2

−8 2 1 4

4 −2 2 6

|||||||| = (62, 236, 376,−88)

A quick check shows the first of the three equations holds, and the others follow
similarly.

n⃗ ⋅ P1 = (62, 236, 376,−88) ⋅ (2, 5,−3, 2) = 0

The vector n⃗ describes the plane. In Cartesian coordinates, it is

31x + 118y + 188z − 44 = 0

and the point
1

2
(2, 5,−3) is on the plane. ◽

At this stage of the game, homogeneous coordinates seem to have something
to offer if only by adding a little symmetry to our descriptions of points, lines,
and planes. We have skipped over three-dimensional lines; it is a little awkward to
describe them, but they can be specified with line coordinates which are combina-
tions of the homogeneous coordinates. One of the prime advantages of homogeneous
coordinates will become clear later when we will see that they add significantly to
our ability to describe transformations of geometric objects.

3.7 COMPLEMENTS AND DETAILS

3.7.1 Intersection of Three Planes Continued

Equation 3.8 gave a formula for the intersection point of three planes. To see where it
came from, recall that P is the point of intersection and each normal is perpendicular
to a vector formed by P and a point in the corresponding plane.

n⃗1 ⋅ (P − P1) = 0

n⃗2 ⋅ (P − P2) = 0

n⃗3 ⋅ (P − P3) = 0
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To see how to systematically solve these equations, we look at the associated matrix
equation.

M =
⎡⎢⎢⎣
· · · n⃗1 · · ·
· · · n⃗2 · · ·
· · · n⃗3 · · ·

⎤⎥⎥⎦ and P =
⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦ =⇒ MP =
⎡⎢⎢⎣
n⃗1 ⋅ P1

n⃗2 ⋅ P2

n⃗3 ⋅ P3

⎤⎥⎥⎦
Matrix M has rows that are the coordinates of the various normal vectors. The dot
products on the right side of the matrix equation include points P1, P2, and P3. They
are not vectors, but if we think of them as vectors from the origin to the points, then
our definition of dot product as an operation between vectors stays consistent.

With the matrix equation, the appropriate linear algebra gives us a solution by
multiplying both sides by the inverse of M. If the normals are actually unit normals,
then M−1 is easy to form (using the adjugate matrix; see Appendix B).

M−1 = 1

detM

⎡⎢⎢⎢⎣
⋮ ⋮ ⋮

n⃗2 × n⃗3) (n⃗3 × n⃗1) (n⃗1 × n⃗2)
⋮ ⋮ ⋮

⎤⎥⎥⎥⎦
The solution becomes

P = M−1

⎡⎢⎢⎢⎣
n⃗1 ⋅ P1

n⃗2 ⋅ P2

n⃗3 ⋅ P3

⎤⎥⎥⎥⎦
= 1

detM
[(n⃗1 ⋅ P1)(n⃗2 × n⃗3) + (n⃗2 ⋅ P2)(n⃗3 × n⃗1) + (n⃗3 ⋅ P3)(n⃗1 × n⃗2)]

When we approach this same problem with homogeneous coordinates
(Example 3.27), P now has four coordinates, and the three equations are simpler.

n⃗1 ⋅ P = 0, n⃗2 ⋅ P = 0, n⃗3 ⋅ P = 0

=⇒ MP = 0

Here, the matrix M is now a 3 × 4 matrix and P is 4 × 1. As noted earlier, P is perpen-
dicular (in four-dimensional space) to the three vectors n⃗1, n⃗2, and n⃗3. We determined
P earlier by using a generalization of the cross product which in three dimensions is
represented by the determinant of a 3 × 3 matrix. To understand how the generaliza-
tion is derived, start with the following matrix:

M∗ =

⎡⎢⎢⎢⎢⎣
a b c d

… n⃗1 … …
… n⃗2 … …
… n⃗3 … …

⎤⎥⎥⎥⎥⎦
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Let Mij be the submatrix obtained from M∗ by deleting the ith row and jth column.

One way to calculate the determinant of M∗ is to use the first row as follows:

detM∗ = a detM11 − b detM12 + c detM13 − d detM14

= (a, b, c, d) ⋅ (detM11,− detM12, detM13,− detM14)

The determinant is expressed here as a dot product between the vector (a, b, c, d) and
a vector of determinants of submatrices. Look at the matrix M∗ again and notice that,
if the first row was any of the normal vectors n⃗i, there would be two rows that were

identical, and this means the matrix would have determinant zero. In other words,

when (a, b, c, d) is one of the normal vectors, the dot product with the vector of deter-

minants is zero. If we define P to be the vector of determinants, it is perpendicular to

each n⃗i. A convenient way to express P is by the following determinant:

P =

|||||||||
e⃗1 e⃗2 e⃗3 e⃗4
… n⃗1 … …
… n⃗2 … …
… n⃗3 … …

|||||||||
This is the natural generalization of the cross product developed in three dimen-

sions and is the source of the formulas for P that we developed earlier.

3.7.2 Homogeneous Coordinates Continued

To become comfortable with homogeneous coordinates, it helps to construct a more

visual model of the system. In two dimensions, the homogeneous coordinates have

three components (x, y, 𝑤) and hence can be thought of as vectors in three dimensions.

The point in two dimensions represented in Cartesian coordinates as P = (x, y) is rep-
resented in homogeneous coordinates as P = (x, y, 1) or indeed as P = (sx, sy, s) for
any value of s. This is just P = s(x, y, 1) = (0, 0, 0) + s(x, y, 1), which is the expression
for a line in three dimensions that goes through the origin in the direction (x, y, 1). In
other words, a point in two dimensions corresponds to a line through the origin in

three dimensions.

The homogeneous equation for a line in two dimensions is n⃗ ⋅ P = 0, where n⃗ andP
are seen as vectors in three dimensions. The set of all vectors P that are perpendicular

to n⃗ (the dot product is zero) are the vectors forming a plane through the origin in three

dimensions. Consequently, a line in two dimensions corresponds to a plane in three

dimensions (Figure 3.22).

Converting homogeneous coordinates (xh, yh, 𝑤h) to Cartesian coordinates

is simply a matter of dividing by 𝑤h unless, of course, 𝑤h = 0. Homogeneous

points with 𝑤h = 0 are called points at infinity and they do have some geometric

significance.
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Points in 2D

Points at infinity

Figure 3.22 Visual model of homogeneous points

Consider two parallel lines given with an implicit description using Cartesian
coordinates.

3x − 4y = 7

3x − 4y = 10

Trying to solve these two equations in two unknowns gives no solutions, reflecting
the fact that the lines do not intersect. Now use homogeneous coordinates to express
the same two lines.

3xh − 4yh = 7𝑤h

3xh − 4yh = 10𝑤h

With two equations and three unknowns, we do have a solution. For any value s,
the values xh = 4s, yh = 3s, and 𝑤h = 0 solves the two equations. The homogeneous
point (4s, 3s, 0) is a point at infinity. As usual, the coordinates are not unique because
any value of s here gives the same point, but the distinguishing factor is that the third
component is zero. Notice that the point (2s, 3s, 0) is also a point at infinity, but it
is different from (4s, 3s, 0). There are indeed an infinite number of points at infinity.
With 𝑤h = 0, points at infinity correspond to three-dimensional lines through the
origin lying in the xy plane.

One of the axioms of Euclidean geometry is that parallel lines do not intersect.
However, when we look down a long straight road, it certainly looks like the straight
lines forming the two sides of the road get closer and closer together in the distance.
If we think of geometry the way we actually see objects, parallel lines do intersect
eventually. If we replace the Euclidean axiom for parallel lines with one that claims
all lines intersect, we are on our way to defining a new geometry called projective
geometry. The set of homogeneous coordinates along with a few axioms produces a
new mathematical object called a projective space which comes with its own geom-
etry. Aspects of this geometry are relevant for computer graphics mainly because
graphics scenes must be eventually projected onto a display screen. The nature of
that transformation can be understood in terms of projective geometry.

We can reason by analogy to build projective spaces of higher dimensions. Points
in three dimensions have four homogeneous coordinates and correspond to lines
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through the origin in four dimensions. The theoretical study of projective spaces is

well developed in mathematics (starting in the seventeenth century with the applied

mathematician Desargues) and does offer key approaches to graphics problems. Prac-

tically, the use of homogeneous coordinates gives us efficient ways to manipulate

lines, planes, and, as we will see, transformations.

3.8 EXERCISES

In the following exercises, use vector techniques to find solutions.

1. Find the fourth vertex P3 of the rectangle in Example 3.1.

2. A line goes through P0 = (10, 8) and P1 = (7,−3). Find an equation for the

line perpendicular to this line through a point two-thirds of the way from

P0 to P1.

3. The vertices A = (30, 6) and B = (52, 10) form the base of an isosceles triangle

(two sides equal). Find vertex C so that the height of the triangle is 40.

4. Find the equation of the line through (−8, 12, 7) and themidpoint of the segment

from (0, 2, 5) to (−4,−4, 2).

5. Find the implicit coordinate equation of the plane through (1,−4, 1), (3, 6, 5),
and (−2, 2, 6).

6. How close is the point (10, 15) to the line through (11, 6) and (24, 30)?

7. Two planes have the same normal (13,−2, 6). One contains the point P1 =
(3, 3, 9) and the other contains P2 = (−7, 0, 6). How far apart are the planes?

8. Two planes have the same normal (10, 12,−5). One contains the origin. Find

the vector equation of the second plane so that it is 32 units from the first one.

(Two possible answers.)

9. One face of a rectangular box in space is a plane with normal (2,−1,−1). The
face contains the vertex A = (8, 3, 6) and the adjacent vertex B = (5, 12,−9).
Find the equation of all three planes meeting at vertex A.

10. In each of the following cases, A and B are the end points of one line segment

and C and D form a second segment. Determine if the two segments intersect,

and if they do, find the point of intersection.

i. A = (50, 240), B = (500, 115), C = (80, 100), D = (400, 130)
ii. A = (−10, 8), B = (110,−17), C = (200, 6), D = (16,−50)
iii. A = (100, 24, 19), B = (−8,−3,−8), C = (−11,−18, 21), D = (17, 2, 1))
iv. A = (−20, 31, 6), B = (15,−12, 18), C = (−34,−10, 12), D = (10, 17,−1).

11. The vertices (4, 5), (30, 8), and (25, 18) form a triangle. Determine if the point

(15, 16) is inside or outside the triangle.
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12. Suppose you have a quadrilateral where only adjacent edges intersect (i.e., it is

not twisted). Sketch an algorithm for finding a point guaranteed to be inside the

quadrilateral.

13. Determine whether the line through the points (1, 3, 3) and (−2, 4, 8) intersects
the plane with the implicit equation 3x + 6y − 2z = 8. If it does intersect, find

the point of intersection.

14. A triangle has vertices (5, 1, 2), (8, 4, 4), and (2, 3, 6). Find where the medians

meet and determine the distance from this point to each of the sides.

15. A sphere of radius 8 is centered at (1, 2, 5). Determine if the line through the

points (−6,−4, 1) and (9, 1, 1) intersects the sphere and if so, where.

16. With your eye at position (2, 5,−1) looking in direction (1, 1, 3), determine if the

ray intersects the sphere with radius 3 centered at (9,8,12). (Use both techniques

given in the example to find the closest point to the eye.)

17. Your eye is at position (2, 5,−1) looking in direction (1, 1, 3). A sphere with

radius 3 is currently centered at (9,8,12). We move the sphere perpendicular to

the ray from your eye until the ray just touches the sphere. Determine the new

center of the sphere.

18. Suppose the plane with normal (1,−3, 1) passes through (10, 1,−1). Find the

distance between P = (4,−1, 5) and the plane. Then find a point Q on the plane

such that the line through P and Q is perpendicular to the plane. (Wemight think

of Q as the shadow of P when the light source is directly “overhead.”)

19. The plane with equation (4,−2, 1) ⋅ (P − (0, 1, 7)) = 0 contains the vertices of

a triangle: (0, 1, 7), (1, 2, 5), and (2, 5, 7). A light ray from position (3, 2, 4)
traveling in direction (−2,−1,−1) strikes the plane. Determine the point of

intersection and whether it falls inside or outside the triangle.

20. For the tetrahedron constructed in Example 3.24, calculate the volume by using

the formula for the volume of a pyramid, V = 1

3
bh, where b is the area of

the base and h is the height. Then calculate the volume of the parallelepiped

containing the tetrahedron using the scalar triple product. What fraction of the

parallelepiped’s volume is the tetrahedron?

21. For the tetrahedron in Example 3.24, calculate the following:

i. The angle between two faces.

ii. The distance between edges AB and CD.

iii. The length of an altitude. (This is the distance from a vertex to the opposite

face.)

iv. The angle between edge AB and the face ACD.

22. The two points P0 = (3, 8) and P1 = (5,−2) determine a line. Using homoge-

neous coordinates find the vector describing the line. Now let 3x − 5y = 8 and
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4x + 2y = 7 be two lines and use homogeneous coordinates to find the point of
intersection.

23. The three points P0 = (1, 4, 8), P1 = (2, 2,−1), and P2 = (5, 4, 0) are three lines
determining a plane. Using homogeneous coordinates, find the vector describ-
ing the plane. In terms of Cartesian coordinates, give the normal to the plane.
Now, consider three planes with implicit equations 2x + 3y − 6z = 2,−x + 4y +
z = 7, and −8x + y − z = 10. Using homogeneous coordinates, find the point of
intersection. Convert the result to Cartesian coordinates.

24. Determine if the two planes x − 3y + 5z = −4 and 2x − 2y + z = 8 intersect and
if so, find the vector equation of the line of intersection.

25. Three planes with normals (1, 0,−3), (2, 8, 3), and (4,−4, 7) contain the points
P1 = (−6, 2, 2),P2 = (1, 1, 0), andP3 = (5,−1, 1) respectively. Determine if the
planes intersect in a single point and if so, find it.

26. One line goes through (10, 7, 6) and (−6, 4, 1). A second line goes through
(0, 2, 7) and (9, 2, 14). How close do they get to each other? If we take the two
line segments bounded by the points, how close do they get to each other?

27. A light ray leaves the source at position (30, 12, 23), travels through (25, 10, 15),
and hits the plane 2x + 3y + 14z = 22. What angle does it make with the plane?

28. One plane contains the points (0, 2, 1), (5, 1, 1), and (−10,−4,−1) and another
contains (5, 11, 16) with normal (1, 2, 1). Find a line parallel to both planes and
one unit from each.

29. Find the area of the triangle in two dimensions with vertices (10, 24), (22, 38),
and (15, 4). If the vertices of a triangle have integer coordinates, what must be
true about the area?

30. Find a vector parallel to the plane 6x − 2y + z = 15 and perpendicular to the
line P = (2, 0, 4) + t(2, 7,−3).

31. For the following calculations, count how many additions (or subtractions),
multiplications (or divisions), and square roots are necessary.

i. Finding the distance from a point to a line.

ii. Finding the intersection of two lines in space.

32. A line in space passes through (3, 1,−9) with direction (2,−6, 2) and a second
line passes through (7, 2, 1) with direction (1, 0,−2). Find the points on the two
lines that are closest together.

33. Determine if the four points (13,−2, 7), (−8, 20, 1), (−22, 17, 9), and (5,−30, 2
are coplanar or not.

34. Given the implicit equation for either a line or a plane, how do we tell which
side a point is on? For example, determine if (2, 5, 1) and (6,−2, 3) are on the
same or opposite sides of the plane 4x + 11y − 4z = 13 by using the equation
itself.
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3.8.1 Programming Exercises

1. Write a method (function) that takes the four end points of two line segments

(two dimensions) as input and outputs whether or not the segments intersect.

2. Write a method (function) that takes the eight vertices of a box (not necessarily

a parallelepiped) plus a point as input and outputs whether the point is inside

the box. You may either assume the box is well formed or include a code to

determine if it is indeed a box.

3. Write a method (function) that takes the vertices of two triangles (two dimen-

sions) and outputs the vertices of the region of overlap between the two trian-

gles. (Assume the input vertices are in counterclockwise order.)



4
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Suppose you are in the modeling stage of the graphics pipeline and the task is to build
a car for display on the computer screen. Building an object means that we need to find
coordinates for points that delineate various features such as the windshield, the hood,
the tires, and so on. Many of these features are curves, so we end up approximating
them with very small line segments. Surfaces like the car body are three dimensional,
and a mesh of small triangles does the job of approximating their shapes. To specify
the line segments and the vertices of triangles, we can use the techniques of vector
geometry to make the job considerably easier. However, if the right side of the car
looks the same (or almost the same) as the left side of the car, it make sense to simply
reflect one side of the car in a plane passing lengthwise down the car’s middle. This
process of reflection is a type of transformation. When we reach the tires for the
car, we can model one tire finding appropriate vertices, but then just apply another
transformation, a translation, to copy it from the front to the back of the car. Finally,
another reflection transformation will then copy the tire from one side of the car to
the other.

Once we have the list of triangles and associated vertices representing the car, we
still need to position it in any broader scene; there may well be many other objects.
This requires another transformation which will alter all the car’s vertex coordi-
nates once again. Finally, when we view the scene, we need to decide where the
camera (or our eye) is and in which direction we are looking. This, too, requires
another transformation plus a special one to convert our three-dimensional scene into
a two-dimensional display. There is no escaping being adept at choosing and applying
transformations.

Mathematical Structures for Computer Graphics, First Edition. Steven J. Janke.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Technically, a transformation T is just a function that sends each point (or vertex),

A, to another point called T(A). The result is to transform an object into a new object.

The new object may have the same shape as the old and just a new position, or it may

have an altered shape. Before we can talk about the mechanics of actually performing

a transformation, we need to once again consider the differences between vectors and

points in order to be careful about how we deal with each. Recall that we decided to

represent both vectors and points as a column of numbers, so

Vector 𝑣 =
[
3

5

]
Point P =

[
3

5

]
The vector, however, is a displacement and the point is a position in the plane. We

know there is a connection between the two because we determine a vector by sub-

tracting two points. We are most interested in thinking of transformations as moving

points to points, but we can also think of them as acting on vectors. By singling out a

point, say the origin O, every point P can be thought of as a vector from O to P. Then,
if the transformation T is reasonably behaved, moving point P to T(P) is analogous
to moving the vector O⃗P to a vector from O to T(P).

To transform vectors, we can change their direction and length in various ways.

It does not, however, make sense to translate them (move to a new position) because

vectors are independent of position. In contrast, it does make sense to translate points

bymoving them to new positions. It alsomakes sense to transform points in a way that

changes their direction or distance from the origin. To differentiate further between

these cases, we call our complete collection of points an affine space and any asso-

ciated transformations affine transformations. Then the collection of vectors formed

by taking the difference of any two points is called the associated vector space. As
we have seen, unlike the affine space, the vector space comes with a complete algebra

allowing us, for example, to add vectors and multiply by scalars.

4.1 TYPES OF TRANSFORMATIONS

Transformations are functions that send points to points, and there are many such

functions in the world. To focus our study, it is useful to categorize them based on

some characterization of their properties. For example, one transformation that is

admittedly not very interesting sends all points to the origin (or all vectors to the

zero vector). This is an example of a type of transformation that takes many points to

the same point, and, while there are some interesting examples of such transforma-

tions, we sometimes wish to restrict ourselves to transformations that are one to one.

That is, each point comes from exactly one other point. In this case, we can imagine

a transformation that goes backwards and undoes what the original transformation

does. This class of transformations contains what we call invertible transformations.

For a second example, suppose the transformation keeps lengths fixed. That is, it

does not change the length of vectors and therefore it does not change the distance

between two points. Then it is referred to as an isometry; in two dimensions, a rotation
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around a given point is an isometric transformation of both vectors and points. Imag-

ine a transformation that doubles the length of a vector or doubles the distance a point

is from the origin. These are not isometries, but they form another class of transfor-

mations that are called scaling transformations; they serve to enlarge (or reduce) an

object’s size.

In computer graphics, it makes sense to focus on transformations that preserve

lines taking any collinear points and sending them to new collinear points. Most of

our objects are built from line segments, so preserving the line segments means we

do not alter the shape of the object. To investigate these transformations, we start with

what are called linear transformations.

4.2 LINEAR TRANSFORMATIONS

Since we generally do have a vector space associated with the affine space of points,

it seems natural to consider transformations that preserve the algebra of vectors. This

means that the transformation preserves the sum and the scalar multiplication of vec-

tors. That is, it satisfies

T(𝑣 + �⃗�) = T(𝑣) + T(�⃗�) (4.1)

To preserve scalar multiplication, we must have

T(a𝑣) = aT(𝑣) (4.2)

These two properties together define the class of linear transformations and give

us considerable information about how the transformations behaves (Figure 4.1). In

two dimensions, if we want to know where a linear transformation sends the vector

𝑣 = (3, 5), we can begin by writing 𝑣 as a linear combination of two other vectors,

(1, 0) and (0, 1).

𝑣 =
[
3

5

]
= 3

[
1

0

]
+ 5

[
0

1

]
Actually, any vector can be decomposed into a similar linear combination because

the vectors (1, 0) and (0, 1) form a basis for the vector space.

V

W
V + W

T(V)

T(W)

T(V + W )

0 0

Figure 4.1 Linear transformations preserve addition
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Now, applying the properties of linear transformations gives

T(𝑣) = 3T

([
1

0

])
+ 5T

([
0

1

])
In other words, in order to know where 𝑣 is sent under the transformation, we need
only to know where the vectors (1, 0) and (0, 1) are sent. In fact, once we know where
these two are sent, we can calculate where any two-dimensional vector is sent because
any vector can be written as a linear combination of these two. If T((1, 0)) = (−1, 4)
and T((0, 1)) = (3, 2), then

T(𝑣) = 3T

([
1

0

])
+ 5T

([
0

1

])
= 3

[
−1
4

]
+ 5

[
3

2

]
=

[
12

22

]
Under the transformation T , the vector (3, 4) is sent to the vector (12, 22).

Looking again at the last calculation, the pattern of arithmetic reminds us of matrix
multiplication (see Appendix B). In fact, define the matrix M as follows:

M =
[
−1 3

4 2

]
Now calculating the effect of transformation T is simply amatter of multiplying byM.

T(𝑣) = M ⋅
[
3

5

]
=

[
−1 3

4 2

] [
3

5

]
=

[
12

22

]
(One word of caution: when reading the graphics literature, you will notice that

some like to write vectors and points as row vectors and put the matrix on the right
of a multiplication rather than on the left as is done here. There are sound reasons for
each approach. We will stick with column vectors and multiply with matrices on the
left.)

It should be clear that we now have a general procedure for applying transforma-
tion T . In short, T(𝑣) = M𝑣. So with a new vector, say 𝑣 = (−2, 6), we have T(𝑣) =
M𝑣 = (20, 4). Generalizing to let T act on points is equally easy. We again just mul-
tiply the coordinates of our point by the matrix M. Since we can consider points as
vectors from the origin, it is worth noting where T sends the zero vector and the zero
point (origin): T((0, 0)) = (0, 0). The origin remains fixed. This is true of all linear
transformations because they preserve the vector addition and scalar multiplication.

T

([
0

0

])
= 0T

([
1

0

])
+ 0T

([
0

1

])
=

[
0

0

]
Wewere able to characterize T by noting where it sent the vectors (1, 0) and (0, 1).

These are called basis vectors in linear algebra andwe recognize them here as the vec-

tors i⃗ and j⃗ from the Cartesian coordinate system. As we will see in a later chapter,
changing the coordinate system will change these basis vectors and hence our char-
acterization of T . The resulting new matrix just means we are using a new coordinate
system.
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Example 4.1 (Finding a Linear Transformation). Suppose we know that T sends the
point (1, 2) to (5,−2) and the point (3, 7) to (−1, 4). If we know that T is a linear trans-
formation, we have lots of additional information. In particular, the transformation is
really multiplication by a matrix. So we know

T

([
1

2

])
= M

[
1

2

]
=

[
5

−2

]
T

([
3

7

])
= M

[
3

7

]
=

[
−1
4

]
The matrix M is currently unknown, so the four entries in M are the unknowns. Each
of the above matrix equations gives us two linear equations once we do the multi-

plication. So we have four equations and four unknowns. Let M =
[a b
c d

]
. Then the

previous equations give us

a + 2b = 5 c + 2d = −2

3a + 7b = −13 3c + 7d = 4

We can solve these any way we wish, but linear algebra gives us the more ordered
way. First we combine the two transformation equations into a single matrix equation
by combining the two points into a single matrix A and the two images of these points
into a single matrix B. Then,

MA = M

[
1 3

2 7

]
=

[
5 −1

−2 4

]
= B =⇒ M = BA−1

We can find M by taking the inverse of A (easy since it is a 2 × 2 matrix; see
Appendix B) and multiplying to find BA−1. Notice here that A has to have an inverse
in order to proceed. If not, we do not have enough information from the original two
points.

A−1 =
[

7 −3
−2 1

]
=⇒ M =

[
5 −1

−2 4

] [
7 −3

−2 1

]
=

[
37 −16

−22 10

]
With M in hand, it is now simple to see where any other point is sent. For example,
the midpoint of the line segment between the two original points is (1∕2)(1, 2) +
(1∕2)(3, 7) = (2, 4.5). To determine where T sends this point, multiply by M.

T

([
2

4.5

])
=

[
37 −16

−22 10

] [
2

4.5

]
=

[
2

1

]
The midpoint of the original two points is sent to the midpoint of the two image
points. ◽

The fact that T sent a midpoint to a midpoint is not an accident. Indeed, we know
that for any two points P1 and P2, the linear combination (1 − t)P1 + tP2 is a point
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P1

P2

P

T(P1)

T(P)

T(P2)

Figure 4.2 Preserving lines

on the line through the points. Since T is a linear transformation, we can apply the

properties of linear transformations to discover

T((1 − t)P1 + tP2) = (1 − t)T(P1) + tT(P2) (4.3)

The expression on the right is a point on the line between T(P1) and T(P2). That
is, T sends points on a line to new points that are on a new line. The transformation

preserves lines. This is the reasonwhy it is called a linear transformation (Figure 4.2).
There is clearly an intimate connection between linear transformations and matri-

ces. The algebra of matrices is indeed called linear algebra. The more we know about

how matrices behave, the more we will know about how linear transformations work.

Since in computer graphics these transformations help in designing and positioning

objects, the details of manipulating matrices are particularly useful.

4.2.1 Rotation in Two Dimensions

Staying in two dimensions, our intuitive notion of a rotation suggests that this type

of transformation just moves objects rigidly around a central point and sends lines

to lines. Since it is not hard to convince ourselves that vector addition and scalar

multiplication are preserved, it seems that rotation is a linear transformation and,

at least for the time being, we will set the center of rotation to be the origin (0, 0).
Figure 4.3 shows the action of the transformation. Point P is rotated by an angle

𝜃 around the origin in a counterclockwise direction ending up at T(P). (Recall that
conventionally positive angles indicate a counterclockwise direction.)

α
θ

P = (x,y)

T(P) = (xt,yt)

(0,0)

Figure 4.3 2D rotation
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In the standard Cartesian coordinate system, let the coordinates of P be (x, y). To
specify how the rotation works, we need to find the coordinates of T(P), which we

designate as (xt, yt). P is at distance r from the origin and, using the angle 𝛼 shown in

the figure, we know that the coordinates (x, y) can be written as (r cos 𝛼, r sin 𝛼). Sim-

ilarly, since the distance to the origin does not change as we rotate around the origin,

we can also write the transformed coordinates (xt, yt) as (r cos(𝛼 + 𝜃), r sin(𝛼 + 𝜃)).
Now we use the addition formulas for cosine and sine (see Appendix A) to get

xt = r cos(𝛼 + 𝜃) = r(cos 𝛼 cos 𝜃 − sin 𝛼 sin 𝜃) = x cos 𝜃 − y sin 𝜃

yt = r sin(𝛼 + 𝜃) = r(sin 𝜃 cos 𝛼 + sin 𝛼 cos 𝜃) = x sin 𝜃 + y cos 𝜃

From these expressions, we can readily deduce the matrix Mrot that gives us a rotation

transformation.

T(P) =
[

xt
yt

]
= Mrot

[
x
y

]
=

[
cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃

] [
x
y

]
Example 4.2 (Rotating a Triangle). Start with a triangle having vertices (0, 0),
(3, 0), and (3, 2). To rotate this triangle by 𝜋∕6 radians counterclockwise around the

origin, we first find the correct transformation matrix:

Mrot =

[
cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃

]
=

[
cos 𝜋

6
− sin

𝜋

6

sin
𝜋

6
cos

𝜋

6

]
=

⎡⎢⎢⎣
√
3

2
− 1

2

1

2

√
3

2

⎤⎥⎥⎦
Then we multiply times each point to get

T

([
0

0

])
= Mrot

[
0

0

]
=

[
0

0

]
T

([
3

0

])
= Mrot

[
3

0

]
≈

[
2.6

1.5

]
T

([
3

2

])
= Mrot

[
3

2

]
≈

[
1.6

3.2

]
Since we are rotating around the origin, the origin does not move and is called a fixed
point for the transformation. ◽

Applying a rotation transformation with angle 𝛼 and then applying one with angle

𝛽 should yield a composite rotation of angle 𝛼 + 𝛽. Using T𝛼 and T𝛽 to designate the

individual rotations, the composition of the two transformations is

T𝛽(T𝛼(P)) = T𝛽(M𝛼P) = (M𝛽M𝛼)P
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The appropriate matrix for the composite rotation is the product of the individual

matrices.

M𝛽M𝛼 =
[
cos 𝛽 − sin 𝛽

sin 𝛽 cos 𝛽

] [
cos 𝛼 − sin 𝛼

sin 𝛼 cos 𝛼

]
=

[
(cos 𝛽 cos 𝛼 − sin 𝛽 sin 𝛼) (− cos 𝛽 sin 𝛼 − sin 𝛽 cos 𝛼)
(sin 𝛽 cos 𝛼 + cos 𝛽 sin 𝛼) (− sin 𝛽 sin 𝛼 + cos 𝛽 cos 𝛼)

]
Looking carefully at the product matrix and recalling the addition formulas for sine

and cosine, we notice that this is just the matrix for a rotation of 𝛼 + 𝛽. As we would

expect, applying the two rotations in the reverse order (𝛽 first then 𝛼) gives the same

product matrix. The fact that we can commute the two transformations here is not

true in general. Matrices do not always commute, so we will have to be careful about

the order in which we apply transformations.

Finally, suppose that the second applied rotation was 𝛽 = −𝛼. Then the product

matrix is

M−𝛼M𝛼 =
[
cos(−𝛼) − sin(−𝛼)
sin(−𝛼) cos(−𝛼)

] [
cos 𝛼 − sin 𝛼

sin 𝛼 cos 𝛼

]
=

[
cos2𝛼 + sin2𝛼 − cos 𝛼 sin 𝛼 + sin 𝛼 cos 𝛼

− sin 𝛼 cos 𝛼 + cos 𝛼 sin 𝛼 sin2𝛼 + cos2𝛼

]
=

[
1 0

0 1

]
The composite matrix is the identity matrix, and consequently the composite transfor-

mation leaves everything fixed. The matrix M−𝛼 is the inverse of the matrix M𝛼 , and

the corresponding rotation transformations are also inverses of each other. If 𝛼 is a

positive angle, then it represents a counterclockwise rotation and −𝛼 is the clockwise

rotation of the same measure.

In general, the inverse of a transformation’s matrix is the correct matrix for the

inverse transformation. This will come in handy when making more complicated

transformations of objects.

4.2.2 Reflection in Two dimensions

In the plane, we can consider reflections in lines. Such a transformation will take

points from one side of the line to the other and will fix any points on the reflection

line. Again, it seems clear that the reflection transformation takes lines and moves

them to other lines; there is no warping because we are reflecting in a straight line.

Reflection is a linear transformation. There is, however, one detail we have to address:

linear transformations always fix the origin. Since the only points remaining fixed

under a reflection are those on the reflection line, we must pick only those reflection

lines going through the origin. Later we will deal with arbitrary lines.
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Start with the line representing the x-axis. To reflect a point in this line, we simply
send (x, y) to (x,−y). This transformation is easily represented with a matrix.

Tx(P) =
[
1 0

0 −1

]
P

Correspondingly, we can use the matrix M =
[
−1 0

0 1

]
to reflect the line representing

the y-axis. The question is, how do we reflect in an arbitrary line through the origin?
One answer is that we could apply a series of transformations that effectively carry

out the arbitrary reflection in small steps. For the first step, apply a rotation transfor-
mation which moves our reflection line until it coincides with the x-axis. This will
rotate the original point P to a new position. Then we can reflect in the x-axis because
we already have the appropriate matrix for this transformation. Finally, we can rotate
back (or undo the rotation) to put the arbitrary line back where it was. The end result
is to reflect P in the arbitrary line.

Example 4.3 (Reflection in an Arbitrary Line). Suppose we are interested in
reflecting points in the line through the origin and the point (6, 2). In particular, take
P = (1, 7) and determine where it goes under the reflection. Our algorithm begins
by rotating so that the line coincides with the x-axis. This is a clockwise rotation
of angle 𝛼 (Figure 4.4). Considering the right triangle formed by the origin and the
point (6, 2), we have that cos 𝛼 = 6√

40
and sin 𝛼 = 2√

40
.

Using these values for the sine and cosine, we have the rotation matrix corre-
sponding to a counterclockwise (ccw) rotation of angle 𝛼. Replacing 𝛼 by −𝛼 gives
the clockwise (cw) rotation.

Mcc𝑤 =
⎡⎢⎢⎣

6√
40

−2√
40

2√
40

6√
40

⎤⎥⎥⎦ Mc𝑤 =
⎡⎢⎢⎣

6√
40

2√
40

−2√
40

6√
40

⎤⎥⎥⎦

−α

P = (1,7)

(6,2)

(0,0)

T(P) = (5,−5)

Figure 4.4 Arbitrary reflection
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Following our algorithm, we want to apply the clockwise rotation first, then the

reflection in the x-axis, and finally the counterclockwise rotation.We need to take care

that we have the order of the matrices correct. Our point P must first be multiplied by

the clockwise matrix, then the reflection matrix, then the counterclockwise matrix.

We multiply Mcc𝑤Mref Mc𝑤 to get a matrix for the composite transformation.

T(P) =
⎡⎢⎢⎣

6√
40

−2√
40

2√
40

6√
40

⎤⎥⎥⎦
[
1 0

0 −1

]⎡⎢⎢⎣
6√
40

2√
40

−2√
40

6√
40

⎤⎥⎥⎦ P

=

[
0.8 0.6

0.6 −0.8

]
P

In calculating the composite matrix here, it was important to get the order of the

matrix multiplications correct. If wemultiplied the three matrices in the reverse order,

we get a different composite matrix. Multiplying the point P = (1, 7) by our final

matrix gives the reflected point T(P) = (5,−5). ◽

In the previous example, we rotated in order to reflect around the x-axis. Clearly,
we could have rotated appropriately to reflect around the y-axis instead. In fact, notice
that a counterclockwise rotation of 𝜋∕2 (radians) followed by a reflection in the x-axis
and then followed by a clockwise rotation of 𝜋∕2 gives us a reflection in the y-axis.
LetMx andMy denote the matrices giving reflections in the x- and y-axis, respectively.
Then using the correct 𝜋∕2 rotation matrices gives

My = Mc𝑤MxMcc𝑤 =
[

0 1

−1 0

] [
1 0

0 −1

] [
0 −1
1 0

]
=

[
−1 0

0 1

]
Curiously, this time the multiplication order of the three matrices does not seem to

make a difference. Either order gives the same product My. Yet, once we consider the

geometry, it makes sense because applying either a counterclockwise or clockwise

𝜋∕2 rotation first results in the same reflection in the y-axis.

4.2.3 Scaling in Two Dimensions

To change the size of an object (enlarge or reduce), the general idea is to move all

the object’s points further from (or closer to) the object’s center. We can actually pick

any point as the center and make all the adjustments relative to this key point, but it

is most convenient to start by using the origin as the center. Then, to scale an object

by a factor k, we simply multiply all the coordinates by k. A simple matrix does the

trick:

T(P) = MkP =
[

k 0

0 k

] [
x
y

]
=

[
kx
ky

]
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The transformation T(P) = MkP is a linear transformation that scales the object by a
factor k. It should be fairly clear that scaling by a factor k followed by scaling by a
factor k−1 brings the object back to its original size. This follows because the product
of the two scaling matrices is the identity matrix. If the origin is not at the center
of the object, then the scaling transformation may not exactly do what we wish. In
particular, if the origin is outside the object, then the scaling moves the entire object
either further from or closer to the origin.

Occasionally, it is useful to scale in one direction differently than in the other.
To scale in the x direction by k1 and in the y direction by k2, the appropriate matrix
would be

Mk =
[

k1 0

0 k2

]
This differential scaling transformation is appropriate for adjusting an image to fit a
display screen when the aspect ratios of the image and screen differ.

4.2.4 Matrix Properties

Every 2 × 2 matrix corresponds to a linear transformation because matrix multiplica-
tion preserves vector addition and scalar multiplication.

M(𝑣 + �⃗�) = M𝑣 + M�⃗�

M(a𝑣) = aM𝑣 (4.4)

So any transformation T(P) = MP is a linear transformation and it is useful to look at
the matrix and have some idea of how the transformation behaves. The determinant
of the matrix M turns out to give some key information about the transformation:

1. det(M) ≠ 0. In this case, we know the matrix has an inverse M−1 and the trans-
formation T(P) = M−1P undoes whatever T does. The transformation is there-
fore one to one, so each vector has a unique image. The transformation may
distort the object, but it does not collapse portions of it. Both the rotation and
reflection transformations have matrices with nonzero determinant.

2. det(M) = 0. Here we know that the transformation does not have an inverse. In
fact, the zero matrix has determinant zero and it sends everything to 0; an entire
object will be squashed to a single point. Suppose the upper left entry in M is 1
and all the rest are 0. Then T(P) = T((x, y)) = (x, 0). This squashes everything
in the object to the x-axis; it is really a projection onto the x-axis.

3. det(M) = 1. From our work with vector geometry, we know that the determinant
gives us the area of a parallelogram. If det(M) = 1, then the image of the unit
square is a parallelogram with area 1. Using some linear algebra and properties
of determinants (see Exercises), we can verify that areas are invariant under
this transformation. In particular, any triangle is sent to another triangle with
the same area.



94 TRANSFORMATIONS

4. det(M) < 0. The reflection matrices have determinants equal to −1. Reflec-
tion in the x-axis, for example, takes triangles to other triangles with the same

shape and area. However, if we had listed the three vertices of the original tri-

angle in clockwise order, then the vertices in the image triangle will be listed
in counterclockwise order. Reflection switches the orientation and the negative

determinant is indicative of this switch. In the case of reflection, the absolute

value of the determinant is 1, so areas are still preserved.

The determinant is only one of several characteristics of transformation matrices.

Much of linear algebra is involved with categorizing matrices and analyzing their

properties. For 2 × 2 matrices, we can write out the general matrix as

M =
[

a b
c d

]
Then, we could exhaustively consider the various assumptions we could make about

the entries a, b, c, d. We will look at one of the many possible assumptions and leave

others as exercises.

Example 4.4 (Shear Matrices). Consider all the matrices where a = 1, b ≠ 0, c =
0, d = 1. The diagonal elements are both 1 and the lower left element is zero. One

example is the matrix

M =
[
1 1

0 1

]
To visualize what the transformation T(P) = MP does, track what it does to each

vertex of the unit square. It fixes (0, 0) as do all linear transformations, and it sends

(1, 0) to itself. However, (0, 1) goes to (1, 1) and (1, 1) goes to (2, 1). Keeping in mind

that straight lines go to straight lines, the image of the unit square ends up pushed

over (Figure 4.5). Such a transformation is called a shear.
Once we see how this shear behaves, it is a little easier to see what happens if the

diagonal elements in the matrix are 2 instead of 1. Then we have another shear that

enlarges the square at the same time it pushes it over again. It is a small step from

shears with c = 0 to those with b = 0. ◽

(1,1) (2,1) = T(1,1)

Figure 4.5 2D shear
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4.3 THREE DIMENSIONS

If we remain focused on linear transformations, moving from two dimensions to three

dimensions requires using 3 × 3 matrices instead of 2 × 2 matrices. The approach is

the same as we took in two dimensions except that now there are three axes spanning

our space of points with the associated three coordinates. Linear transformations are

still equivalent to multiplication by matrices, and rotations, reflections, and scalings

are still key transformations. We only have to tend to a few details in order to gener-

alize to three dimensions.

4.3.1 Rotations in Three Dimensions

Compared to two dimensions where we rotate around a point, in three dimensions

we rotate around an axis. Rotating around a point is not well defined until we pick

an axis by selecting a direction (i.e., a vector). The three obvious axes (x, y, and z)
corresponding to the vectors i⃗, j⃗, k⃗, still are key axes to choose, but there are also axes
(through the origin) corresponding to any vector we want.

Rotation around the z-Axis Rotation around the z-axis means we pick k⃗ as the vec-

tor indicating direction. Vector k points in the direction of increasing z coordinates,
so when we rotate, we imagine looking down the z-axis in the direction −k⃗ toward

the origin. From this vantage point, we see the x- and y-axis as they appear in a

two-dimensional analysis. Positive rotations are again counterclockwise, and nega-

tive rotations are clockwise. If we take a point P with coordinates (x, y, z), then under
a rotation around the z-axis, the z coordinate does not change, and the x and y coor-

dinates change just as they did under a two-dimensional rotation (Figure 4.6).

Consequently, for a positive (counterclockwise) rotation through angle 𝜃, we use

the following matrix:

Mz =
⎡⎢⎢⎣
cos 𝜃 − sin 𝜃 0

sin 𝜃 cos 𝜃 0

0 0 1

⎤⎥⎥⎦ (4.5)

Pθ

x

y

z

T(P)

Figure 4.6 Rotation around z-axis
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x

y

z

Figure 4.7 Rotation around y-axis

The third row of the matrix with two zeroes and a 1 indicates that the z coordinate

remains fixed under the transformation.

Rotation around the y-Axis Rotation around the y-axis means we pick j⃗ as the vector
indicating direction. Looking down the y-axis, we see the xz plane. If necessary, we
can rotate our eye around the y-axis until the z-axis points to the right and the x-axis
points up. The situation looks closer to the two-dimensional case except that the z-axis
now plays the role of the x-axis and the x-axis plays the role of the y-axis. Recall
that under a two-dimensional rotation, the x coordinate of the rotated point becomes

x cos 𝜃 − y sin 𝜃. This is the result of our trigonometric analysis and is incorporated

in the design of the rotation matrix. In our current case, z plays the role of x, and
x plays the role of y, so the new z coordinate is z cos 𝜃 − x sin 𝜃. Similarly, the new

x is z sin 𝜃 + x cos 𝜃. With the rotation around the y-axis, the y coordinate does not

change, and the second row of our matrix is 0, 1, 0.

My =
⎡⎢⎢⎣
cos 𝜃 0 sin 𝜃

0 1 0

− sin 𝜃 0 cos 𝜃

⎤⎥⎥⎦ (4.6)

The second row in this matrix indicates that the y coordinate is fixed, and the

second column indicates that the y coordinate is not used in calculating the new x and
z coordinates (Figure 4.7).

Rotation around the x-Axis Looking down the x-axis, we see the yz plane, and we

can adjust our eye until the y-axis is pointing to the right and the z-axis is pointing
up. Now y plays the role of x in our two-dimensional analysis and z plays the role of
x. Making the appropriate adjustments gives the rotation matrix

Mx =
⎡⎢⎢⎣
1 0 0

0 cos 𝜃 − sin 𝜃

0 sin 𝜃 cos 𝜃

⎤⎥⎥⎦ (4.7)
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x

y

z

Figure 4.8 Rotation around x-axis

All three rotation matrices Mz, My, and Mx have the same determinant, but in this

last case it is perhaps easiest to calculate. For Mx, the determinate is one times the

determinate of the lower 2 × 2 corner, which is cos2𝜃 + sin2𝜃 = 1. This gels with our

intuition because rotations should not change volumes in three dimensions just like

they did not change areas in two dimensions (Figure 4.8).

Order of Rotations In two dimensions, two rotations centered at the origin can fol-

low each other giving a composite rotation, for example, of 𝛼 + 𝜃. If we reverse the

order of the transformations, we get a composite rotation of 𝜃 + 𝛼. Of course, these

two composite rotations are exactly the same and the correspondingmatrices are iden-

tical. This all means that two-dimensional rotation matrices commute.

M𝛼M𝜃 = M𝜃M𝛼

This does not mean that all 2 × 2 matrices commute, but it does mean that, geomet-

rically, rotations around zero do commute. In three dimensions, the situation is not

so simple. With rotations around each of the three coordinate axes, it is harder to call

on our intuition to predict what a composite rotation will look like. Moreover, these

rotations do not commute.

Consider a 𝜋∕2 counterclockwise rotation around the z-axis and a 𝜋∕2 counter-

clockwise rotation around the y-axis. Calling the two associated rotation matrices Mz
and My, we can multiply them in an order, indicating the z rotation followed by the y
rotation.

MyMz =
⎡⎢⎢⎣

0 0 1

0 1 0

−1 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
0 −1 0

1 0 0

0 0 1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0 0 1

1 0 0

0 1 0

⎤⎥⎥⎦
Just to help our intuition here, follow the point (1, 0, 0). This point sits on the x-axis
and is rotated by the 𝜋∕2 counterclockwise z rotation to the point (0, 1, 0) on the

y-axis. The 𝜋∕2 counterclockwise y rotation now fixes the point because it leaves all

points on the y-axis alone. Multiplying the point (1, 0, 0) by the product matrix gives

(0, 1, 0).
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Now multiply the two rotation matrices in the reverse order corresponding to the

y rotation followed by the z rotation.

MzMy =
⎡⎢⎢⎣
0 −1 0

1 0 0

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

0 0 1

0 1 0

−1 0 0

⎤⎥⎥⎦ =
⎡⎢⎢⎣

0 −1 0

0 0 1

−1 0 0

⎤⎥⎥⎦
Our analysis now shows that the y rotation takes the point (1, 0, 0) to (0, 0,−1), and
this last point is fixed by the z rotation. Multiplying the point (1, 0, 0) by the product

matrix indeed gives (0, 0,−1). These two particular 𝜋∕2 counterclockwise rotations

give different results depending on the order in which they are applied.

It is not particularly surprising that order makes a difference because we do know

that, in general, matrix multiplication is not commutative. However, it is also impor-

tant to draw the connection between matrix multiplication and the underlying geom-

etry of rotation transformations.

Rotation around an Arbitrary Axis Rotations around the coordinate axes are really

special cases because, when we look down one of these axes, we effectively see the

rotation acting in the xy, yz, or xz planes. Then we recall rotations in two dimen-

sions and the appropriate trigonometric addition formulas to produce the associated

rotation matrix. If we are interested in a rotation around an arbitrary axis (through the

origin), we have to work a little harder. There are two main methods we can take. The

first takes advantage of the three rotations around coordinate axes to build a compos-

ite transformation that rotates around a given axis. The second, which we will cover

later in this chapter, takes a more vector geometry approach that is independent of

the coordinate system. Both are useful in designing graphics programs, but the first

has the advantage of cementing some of the ideas we have developed so far.

Let the vector a⃗ represent the arbitrary axis of a rotation. Since we know the correct

matrices for rotating around the coordinate axes, a good strategy is to first transform

our space so that vector a⃗ coincides with one of the coordinate axes. The plan is to

make this first transformation, then rotate using one of the known rotation matrices,

and finally undo the first transformation so a⃗ is back in its original position. Suppose

a⃗ = (ax, ay, az) and that |a⃗|2 = a2x + a2y + a2z = 1. That is, a⃗ is a unit vector. Just for

illustration, imagine a⃗ is in the first quadrant as shown in Figure 4.9. Later we will

let it point in any direction.

For the first step, refer to Figure 4.9 and notice that we can rotate a⃗ counterclock-

wise around the x-axis until it falls into the xz plane where we will call the vector b⃗.
The shadow of a⃗ in the yz plane is called s⃗, and it moves onto the (positive) z axis as a⃗
transforms into b⃗. Now, a clockwise rotation around y moves b⃗ onto the z-axis, where
we call the result c⃗. These two rotations together form our first composite transfor-

mation that moves a⃗ to c⃗. We need the corresponding matrices so we can multiply

them together to get the composite transformation.

To determine the angle for the rotation sending a⃗ to b⃗, check the coordinates for

the shadow s⃗, which are (0, ay, az). The length of s⃗ is then g =
√

a2y + a2z . The shadow
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a

bc

s

α

β

x

y

z

Figure 4.9 Arbitrary rotation

rotates through angle 𝛼 shown in the figure, and this angle is found by taking the dot

product of s⃗ and the unit vector along the z-axis, (0, 0, 1).

cos 𝛼 = s⃗ ⋅ (0, 0, 1)|s⃗‖(0, 0, 1)| = az

g

From trigonometry, we have sin 𝛼 =
√
1 − (az∕g)2 = ay∕g. The matrix Mx(𝛼) for

this rotation is

Mx(𝛼) =
⎡⎢⎢⎣
1 0 0

0 az∕g −ay∕g
0 ay∕g az∕g

⎤⎥⎥⎦
When a⃗ undergoes this rotation transformation, it ends up as vector b⃗ in the xz plane.
The coordinates for b⃗ are (𝑣x, 0, g) because the z coordinate is just the length of the

shadow vector s⃗. The rotation does not change the length of vectors, so |a⃗| = |b⃗| and|b⃗| = √
a2x + g2 = 1.

Now the task is to rotate clockwise around the y-axis until b⃗ becomes c⃗ on the

z-axis. This angle is designated as 𝛽 in the figure, and to find the cosine we again use

the dot product.

cos 𝛽 = b⃗ ⋅ (0, 0, 1)|b⃗‖(0, 0, 1)| = g

To find the sine, we first use the trigonometric identity to get sin 𝛽 = ±
√
1 − g2 =

±ax. This rotation is clockwise, so the angle is negative and we take sin 𝛽 = −ax.

Now we have the rotation matrix My(𝛽).

My(𝛽) =
⎡⎢⎢⎣

g 0 −ax
0 1 0

ax 0 g

⎤⎥⎥⎦
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The composite rotation given by T(P) = My(𝛽)Mx(𝛼)P takes the axis vector a⃗ to

the vector c⃗ on the z-axis. Now, if we wish to rotate around the axis a⃗ by 𝜃, we need to

rotate around the z-axis by 𝜃. So we call on the matrix Mz(𝜃) derived earlier. Finally,
to undo a rotation, we just rotate by minus the particular angle. In rotation matrices,

this just changes the sign of the sine entries, leaving the cosine entries alone. So we

can find M−1
x (𝛼) and M−1

y (𝛽) easily.

M−1
x (𝛼) =

⎡⎢⎢⎢⎣
1 0 0

0 az∕g ay∕g

0 −ay∕g az∕g

⎤⎥⎥⎥⎦ M−1
y (𝛽) =

⎡⎢⎢⎢⎣
g 0 ax

0 1 0

−ax 0 g

⎤⎥⎥⎥⎦
After this long derivation, we are ready to write down the complete transformation

for rotating about the arbitrary axis. The transformation matrix Marb is a product of

matrices each of which corresponds to a transformation, and the order in which they

are applied goes from right to left.

Marb = M−1
x (𝛼)M−1

y (𝛽)Mz(𝜃)My(𝛽)Mx(𝛼)

If we are going to rotate an object around an arbitrary axis in three dimensions, we

first make sure we have a unit vector in the direction of the axis and then multiply

all the individual matrices together to get Marb. Then we simply multiply Marb times

each of the vertices in the object. Just for reference, we can multiply all five matrices

together (using plenty of algebra to simplify) to find the single matrix that rotates

around the arbitrary axis. (To compress the expressions, let c = cos 𝜃 and s = sin 𝜃.)

Marb =
⎡⎢⎢⎢⎣

c + (1 − c)a2x (1 − c)axay − saz (1 − c)axaz + say

(1 − c)axay + saz c + (1 − c)a2y (1 − c)ayaz − sax

(1 − c)axaz − say (1 − c)ayaz + sax c + (1 − c)a2z

⎤⎥⎥⎥⎦ (4.8)

One detail is still left. In our derivation, we were assuming that a⃗ was pointing

to the first quadrant. In other words, the coordinates ax, ay, az were all positive. Do

our calculations still work if the vector points to some other quadrant? The problem

comes from the size and direction of the angles 𝜃 and 𝛽. If they are clockwise instead

of counterclockwise or if they are greater than 𝜋∕2 rather than less, then the sign of

the cosine and sine functions might change.

For the matrix Mx(𝜃), the sign of ax has no effect. Yet, the cosine and sine in the

matrix have the same sign as the coordinates az and ay, respectively. A quick check

to see where the resulting vector a⃗ is pointing verifies that the matrix we derived is

still correct.

Similarly, when considering the matrix My(𝛽), the entries equal to g are always

positive but the value ax can be negative. If it is negative, then a⃗ is pointing toward

the negative x-axis and the vector b⃗ needs to be rotated counterclockwise around

the y-axis instead of clockwise. This should change the sign of the sine function, and,
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indeed, the matrix changes appropriately because ax is negative. Our derivation, then,

is general and does not depend on where a⃗ points.

4.3.2 Reflections in Three Dimensions

Any plane through the origin can be thought of as a mirror reflecting objects in a

scene. If it happens to be the xy plane, for example, then the reflection takes the

point (x, y, z) to the point (x, y,−z) and the corresponding matrix that implements the

transformation is Mref (k⃗), where k⃗ is the unit normal to the xy plane.

Mref (k⃗) =
⎡⎢⎢⎣
1 0 0

0 1 0

0 0 −1

⎤⎥⎥⎦ (4.9)

Matrices with −1 placed appropriately on the diagonal will correspond to reflections
in the yz and xz planes as well. Reflection in an arbitrary plane (through the origin)

is more interesting, but now that we know how to find arbitrary rotations, arbitrary

reflections are easy. Basically, we first transform the space until the normal to the

reflection plane is lined up with one of the coordinate axes. Then a reflection in the

appropriate coordinate plane followed by the inverse of the first transformation com-

pletes the task.

Example 4.5 (Reflection in an Arbitrary Plane). To reflect the point P = (3,−5, 8)
in the plane through the origin with normal (1, 2, 1), first normalize to find the unit

normal n⃗ = 1√
6
(1, 2, 1). We can transform the space to line up n⃗ with any of the

coordinate axes, but we have the matrices that will line it up with the z-axis. Referring

to the rotation around an arbitrary axis, the vector a⃗ is now n⃗ and g =
√

a2y + a2z =√
(4∕6) + (1∕6) =

√
5∕6. The composite matrix that transforms n⃗ to k⃗ on the

z-axis is

M =

⎡⎢⎢⎢⎢⎣

√
5∕6 0 −(1∕

√
6)

0 1 0

1∕
√
6 0

√
5∕6

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
1 0 0

0 1∕
√
5 −2∕

√
5

0 2∕
√
5 1∕

√
5

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣

√
5∕6 −2∕

√
30 −1∕

√
30

0 1∕
√
5 −2∕

√
5

1∕
√
6 2∕

√
6 1∕

√
6

⎤⎥⎥⎥⎥⎦
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By changing the sign of the angles and reversing the order, we can calculate the

inverse M−1.

M−1 =

⎡⎢⎢⎢⎢⎣
√
5∕6 0 1∕

√
6

−2∕
√
30 1∕

√
5 2∕

√
6

−1∕
√
30 −2∕

√
5 1∕

√
6

⎤⎥⎥⎥⎥⎦
With these matrices, the arbitrary reflection is then

Mref (n⃗) = M−1
⎡⎢⎢⎣
1 0 0

0 1 0

0 0 −1

⎤⎥⎥⎦ M = 1

3

⎡⎢⎢⎣
2 −2 −1

−2 −1 −2
−1 −2 2

⎤⎥⎥⎦
Multiplying the point P by this matrix gives the reflected point 1

3
(8,−17, 23).

Finally, notice that multiplying the matrix times the vector n⃗ gives −n⃗ just as

expected. ◽

4.3.3 Scaling and Shear in Three Dimensions

With three dimensions, we can scale in the x, y, or z directions. The general scaling
transformation has the matrix

Ms =
⎡⎢⎢⎣
sx 0 0

0 sy 0

0 0 sz

⎤⎥⎥⎦ (4.10)

The constants (sx, sy, sz) can all be equal, giving us the simple transformation that

enlarges or reduces the size of our objects, or the constants can be unequal giving a

transformation that distorts the object by stretching or shrinking in some directions

differently than in others. Notice that making one of the constants negative introduces

a reflection into the mix.

Just as in the two-dimensional case, an additional nonzero entry off the diagonal

gives a shear transformation, which can be useful in modeling various objects. For

example, the following matrix gives a transformation that pushes the unit cube in the

x direction as though it were a stack of cards:

Ms =
⎡⎢⎢⎣
1 1 0

0 1 0

0 0 1

⎤⎥⎥⎦
When multiplied times a point (x, y, z), we get the point (x + y, y, z). The only

change is that x becomes x + y, so the x coordinates are increased for positive val-

ues of y. If the unit cube is sitting on the xz plane, the top will be pushed over and the
bottom will stay put (Figure 4.10).
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x

y

z

Figure 4.10 3D shear

Single nonzero entries in any of the off-diagonal positions produce shear-like

transformations. The exercises ask for further details on the effects of these types

of transformations.

4.4 AFFINE TRANSFORMATIONS

There is one glaring omission among all the transformations we have visited so far.

We have not considered the simple translation that just moves all points in the same

direction. A translation just adds a vector Q⃗ = (h, k) to every point: T(P) = P + Q⃗.

This is certainly a useful, in fact essential, transformation for graphics work; objects

are moved around all the time. Unfortunately, it is not technically a linear transfor-

mation because it does not preserve vector addition and scalar multiplication. (In

particular, it does not fix the origin and T(aP) is not, in general, equal to aT(P) for
constant a.) This does not cripple its use in manipulating graphics objects because it

certainly still preserves lines. Yet, since translation is not a linear transformation, it

apparently cannot be represented by standard matrix multiplication, putting it outside

the system we have developed for all the other linear transformations.

Nevertheless, the essential nature of translations means we immediately add them

to our transformation toolbox and define a larger class of transformations, called affine
transformations, which are combinations of linear transformations and translations.

Definition 4.1 (Affine Transformation). For a square matrix M and a fixed vector
Q⃗, an affine transformation is of the form T(P) = MP + Q⃗.

This definition works in both two and three dimensions just by adjusting thematrix

size (2 × 2 or 3 × 3) as well as the size of the vectors and points (2 × 1 or 3 × 1). If

the matrix M has an inverse, then the affine transformation T is a one-to-one function

and has inverse T−1.

T−1(P) = M−1(P − Q⃗) (4.11)

Affine transformations form a class that contains linear transformations and

still captures the property that lines get sent to lines. Thinking of a general line
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P = P0 + t𝑣, the affine transformation sends it to

T(P) = T(P0 + t𝑣) = M(P0 + t𝑣) + Q⃗

= (MP0 + Q⃗) + tM𝑣

= P1 + t�⃗�

Points on the original line are sent to points on a new line. In fact, if we restrict t
(e.g., take t ∈ ([0, 1]), we see that line segments are sent to line segments.

One more important property of these transformations is that, along with preserv-

ing straight lines, they also preserve parallel lines. If we have two parallel lines, then

the direction vectors for the lines are parallel and hence multiples of each other, say

𝑣 and a𝑣. Hence the two lines are P = P0 + t𝑣 and P = P1 + ta𝑣. The affine transfor-
mation T(P) = MP + Q⃗ transforms the lines as follows:

T(P0 + t𝑣) = M(P0 + t𝑣) + Q⃗ = (MP0 + Q⃗) + t(M𝑣)

T(P1 + ta𝑣) = M(P1 + ta𝑣) + Q⃗ = (MP1 + Q⃗) + ta(M𝑣)

These transformed lines are parallel because their direction vectors are multiples of

each other.

For computer graphics, perhaps the most important property of affine transforma-

tions is the ability to send triangles to triangles in two dimensions and tetrahedrons

(pyramids with four vertices) to tetrahedrons in three dimensions. More specifically,

we can single out two triangles and find an affine transformation that sends one to

the other. (We are interested here in nondegenerate triangles and tetrahedrons; the

triangle vertices should not be collinear.)

Theorem 4.1 In two dimensions, there is a unique affine transformation that sends
a given triangle to another specified triangle and maintains the order of their ver-
tices. Similarly, in three dimensions, any given tetrahedron can be sent to any other
tetrahedron using an affine transform.

Example 4.6 (Transforming a Triangle to a Specified Triangle). The three vertices

A = (2, 5), B = (4,−1), and C = (5, 3) specify a triangle with the vertices in counter-
clockwise order. A second triangle has the vertices D = (−8, 2), E = (−5,−3), and
F = (1, 6), also in counterclockwise order. We would like an affine transformation

sending ΔABC to ΔDEF. To do this, our plan will be to consider a third simpler

triangle with vertices (0, 0), (1, 0), and (0, 1). Call this the base triangle.
The complete plan is to find affine transformations T1 and T2 that send the base

triangle to ΔABC and ΔDEF, respectively. Assuming T−1 exists, the affine transfor-
mation we seek is then the composition T2T−1

1
.

Translating by the vector Q⃗1 = (−2,−5) moves triangle ΔABC to a triangle

ΔA′B′C′ with vertices A′ = (0, 0), B′ = (2,−6), and C′ = (3,−2). The trick is then

to form a (2 × 2)matrix M by using the vertices B′ and C′ as columns. Multiplication
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by M gives us a transformation that moves the base triangle to ΔA′B′C′. Translating
back by −Q⃗1 = (2, 5) then gives us the transformation T1.

T1(P) = MP + (−Q⃗1) =
[

2 3

−6 −2

]
P +

[
2

5

]
Notice that T1((0, 0)) = A, T1((1, 0)) = B, and T1((0, 1)) = C.

Since the vertices of triangle ΔABC are not collinear, the vectors forming the

columns of M are not multiples of each other. The determinant of M is therefore

nonzero, and M−1 exists as does T−1
1
. This inverse transformation maps ΔABC to the

base triangle. More explicitly

T−1
1
(P) = M−1

(
P −

[
2

5

])
= 1

14

[
−2 −3
6 2

]
P − 1

14

[
−19
22

]
T2 is constructed similar to T1 using the translation vector Q⃗2 = (8,−2).

T2(P) = MP + (−Q⃗2) =
[

3 9

−5 4

]
P +

[
−8
2

]
The final transformation is a composition.

T(P) = T2(T−1
1
(P)) =

[
3 9

−5 4

]
(T−1

1
(P)) +

[
−8
2

]
= 1

14

[
3 9

−5 4

] [
−2 −3
6 2

]
P − 1

14

[
3 9

−5 4

] [
−19
22

]
+

[
−8
2

]
≈

[
3.43 0.64

2.43 1.64

]
P +

[
−18.07
−11.07

]
We find that T(A) = D, T(B) = E, and T(C) = F, which keeps the counterclockwise

order. ◽

4.4.1 Transforming Homogeneous Coordinates

The fact that translations are different from rotations, reflections, and scalings is con-

ceptually awkward. It can also give the graphics programmer pause because it appears

that translations are not easily included in a general transformation method. It would

be nice if all transformations could be unified in one approach, and once again, homo-

geneous coordinates come to the rescue.

Start with the two-dimensional case, and first notice again that there is no appro-

priate way to use 2 × 2 matrices to perform a two-dimensional translation. However,

shifting to homogeneous coordinates means we will use three coordinates (x, y, 𝑤) for
each point, converting, when necessary, to the Cartesian representation (x∕𝑤, y∕𝑤).
Corresponding to the three homogeneous coordinates, the transformation matrices
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are now 3 × 3 matrices. In fact, translation is represented by an appropriate choice of

these 3 × 3 matrices.

Translation: T(P) =
⎡⎢⎢⎣
1 0 h
0 1 k
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

x
y
𝑤

⎤⎥⎥⎦ =
⎡⎢⎢⎣
x + h𝑤
y + k𝑤

𝑤

⎤⎥⎥⎦ (4.12)

The resulting point (x + h𝑤, y + k𝑤,𝑤) has Cartesian coordinates ((x∕𝑤) +
h, (y∕𝑤) + k), which is just the original point translated by the vector (h, k). In the

event we chose the homogeneous coordinates (x, y, 1) for the original point (𝑤 = 1),

then the result (x + h, y + k, 1) is immediately recognizable as a translation.

We have not lost anything by moving up to homogeneous coordinates (and 3 × 3

matrices) because all of our 2 × 2 matrices conveniently fit in the upper left corner of

our larger matrices. For example, the rotation transformation in two dimensions can

be expressed as the following matrix using homogeneous coordinates:

Rotation: T(P) =
⎡⎢⎢⎣
cos 𝜃 − sin 𝜃 0

sin 𝜃 cos 𝜃 0

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

x
y
𝑤

⎤⎥⎥⎦ =
⎡⎢⎢⎣
x cos 𝜃 − y sin 𝜃
x sin 𝜃 + y cos 𝜃

𝑤

⎤⎥⎥⎦ (4.13)

A rotation followed by a translation is represented by the product of a translation

matrix times a rotation matrix:

⎡⎢⎢⎣
1 0 h
0 1 k
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
cos 𝜃 − sin 𝜃 0

sin 𝜃 cos 𝜃 0

0 0 1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cos 𝜃 − sin 𝜃 h
sin 𝜃 cos 𝜃 k
0 0 1

⎤⎥⎥⎦
Notice that the order makes a difference here; a translation followed by a rotation

gives a different product matrix.

We are in a position now to expand the use of our transformations. Previously, in

two dimensions we rotated only around the origin. It is much more practically useful

to rotate around an arbitrary point like the center of an object.

Example 4.7 (Rotating Around an Arbitrary Point in Two Dimensions). A triangle

has vertices A = (3, 2), B = (4, 7), and C = (6, 1). To rotate it 25∘ counterclockwise
around vertex A, we first translate it so that vertex A is moved to the origin. Then we

rotate around the origin and finally undo the original translation by translating back.

The first translation vector should be Q⃗ = (−3,−2), and when we translate back we

use −Q⃗ = (3, 2). If we let Tt be the translation and Tr be the rotation, our plan is to
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build the composite transformation T−1
t TrTt.

T−1
t TrTt =

⎡⎢⎢⎣
1 0 3

0 1 2

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
0.91 −0.42 0

0.42 0.91 0

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 −3
0 1 −2
0 0 1

⎤⎥⎥⎦
=

⎡⎢⎢⎣
0.91 −0.42 1.11

0.42 0.91 −1.08
0 0 1

⎤⎥⎥⎦
Taking (3, 2, 1), (4, 7, 1), and (6, 1, 1) as the homogeneous coordinates for the
vertices, we multiply by the transformation matrix to get (3, 2, 1), (1.81, 6.97, 1),
and (6.15, 2.35, 1). These form the vertices for the rotated triangle. The key in this
example was to position the center of rotation at the origin by applying the correct
translation. Then a rotation is easy to apply, and we end by moving the center of
rotation back to its original position. ◽

In designing reflection matrices in two dimensions, we took lines through the ori-
gin, but now we can take any line and first translate it so it goes through the origin,
then reflect, and finally translate back. The same holds for scaling transformations;
we can scale around the center of an object or around any other appropriate point.

There is nothing sacred here about two dimensions. We can use homogeneous
coordinates in three dimensions as well, and build 4 × 4 matrices to incorporate
three-dimensional translations. The nice theoretical breakthrough is that all our affine
transformations are multiplications by matrices and we can therefore easily compose
many transformations together. When it comes to designing code, homogeneous
coordinates give us a unifying principle that helps incorporate more general methods
to simplify design. It is not always the case, however, that this leads to the optimal
efficiency.

4.4.2 Perspective Transformations

Near the end of the graphics pipeline, three-dimensional scenes have to finally be
converted to two dimensions in order to be displayed on the screen. The way they
are projected determines how realistic they will look. This is not unlike the problem
facing Renaissance painters, as some trends in art led to more and more realism.
Painters gradually realized that portraying distant and near objects in the same scene
required adjusting their size in a rather mathematical way. Their task was actually a
little harder than ours is today given that we have considerable computational power.
Painters needed a constructive way of projecting a scene onto the canvas that did not
require much algebraic computation and they succeeded with geometric algorithms
introduced by Brunelleschi, Alberti, and Piero Della Francesca, to name a few. It was
all based on a geometric view of vision that had been evolving over the centuries.
In this view, light is composed of rays traveling in straight lines, so the process of
putting a scene onto a canvas or a computer screen is analogous to physically tracing
straight lines as we look at the scene as though the canvas was a window.
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Figure 4.11 Perspective

In Figure 4.11, we have a side view of the situation with our eye positioned at point

E, the window centered at point W, and two equal sized cubes in the scene one further

away than the other. Point C is one vertex on the nearer cube. The straight line from

C to E represents light traveling from the cube to make an impression on the retina

of the eye. The point C∗ is on the window (or canvas) and is exactly where we see

the cube vertex. Actually, we now have a simple algorithm to determine where any

point in the scene appears on the window. Just draw a straight line from the point in

the scene to the eye at point E and determine the intersection with the window. This

technique was generally impractical for Renaissance painters, although there were

various attempts to build helpful apparatuses. There are just too many points in the

scene to laboriously transfer to the window. With a computer, however, we simply

implement an appropriate transformation.

As we transfer points from the scene to the window, notice that the front edge of

the near cube gets transferred to a line segment on the window. Similarly, the front

edge of the distant cube gets transferred, but the line segment will be smaller than

for the first cube. This is the result of what we call a perspective transformation.
Distant line segments are smaller than nearer line segments. Figure 4.11 shows an

ideal situation where the line EW is perpendicular to the window. Therefore, triangle

ΔEWC∗ is a right triangle. Pick the point D so that ΔEDC is also a right triangle. In

fact it is similar to the first triangle and consequently

CD
C∗W

= ED
EW

=⇒ C∗W = CD ⋅ EW
ED

This helps us position C∗ in the window because we know how far it is from the

window’s center. Yet we need an explicit transformation for converting coordinates

for C into coordinates for C∗. To do this, we need to agree on the orientation of

the coordinate system. We can make any arbitrary set up work, but to make things

easy to start with, position the three dimensional coordinate system so that the origin

coincides with W. Further, we often position the eye point E on the positive z-axis
looking toward the origin. So the coordinates of E are (0, 0, e). Orient the axes so

that the x-axis is coming out of the figure and the y-axis is pointing up. Take the

coordinates of C to be (x, y, z).
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Distances in the figure now translate as follows: EW = e,CD = y,ED = e − z.
Finally, we are trying to specify the point C∗ on the screen, and the distance C∗W
is actually the screen’s y coordinate for C∗, so we call it ys.

ys =
y ⋅ e

e − z
=

y

1 − z
e

If we reoriented the coordinate system so that the x-axis was pointing up in the

figure, then the same analysis would give the screen x coordinate for C∗.

xs =
x

1 − z
e

The perspective transformation simply divides the original x and y coordinates

by the factor (1 − z
e
). If z = 0, then C is already on the screen and the transformation

leaves the coordinates alone. If C is on the other side of the screen, the transformation

still works, because now z < 0 and ED = e − z just as before. The triangles are still
similar and we get exactly the same formulas for the screen coordinates.

On the surface, the perspective transformation does not look like it can be imple-

mented by matrix multiplication but, again, considering homogeneous coordinates is

the way to go.

T(P) = MP =
⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 − 1

e
1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x
y
z
1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

x
y
z

1 − z
e

⎤⎥⎥⎥⎦ (4.14)

T is a perspective transformation and the transformed point has Cartesian coordi-

nates (x∕(1 − z
e
), y∕(1 − z

e
), z∕(1 − z

e
)). Since the screen is perpendicular to the line of

sight, we can simply disregard the z coordinate of the transformed point (projecting

onto the xy plane) to get the appropriate screen coordinates (Figure 4.12).

Putting the perspective transformation into a matrix keeps it in the same form

as all our other transformations. However, the perspective transformation is a lit-

tle different inasmuch as we really are transforming from three dimensions to two

dimensions. Consequently, it is rare that we want to apply another three-dimensional

transformation after the perspective transformation. Theoretically, the perspective

(a) (b) (c)

Figure 4.12 (a–c) Cube views in perspective
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transformation is a transformation from a projective space to itself, but practically in

graphics work its key role is tomove three-dimensional scenes to the two-dimensional

screen.

4.4.3 Transforming Normals

As an object is repositioned via a rotation or other transformation, normals to the

object’s faces (or edges in two dimensions) also change. Since normals are key in

many graphics calculations including viewing positions and lighting determinations,

it often makes sense to transform the normals with the object rather than recalculating

normals (using the cross product) each time the object is moved. The question then

is whether the normals move in the same way as the object itself.

Picture a cube in three dimensions with normal vectors perpendicular to each face.

Certainly, a rigid motion like rotation or translation moves the normals just like it

moves the cube. If we apply the rigid transformation to the cube, we can apply it to

each normal as well. However, if the transformation is a shear transformation, for

example, and pushes the cube over a little, then the normals on the slanted faces do

not transform the same way as the cube itself.

Let n⃗ be a normal to a face, and let 𝑣 = (P1 − P0) be a vector between two points on
the face. Then n⃗ ⋅ 𝑣 = 0 because n⃗ is perpendicular to any vector on the face. Writing

the dot product as a matrix multiplication gives

n⃗ ⋅ 𝑣 = n⃗T𝑣 =
[
n1 n2 n3

] ⎡⎢⎢⎣
𝑣1
𝑣2
𝑣3

⎤⎥⎥⎦ = 0

We use the transpose of the normal vector (n⃗T ) to make the multiplication possible.

If we transform the object vertices through multiplication by M, then vector 𝑣 is

transformed into M𝑣. To find the transformation matrix L that properly transforms

the normal vector n⃗, we need

Ln⃗ ⋅ M𝑣 = 0

That is, the transformed normal must be perpendicular to the transformed face vec-

tor. Again, write the dot product as a matrix multiplication and use the algebra of

transposes.

(Ln⃗)T M𝑣 = n⃗TLT M𝑣 = 0 (4.15)

One choice for L makes this equation true: L = (M−1)T .

(Ln⃗)T M𝑣 = ((M−1)T n⃗)T M𝑣 = n⃗T (M−1M)𝑣 = n⃗T𝑣 = 0

Equation 4.15 must be true for any vector M𝑣 in the plane of the transformed face.

There is only one normal to a plane (up to multiples), so the choice we found for L
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n
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Figure 4.13 Shear with normals

must be the correct normal. Consequently, L = (M−1)T is the correct transformation

matrix.

When does the same transformation matrix work on both the vertices and the nor-

mals? For that to be true, L = M and, therefore, M = (M−1)T . This is the definition
of an orthogonal matrix. The columns of M are unit vectors that are perpendicular

to each other. Rotation matrices are orthogonal matrices and, since they are rigid

motions, the normals transform just like the vertices.

Example 4.8 (Transforming Normal Vectors). An example in two dimensions

makes it visually clear how the normals change (Figure 4.13). Imagine that we

transform a unit square ((0, 0), (1, 0), (1, 1), (0, 1)) in two dimensions with a shear

transformation. The shear matrix is

M =
[
1 2

0 1

]
Then the appropriate matrix for transforming the normal is

(M−1)T =
[
1 −2
0 1

]T

=
[

1 0

−2 1

]
The normal (pointing out of the square) to the left edge of the original square is

(−1, 0). Compare the transformed normal under the shear transformation and under

the correct transformation.[
1 2

0 1

] [
−1
0

]
=

[
−1
0

]
and

[
1 0

−2 1

] [
−1
0

]
=

[
−1
2

]
The second transformed normal is correct because the square is pushed over by the

shear transformation. ◽

4.4.4 Summary

A large part of putting a graphics scene together is tied to applying the correct trans-

formations. Our study has touched on several key ideas and attributes that should be

enumerated once more.
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1. Linear transformations together with translations form the class of affine

transformations. Moreover, if we do include homogeneous coordinates, we

can represent transformations in this class by matrix multiplication. Affine

transformations preserve straight lines and parallel lines.

2. Some affine transformations, T(P) = MP + Q⃗, have inverses. We can determine

this by checking the determinant of M. Nonzero determinant means the inverse

exits and then T−1(R) = M−1(R − Q⃗).
3. In general, the order in which we apply affine transformations is critical. Since

matrix multiplication is not commutative, the effect of transformations applied

in one order can differ from the effect when applied in another order. It is true

that some transformations do commute, but generally order matters.

4. Perspective projections are really transformations of projective space, but in

practice we use them to project three-dimensional objects into two dimensions.

They are not affine transformations because they do not preserve all parallel

lines. In fact, the projection of a cube will turn at least some of the parallel

edges into nonparallel lines.

5. Homogeneous coordinates lead to 4 × 4 matrices for three-dimensional

transformations and unify the way they are represented. Several graph-

ics systems (e.g., JAVA, OpenGL) assume this matrix representation and

often automatically generate appropriate matrices for the standard transfor-

mations. Both translation and perspective projection can be represented with

these matrices. Representing all transforms as matrices of a given size brings

uniformity to the code, but is not always efficient. If all we are going to do is

translate, for example, a simpler routine that adds to each coordinate is more

efficient than full-blown matrix multiplication.

6. As we move further down the graphics pipeline, it will be more apparent that

some transformations are used to construct the scene and some are used to posi-

tion the camera in the scene. We might refer to transformations in the first case

as modeling transformations and those in the second case as viewing transfor-

mations. In general, a transformation is a transformation, but cataloging them

by use can help in understanding what it is we are actually transforming.

7. We have concentrated on transformations that preserve straight lines thinking

thatmost tasks in graphics do not distort lines. However, especiallywhenmodel-

ing, there may be a need to transform flat surfaces into curved ones, for example.

There are clearly a lot of other types of transformations in the world that can be

of use in the graphics setting.

4.5 COMPLEMENTS AND DETAILS

As we developed the various transformations we have seen so far, we always began

by establishing a Cartesian coordinate system. Our analytical approach relied on con-

sidering the x, y, and z coordinates somewhat separately. Rotation around an arbitrary

axis involved performing rotations around each of the three coordinate axes in turn.
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The transformation matrices we finally constructed assumed that we would be mul-

tiplying times a coordinate vector with x, y, and z coordinates (or homogeneous
coordinates).

All of this is fine, especially since we eventually have to convert our images to
the two-dimensional Cartesian coordinates on the computer screen. However, it does

have a tendency to constrain our modeling efforts when we are constantly thinking in
terms of a coordinate systemwith perpendicular axes. Themore we can free ourselves

from a particular coordinate system, the more we can use whatever representation

seems most efficient for a particular object and scene. In that vein, it is worthwhile to
revisit a few transformations with the goal of representing them in ways that do not

rely on a particular coordinate system.
It is not entirely clear how we can do this because it seems as though the Carte-

sian coordinate system is embedded in most of our work. Yet, when we think of the

dot product, for example, we may recall that A⃗ ⋅ B⃗ = axbx + ayby + azbz or, equiva-

lently, A⃗ ⋅ B⃗ = |A‖B| cos 𝜃. The first identity relies on the Cartesian coordinates and
the second does not. Thinking of the dot product as proportional to the cosine of the

angle between vectors gives us a more geometric description of the operation and is
more independent of any particular coordinate system. With this sort of idea in mind,

we revisit some transformations trying to represent them as geometrically as possi-

ble. In each case, to finally apply the transformation, we have to convert the vector
expression to a coordinate-based matrix.

4.5.1 Vector Approach to Reflection in an Arbitrary Plane

Previously we developed an arbitrary reflection in a plane through the origin by apply-
ing rotations until the reflection plane coincided with one of the coordinate planes.

Then we reflected a point or vector in the coordinate plane by adjusting the appropri-
ate coordinates (replacing z with −z, for example). Finally, we applied the inverse of

the rotations to restore the original orientation of the reflection plane. If we want to

reflect in a plane that does not go through the origin, an initial translation can remedy
the situation by moving any given point on the plane to the origin. After the reflection,

we apply the inverse translation to restore the plane.
This time, let n⃗ be a unit normal to the arbitrary reflection plane, and let P0 be

a point on this plane. The task is to reflect some point P in the plane. If we set 𝑣 =
P − P0, then 𝑣 is a vector that we could reflect in the plane. To find the reflection of

P, we simply add the reflection of 𝑣 to P0 (Figure 4.14).

First we decompose 𝑣 into the sum of two vectors, one of them parallel to n⃗ and
the other perpendicular. That is, 𝑣 = 𝑣‖ + 𝑣⊥. Now, the reflection transformation Tref
reverses the parallel component of 𝑣, while it leaves the perpendicular component
untouched.

Tref (𝑣) = Tref (𝑣‖ + 𝑣⊥) = Tref (𝑣‖) + Tref (𝑣⊥) = −𝑣‖ + 𝑣⊥

To calculate the parallel component, we look at the right triangle formed by the

normal n⃗ and the vector 𝑣. If the angle between the two vectors is 𝜃, then the length
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Figure 4.14 Parallel and perpendicular

of the component in the direction of n⃗ is |𝑣| cos 𝜃. Since n⃗ is a unit normal, the com-

ponent length is just 𝑣 ⋅ n⃗. The vector (𝑣 ⋅ n⃗)n⃗ is parallel to the normal, and therefore

the perpendicular component is the difference between 𝑣 and the parallel component.

𝑣‖ = (𝑣 ⋅ n⃗)n⃗

𝑣⊥ = 𝑣 − (𝑣 ⋅ n⃗)n⃗

Now we have a coordinate-free representation of the reflection transform.

Tref (𝑣) = −𝑣‖ + 𝑣⊥ = 𝑣 − 2(𝑣 ⋅ n⃗)n⃗ (4.16)

The advantage of this representation is that it gives an algorithm for finding the reflec-

tion using vector operations rather than Cartesian coordinates. Of course, once we

settle on a coordinate system, we can continue from here to actually get a transfor-

mation matrix using coordinates. The key idea is to look at the vector (𝑣 ⋅ n⃗)n⃗ and

write it as M𝑣 where M is some matrix. By keeping in mind what M must do, we can

deduce its contents. In fact, M = n⃗n⃗T , where n⃗T is the transpose of n⃗ and is therefore

a (1 × 3) row matrix; the product is a 3 × 3 matrix.

Suppose the coordinates of n⃗ are (nx, ny, nz).

M =
⎡⎢⎢⎢⎣
nx

ny

nz

⎤⎥⎥⎥⎦
[
nx ny nz

]
=

⎡⎢⎢⎢⎣
n2x nxny nxnz

nynx n2y nynz

nznx nzny n2z

⎤⎥⎥⎥⎦
If you need a name for the matrix M, it is often written as n⃗ ⊗ n⃗ and is an example

of a tensor product. Now, we can rewrite the transformation using I to indicate the

identity matrix.

Tref (𝑣) = 𝑣 − 2(𝑣 ⋅ n⃗)n⃗ = I𝑣 − 2M𝑣 = (I − 2M)𝑣 (4.17)
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This derivation gives us the correct transformation matrix a little more quickly than

our previous effort to rotate appropriately around each coordinate axis. Notice that,

if n⃗ = (0, 1, 0), then we are reflecting in the xz plane and consequently we should

replace y with −y. Calculating the matrix (I − 2M) gives

I − 2M =
⎡⎢⎢⎢⎣
1 − 2n2x −2nxny −2nxnz

−2nynx 1 − 2n2y −2nynz

−2nznx 2nzny 1 − 2n2z

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
1 0 0

0 −1 0

0 0 1

⎤⎥⎥⎥⎦
This is precisely the matrix that replaces y by −y.

Example 4.9 (Vector Approach to Reflection in an Arbitrary Plane). Referring back

to Example 4.5, there we reflected the point P = (3,−5, 8) in the plane through the

origin with unit normal n⃗ = 1√
6
(1, 2, 1). We are assuming the origin is on the reflec-

tion plane, so in our new representation 𝑣 = P − (0, 0, 0) = (3,−5, 8), and we find the
correct matrix by calculating (I − 2M)

I − 2M =
⎡⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎦ − 2 ⋅
1

6
⋅
⎡⎢⎢⎣
1 2 1

2 4 2

1 2 1

⎤⎥⎥⎦
= 1

6

⎡⎢⎢⎣
4 −4 −2

−4 −2 −4
−2 −4 4

⎤⎥⎥⎦
Multiplying this matrix times 𝑣 gives the reflected vector 1

3
(8,−17, 23) and conse-

quently this is the reflected point, the same reflection as in Example 4.5. We have

verified that our new representation for an arbitrary reflection coincides with our ear-

lier version. Notice that, if the reflection plane did not go through the origin, wewould

have replaced the origin in our calculations with a point on the plane. Forming the

vector 𝑣 really frees us from having to assume that the reflection plane goes through

the origin. ◽

4.5.2 Vector Approach to Arbitrary Rotations

To accomplish rotation around an arbitrary axis in three dimensions, we carefully

rotated around each of the coordinate axes in turn. Now we want to solve the prob-

lem with a vector-based approach rather than a coordinate-based approach. Suppose

a⃗ is a unit vector along the arbitrary axis and that we wish to rotate the point P coun-

terclockwise around the axis through angle 𝜃. With a point P0 on the axis, we can

form vector �⃗� = P − P0. The problem then is to rotate �⃗� around a⃗ (Figure 4.15).

The key is to decompose �⃗� as the sum of a vector parallel to a⃗ and one perpen-

dicular to a⃗. So we want �⃗� = �⃗�‖ + �⃗�⊥. The parallel vector �⃗�‖ is the projection of
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Figure 4.15 Vector rotation

�⃗� onto a⃗, and the perpendicular component �⃗�⊥ is the difference between �⃗� and the
parallel component.

�⃗�‖ = (a⃗ ⋅ �⃗�)a⃗

�⃗�⊥ = �⃗� − (a⃗ ⋅ �⃗�)a⃗

Under the rotation, the parallel component �⃗�‖ does not change. The perpendicular

component �⃗�⊥ does rotate in a plane perpendicular to the axis a⃗. This plane is deter-
mined by �⃗�⊥ and the vector a⃗ × �⃗�⊥ which is perpendicular to both a⃗ and �⃗�⊥. The
rotated component, which we call �⃗�r, can be expressed as a linear combination of
both �⃗�⊥ and a⃗ × �⃗�⊥ because these two vectors span the plane; they form a coordinate
system in the plane. Keeping in mind the length of the vectors, a rotation of 𝜃 gives

�⃗�r = (�⃗� − (a⃗ ⋅ �⃗�)a⃗) cos 𝜃 + (a⃗ × �⃗�⊥) sin 𝜃

Vector algebra verifies that a⃗ × �⃗�⊥ = a⃗ × �⃗� because the cross products have the same
direction and the same length. Making this substitution and then adding the rotated
component to the parallel component defines the complete transformation.

Trot(�⃗�) = �⃗�r + �⃗�‖
= (�⃗� − (a⃗ ⋅ �⃗�)a⃗) cos 𝜃 + (a⃗ × �⃗�) sin 𝜃 + (a⃗ ⋅ �⃗�)a⃗ (4.18)

This coordinate-free representation gives us a vector-geometric algorithm for find-
ing the rotation. To find the associated (but coordinate-based) matrix, we need to draw
on two identities.

(a⃗ ⋅ �⃗�)a⃗ = (a⃗ ⊗ a⃗)�⃗� =
⎡⎢⎢⎣

a2x axay axaz
ayax a2y ayaz
azax azay a2z

⎤⎥⎥⎦ �⃗�
a⃗ × �⃗� =

⎡⎢⎢⎣
0 −az ay
az 0 −ax

−ay ax 0

⎤⎥⎥⎦ �⃗� = Ca�⃗�
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The first identity we saw earlier and uses the tensor notation. The second identity

comes from the definition of cross product, and we call the resulting matrix Ca. With

these expressions, we can rewrite the transformation as a matrix times a vector. (I is
the identity matrix.)

Trot(�⃗�) = (�⃗� − (a⃗ ⋅ �⃗�)a⃗) cos 𝜃 + (a⃗ × �⃗�) sin 𝜃 + (a⃗ ⋅ �⃗�)a⃗

= (I cos 𝜃 + (a⃗ ⊗ a⃗)(1 − cos 𝜃) + Ca sin 𝜃)�⃗�

= Mrot�⃗� (4.19)

Example 4.10 (Vector Approach to Arbitrary Rotation). To see this vector approach

in action, we can rotate the point P = (4, 1, 3) around the line going through P0 =
(1, 1, 1) in the direction of the vector (1,−1, 2). Take the angle of rotation to be 𝜋∕3
counterclockwise. Normalizing, we get the unit vector a⃗ = (1∕

√
6)(1,−1, 2). The

vector we should rotate is �⃗� = P − P0 = (3, 0, 2). Further, we have cos 𝜃 = 1∕2 and

sin 𝜃 =
√
3∕2.

Following the construction above, we find the rotation matrix Mrot. (We do not

need homogeneous coordinates here so we stick with the 3 × 3 matrices.)

Mrot =

⎡⎢⎢⎢⎢⎣
1

2
0 0

0
1

2
0

0 0 1

2

⎤⎥⎥⎥⎥⎦
+ 1

6

⎡⎢⎢⎣
1 −1 2

−1 1 −2
2 −2 4

⎤⎥⎥⎦
(
1 − 1

2

)

+ 1√
6

⎡⎢⎢⎣
0 −2 −1
2 0 −1
1 1 0

⎤⎥⎥⎦
(√

3

2

)

≈
⎡⎢⎢⎣
0.583 −0.790 −0.187
0.624 0.583 −0.520
0.520 0.187 0.833

⎤⎥⎥⎦
Applying the rotation matrix to the vector �⃗� = (3, 0, 2) gives (1.38, 0.83, 3.23),

and adding this vector to P0 gives the rotated point (2.38, 1.83, 4.23). As a check, if
we multiply the rotation matrix times the vector a⃗, it leaves it fixed (within round-off
error) as we expect. The arbitrary rotation matrix given in Equation 4.8 was derived

with the coordinate-based approach, and it can be verified that it gives the samematrix

as Mrot in this example. ◽

Vector Approach to Perspective Transformation The perspective transformation

sends three-dimensional objects to a two-dimensional display screen. It is actually

an example of a broader class of transformations called projections. A very simple

projection is one that squashes an object onto the screen by ignoring the z coordinate;
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this is more specifically a parallel projection, as it imagines parallel lines perpendic-

ular to the screen passing through each of the vertices in an object. A perspective

projection takes lines passing through the eye point and then through each vertex in

the object. The lines intersect a plane representing the screen, and the intersection

points are the transformed vertices of the object.

Projective transformations are both useful and key in normal Euclidean spaces

with Cartesian coordinates, but they can be more efficiently studied in projective

spaces where homogeneous coordinates are the representations of choice. We saw

earlier that three homogeneous coordinates represent both points and lines in the

plane. That is, vectors with three components represent both these geometric entities.

We will distinguish them by using vector notation L⃗ for lines and standard capital

letters for points P. The expression L⃗ ⋅ P = 0 means the point is on the line. If two

points P1 and P2 are on a line L⃗, then L⃗ ⋅ P1 = 0 and L⃗ ⋅ P2 = 0. But this says that vec-

tor L⃗ is perpendicular to both point vectors P1 and P2. Consequently, L⃗ = P1 × P2,

the cross product of P1 and P2. Similarly, if a point P is on two lines, L⃗1 and L⃗2, then

P = L⃗1 × L⃗2.

Begin with the perspective projection in two dimensions.We have a point E, which
is where we imagine our eye is sitting if we were in the plane, and a line L⃗, which
acts as the screen in this two-dimensional scenario. To project a single point P onto

the line, we draw a line through E and P noting that it intersects L⃗ in the projected

image point P′. If we were projecting a two-dimensional object like a triangle onto

the line L⃗, we would project each vertex in turn (Figure 4.16).

In the algebra of homogeneous coordinates, the line through E and P is the vector

E × P. Therefore the point of intersection P′ is L⃗ × (E × P); this is the vector triple
product and there is a nice identity that helps us simplify.

A⃗ × (B⃗ × C⃗) = (A⃗ ⋅ C⃗)B⃗ − (A⃗ ⋅ B⃗)C⃗ (4.20)

It is straightforward to establish the identity by calculating both sides using the defini-

tion of vector operations (see Exercises). Now we have a coordinate-free expression

for the perspective projection.

T(P) = L⃗ × (E × P) = (L⃗ ⋅ P)E − (L⃗ ⋅ E)P

P

E

L

P′ = T(P)

Figure 4.16 2D projection
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To take another step and find the transformation matrix, recall the tensor nota-

tion that gives (L⃗ ⋅ P)E = (E ⊗ L⃗)P. Letting I denote the (3 × 3) identity matrix,

we have

T(P) = (L⃗ ⋅ P)E − (L⃗ ⋅ E)P = ((E ⊗ L⃗) − (L⃗ ⋅ E)I)P = MP (4.21)

This matrix M is a 3 × 3 matrix and sends points in two-dimensional projective space

into points in two-dimensional projective space. However, the image points all lie on

the same line, so we have effectively dropped a dimension.

Example 4.11 (Two-Dimensional Perspective Projection). Suppose we wish to

project the point P = (3, 1) onto the line 6x + y − 5 = 0 from the eye point E = (8, 2).
First, note that this is really a simple high school algebra problem. We need to

find the intersection of two lines and it will take a few steps. However, our current

approach using the coordinate-free representation can prove more efficient when

projecting several points and easily generalizes to higher dimensions.

Setting up homogeneous coordinates, we have L⃗ = (6, 1,−5), E = (8, 2, 1), and
P = (3, 1, 1). Next, calculate the matrix M.

M = (E ⊗ L⃗) − (L⃗ ⋅ E)I

=
⎡⎢⎢⎣
48 8 −40
12 2 −10
6 1 −5

⎤⎥⎥⎦ −
⎡⎢⎢⎣
45 0 0

0 45 0

0 0 45

⎤⎥⎥⎦
=

⎡⎢⎢⎣
3 8 −40

12 −43 −10
6 1 −50

⎤⎥⎥⎦
Now we apply the transformation.

T(P) = MP =
⎡⎢⎢⎣
3 8 −40
12 −43 −10
6 1 −50

⎤⎥⎥⎦
⎡⎢⎢⎣
3

1

1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−23
−17
−31

⎤⎥⎥⎦
The corresponding Cartesian coordinates for the image of P are (23∕31, 17∕31). ◽

A perspective projection in three dimensions is analogous to the two-dimensional

case. From an eye point, we now wish to project points onto a plane. We use the

homogeneous coordinates in three-dimensional projective space where planes and

points are represented by vectors with four components.

If n⃗ is a plane and P is a point, then P is on the plane if n⃗ ⋅ P = 0. The only hitch

in mimicking the development for two dimensions is that in three dimensions we

do not have a simple homogeneous representation of a line. In ordinary Cartesian
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Figure 4.17 3D projection

coordinates, an affine combination of the points P and E is a point on the line through

P and E. Moving to homogeneous coordinates, those Cartesian coordinates can be

multiplied by any scalar and therefore a point on the line has the form 𝛼P + 𝛽E, a
linear combination (Figure 4.17).

In particular, the projected image point P′ = 𝛼P + 𝛽E. This point is on the plane

and therefore

n⃗ ⋅ (𝛼P + 𝛽E) = 0 =⇒ 𝛼 = −𝛽(n⃗ ⋅ E)
(n⃗ ⋅ P)

We now have an expression for P′.

P′ = −𝛽(n⃗ ⋅ E)
n⃗ ⋅ P

P + 𝛽E

Since we are using homogeneous coordinates, we can multiply through by any con-

stant and still have the same point.Multiplying by n⃗ ⋅ P⃗ divided by 𝛽 gives a simplified

formula for the transformation.

P′ = T(P) = (n⃗ ⋅ P)E − (n⃗ ⋅ E)P (4.22)

This is analogous to the representation in two dimensions, and remember once more

that we are thinking of the points as vectors. As before, we can use the tensor product

to find the transformation matrix M = (E ⊗ n⃗) − (n⃗ ⋅ E)I.

Example 4.12 (Three-Dimensional Perspective Projection). From the eye

point E = (7, 2, 6), we want to project the point P = (4, 5, 0) onto the plane

2x − y + 2z = −4. The plane’s normal vector is n⃗ = (2,−1, 2, 4) and, using
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homogeneous coordinates, we have E = (7, 2, 6, 1) and P = (4, 5, 0, 1).

M = (E ⊗ n⃗) − (n⃗ ⋅ E)I

=
⎡⎢⎢⎢⎣
14 −7 14 28

4 −2 4 8

12 −6 12 24

2 −1 2 4

⎤⎥⎥⎥⎦ −
⎡⎢⎢⎢⎣
28 0 0 0

0 28 0 0

0 0 28 0

0 0 0 28

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
−14 −7 14 28

4 −30 4 8

12 −6 −16 24

2 −1 2 −24

⎤⎥⎥⎥⎦
Multiplying times the point P gives P′ = (−63,−126, 42,−21) and converting to

Cartesian coordinates gives (3, 6,−2). ◽

In our earlier development of the perspective projection in three dimensions, we

took the plane representing the screen to be the xy plane which has homogeneous

vector representation n⃗ = (0, 0, 1, 0). The eye point was E = (0, 0, e, 1), and we were
projecting P = (x, y, z, 1). This gives the following transformation matrix:

M =
⎡⎢⎢⎢⎣
−e 0 0 0

0 −e 0 0

0 0 0 0

0 0 1 −e

⎤⎥⎥⎥⎦
When we use this matrix to project P = (x, y, z, 1), we get the point P′.

P′ = (−ex,−ey, 0, z − e) =⇒ P′ =

(
x

1 − z
e

,
y

1 − z
e

, 0

)

The z = 0 coordinate indicates that this point is on the xy plane.

The matrix M differs from the one we previously constructed, showing that there

are several ways to represent the perspective projection transformation with matrices.

One of the differences is in how the z coordinate is treated. Practically, we can ignore
the z coordinate when displaying on the screen, but the z coordinate can hold useful

information about the visibility of points. (Visibility is discussed in a later chapter.)

4.6 EXERCISES

1. Find the transformation matrix for the linear transformation that sends (3,−1)
to (2, 4) and (5, 1) to (3, 8).
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2. Let a triangle have vertices A = (−2,−3), B = (4, 1), and C = (2, 5). Find the

transformed vertices when the triangle is rotated by 𝜋∕4 clockwise around ver-
tex A.

3. Start with vertices A = (30, 6) and B = (52, 10). Find vertex C so that the three

points form an equilateral triangle.

4. Let a triangle have one vertex at the origin. Show that, if the determinant of a

2 × 2 matrix is 1, then the associated linear transform preserves the area of this

triangle. Expand this to verify that the area of any triangle is preserved under

the transformation.

5. Reflect the point (8,−2) in the line through the origin and the point (4, 5).

6. Reflect the point (6,−1, 3) in the plane through the origin with normal (−1, 5, 2).

7. Give the transformation matrix for the two-dimensional linear transformation

that projects everything on the x-axis. Use this matrix and a rotation to find the

transformation matrix that projects everything onto the line y = x.

8. Find the two-dimensional linear transformation that reflects points in the line

y = 3x + 7.

9. The 2 × 2 matrix M can be thought of as having two vectors ((a, b) and (c, d))
forming the rows. If the vectors are unit vectors and they are perpendicular,

then the matrix is called orthogonal. Show that we can set a = ± cos 𝜃 and

b = ± sin 𝜃. Show further that d = a or d = −a, which implies c = −b or c = b.
Explain why rotation and reflection matrices are examples of orthogonal matri-

ces and that products of these two types are also orthogonal. Intuitively, we

know that rotations and reflections should not change the area of triangles and,

indeed, the determinant of an orthogonal matrix is ±1.

10. The reflection of the point (x, y, z) in the origin is (−x,−y,−z). Find the 4 × 4

matrix for homogeneous coordinates that will reflect a point in the point

(2, 5,−1).

11. The unit cube with vertices (a, b, c), where each component is 0 or 1, is rotated

by 𝜋∕6 counterclockwise around the diagonal through (0, 0, 0) and (1, 1, 1).
Find the transformation matrix and the coordinates of the transformed cube.

12. Show that a rotation of 2𝜋∕3 clockwise around the line from (0, 0, 0) to (1, 1, 1)
is the product of two rotations around coordinate axes.

13. The vertices (1, 1, 1), (1,−1,−1), (−1, 1,−1), and (−1,−1, 1) form a tetrahe-

dron with equal sides. In Example 3.24 from Chapter 3, there is another set of

vertices for a tetrahedron with equal sides. Find the transformation matrix that

takes the first tetrahedron to the second.

14. Prove Equation 4.20.
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15. A two-dimensional transformation reflects in the x-axis and then reflects in the
line through the origin and (3, 4). Show that the resulting transformation is a

rotation, and give the angle of rotation.

16. Show that the three-dimensional shear transformation given by

M =
⎡⎢⎢⎣
1 1 1

0 1 0

0 0 1

⎤⎥⎥⎦
preserves volume by explaining what it does to a unit cube.

17. With the eye point (E) at (0, 0, 20), project the line segment from (2,−1, 7) to
(3, 6,−4) onto the xy plane.

18. With the eye point (E) at (0, 0, 20), project the line segment from (2,−1, 7) to
(3, 6,−4) onto the plane 2x + y + z = 0.

19. Show that the perspective transformation does not preserve parallel lines by

projecting two line segments with the same direction vectors onto the xy plane.
When will parallel lines project to parallel lines?

20. The shear transformation M =
[

1 0

−2 1

]
transforms an object; find the transfor-

mation that appropriately transforms the normals.

21. For the derivation in Section 4.5.2, verify that a⃗ × �⃗�⊥ = a⃗ × �⃗�.

22. A 3 × 3 identity matrix has the last row replaced with (1, 1, 1). Explain what the
resulting transformation does to the unit cube.

4.6.1 Programming Exercises

1. Write a program to present a cube on the screen. Controls allow rotation around

any coordinate axis and around an arbitrary axis specified by the user. The cube

should have colored faces and be rendered with perspective.
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ORIENTATION

The quintessential setup in three-dimensional graphics is a scene composed of objects

with a camera positioned somewhere looking in a particular direction. As a simple

example, imagine a single cube sitting on the ground. This is our scene and we look

at it from some point in space. We imagine either our eye or perhaps a camera at

this point oriented in such a way that it is looking at the scene and probably focused

on the cube in particular. There is much that we have to keep track of here. The

cube has a given shape, it is positioned on the ground at a particular location with a

particular orientation, the camera is centered at a given point, it is looking at some

point in the scene, and it is positioned so the up direction is aligned in a way the

user or programmer prefers. Our task now is to determine how to specify all of these

orientations and how to keep them appropriately aligned with each other as we move

the camera or move objects in the scene.

Start with the cube in our example, and note that most of the vector geometry

developed so far was focused on determining the vertices for various objects like the

cube. We actually want coordinates for these vertices, so we specified a Cartesian

coordinate system which we now call the local coordinate system. It is local for the

object at hand and usually we find it convenient to place the origin at the center of

the object (assuming this center is convenient to find.) When we place the cube on

the ground, we are really constructing yet another coordinate system called the world
coordinate system where the ground is just a particular plane with a description in

the world system and the center of the cube has a set of world coordinates (cx, cy, cz)
as well as a set of local coordinates (0, 0, 0). The camera, too, has a set of world
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Camera
World

Local

Figure 5.1 Coordinate systems in a scene

coordinates indicating where it is positioned in our scene, but in addition it has its
own orientation. What we display on the computer screen is relative to the camera’s
orientation, so it is once again convenient to select another coordinate system called
the camera coordinate system. (It is equally reasonable to call this last system either
the eye coordinate system or the view coordinate system.) The origin of the camera
coordinate system is at the center of the camera (Figure 5.1).

Using a local coordinate system, it is easy to find the vertices of our cube because
we are free to first center it at the origin and orient it so that faces are parallel to the
coordinate planes. We could take one vertex to be (1, 1, 1) and then another is just
(−1,−1,−1), the reflection in the origin. In fact, all eight vertices have coordinates
that are either 1 or −1. This is an easy representation to begin with in the local coor-
dinate system and, if we need, we can apply rotation or scaling transformations to get
the cube to any given size and orientation.

Positioning the cube in the scene requires finding world coordinates for the ver-
tices, but this could be as simple as applying a translation to move the center of
the cube to the required location. It could also be more complicated requiring some
scaling and rotation to properly place the cube relative to other objects in the scene.
Placing the camera is similar to placing objects, but once it is placed we need to point
it towards the scene. This means we are picking the camera coordinate system appro-
priately, and consequently we are specifying the three coordinate axes for a Cartesian
coordinate system. One axis should lie along a line from the camera to the center of
the scene, one should point up, and the third should be perpendicular to the other two
in such a way that we have a right-handed coordinate system.

Clearly, the orientation involved in viewing a scene depends on understanding the
construction of coordinate systems (Cartesian systems in particular) and the trans-
formation of one to another. It might seem that having one global coordinate sys-
tem would simplify things, but as we saw previously, a local coordinate system, for
example, can make designing an object much easier. The flexibility of several coor-
dinate systems usually outweighs the simplicity of a single system.

5.1 CARTESIAN COORDINATE SYSTEMS

Throughout the development of vector geometry, whenever we give the coordinates

of a vector such as 𝑣 = (x, y, z), what we really mean is that 𝑣 = x⃗i + y⃗j + zk⃗. We say
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that 𝑣 is a linear combination of the common vectors i⃗, j⃗, and k⃗. Since we selected
the common vectors so that they did not lie in a single plane, every three-dimensional
vector is a linear combination of these three common vectors, so we say they form
a basis. Moreover, we actually selected the basis vectors so that they all had unit
length and were perpendicular to each other. That is, their dot products with each

other are zero and i⃗ ⋅ i⃗ = j⃗ ⋅ j⃗ = k⃗ ⋅ k⃗ = 1. We say they form an orthonormal basis.
One key feature of an orthonormal basis is the ease with which we can calculate

dot products. For two vectors �⃗�1 = x1 i⃗ + y1 j⃗ + z1k⃗ and �⃗�2 = x2 i⃗ + y2 j⃗ + z2k⃗, the dot
product is �⃗�1 ⋅ �⃗�2 = x1x2 + y1y2 + z1z2. This is how we defined the dot product early
on, but it really is a result of using an orthonormal basis.

A basis allows us to specify arbitrary vectors nicely, but we need an origin as well
in order to specify points. An origin O is a point that we intuitively think of as the
center of what we call a coordinate system. For an arbitrary point P in space, we
first write P as a sum, P = O + (P − O). This is the sum of a point and a vector, and
earlier we understood that this type of sum gives us a point. The coordinates ofP in the
coordinate system are just the coordinates of the vector (P − O) using the given basis.

Definition 5.1 (Coordinate System). A coordinate system in three (or two) dimen-
sions is a set of three (or two) basis vectors along with a designated point called the
origin. If the basis vectors are perpendicular to each other and have unit length, the
basis and the coordinate system are called orthonormal.

In our graphics scenariowith a cube sitting on the ground, we have three coordinate
systems: the world coordinate system (𝒲 ), the local coordinate system (ℒ ), and the
camera coordinate system (𝒞 ). Their corresponding origins areO𝑤,Ol, andOc. Since
we imagine the world coordinate system as a global system, we will let our usual vec-

tors {⃗i, j⃗, k⃗} to be an orthonormal basis for 𝒲 . Then let {u⃗, 𝑣, �⃗�} be an orthonormal
basis for ℒ . We will hold off on specifying 𝒞 until later because we want to let the
user have some input into how the camera is oriented. Now consider one of the cube
vertices which we have represented in local coordinates [e.g., (1, 1, 1)]. We would
like to find the corresponding world coordinates for this vertex, and, more generally,
what we need is an algorithm for moving from one coordinate system to another.

Suppose we have the coordinates of point P with respect to coordinate system 𝒮1

and we want the coordinates of P with respect to the system 𝒮2. We might guess that
the change from one set of coordinates to the other requires an affine transformation
because we once again want to preserve lines in the process. In fact, there are two
parts to the transformation. First, since the origins of 𝒮1 and 𝒮2 may be different, a
translation of the coordinates will be necessary. Second, we need to account for dif-
ferent sets of basis vectors in the two systems. It is possible that a rotation will account
for the difference, but it is also possible that we may need some more complicated
combination of scaling, shear, and rotation to account for the different orientation of
basis vectors.

The first part of the transformation involving translation is relatively easy to
describe. In 𝒮1, we represent the point P as P = O1 + (P − O1) = O1 + 𝑣1. The 𝒮1

coordinates of P are the coordinates of 𝑣1. To move the origin from O1 to O2, we
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need to add the vector t⃗ = (O2 − O1). Rewriting the expression for P shows how to
find the 𝒮2 coordinates for P.

P = O1 + (P − O1) = O1 + 𝑣1 = O2 − t⃗ + 𝑣1 = O2 + 𝑣2

The 𝒮2 coordinates are the coordinates of 𝑣2, which are the coordinates of 𝑣1 minus
the shift vector t⃗. Intuitively, this all makes sense because coordinates are relative to
the origin; they should change by the amount of any translation. When moving from
𝒮1 to 𝒮2, we subtract the vector t⃗.

We still need to account for a different set of basis vectors in 𝒮2, but as a first
guess at how to quantify this difference, it seems that some linear transformation
will do the trick. Once we have applied the translation, then both origins coincide
so the problem is reduced to applying a linear transformation to align the axes. We
can express the total transformation from one set of coordinates to another in terms
of matrix multiplication. Let the 4 × 4 matrix MT (with homogeneous coordinates)
represent the translation, and let the matrix MB represent the linear transformation
necessary to adjust for a different basis. Then multiplication by MBMT transforms𝒮1

coordinates into 𝒮2 coordinates.

Example 5.1 (A Simple Coordinate System Change). Take 𝒮1 to be a system with

orthonormal basis vectors {⃗i, j⃗, k⃗}. Let P have coordinates (2,−1, 1) in this system.
Now suppose that 𝒮2 is a second coordinate system with an origin that has 𝒮1 coor-
dinates (4,−2, 5); that is, its origin is displaced relative to the first coordinate system.

Then, vector (O2 − O1) = (4,−2, 5) and we need to subtract this shift.

MT =
⎡⎢⎢⎢⎣
1 0 0 −4
0 1 0 2

0 0 1 −5
0 0 0 1

⎤⎥⎥⎥⎦
If coordinate system 𝒮2 has the same basis vectors as 𝒮1, then all we have to

do in order to change from the first coordinate system to the second is to multiply
by MT . (MB is then the identity.) Expressing P in homogeneous coordinates gives
(2,−1, 1, 1), and multiplying by MT results in (−2, 1,−4, 1). The 𝒮2 coordinates for
P would be (−2, 1,−4).

If coordinate system 𝒮2 does not have the same basis vectors as 𝒮1, we need

another transformation. Suppose that system 𝒮2 has basis vectors {⃗i, k⃗,−j⃗}, which
means that this system is just the 𝒮1 system rotated 𝜋∕2 radians counterclockwise
around the x-axis. Considering the effect on coordinates, rotating the basis vectors
counterclockwise is equivalent to rotating the vector (P − O2) clockwise. We choose
MB to rotate clockwise around the x-axis (Figure 5.2).

MB =
⎡⎢⎢⎢⎣
1 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 1

⎤⎥⎥⎥⎦
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Figure 5.2 Changing coordinate systems

The complete coordinate change combines both the translation and the rotation.

The order of the two is, of course, important. The translation vector was given with

respect to the 𝒮1 system, so we apply it first to align the origins. Then we apply the

rotation to align the axes. (If we apply a rotation first, then we have to adjust how we

represent the translation. This can be done, but it is easier and more intuitive to apply

the translation first.)

MBMT =
⎡⎢⎢⎢⎣
1 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1 0 0 −4
0 1 0 2

0 0 1 −5
0 0 0 1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
1 0 0 −4
0 0 1 −5
0 −1 0 −2
0 0 0 1

⎤⎥⎥⎥⎦
Multiplying this matrix times the vector with homogeneous coordinates (2,−1, 1, 1)
gives (−2,−4,−1, 1). The point P has 𝒮1 coordinates (2,−1, 1) and 𝒮2 coordinates

(−2,−4,−1). ◽

The MB transformation matrix accounts for the differences in the basis vectors

for the two systems. The simple example of a rotation around one axis is relatively

easy to deal with, but we really need an approach that deals with more complicated

situations. For example, if the systems are not orthonormal, then we have to adjust

both for the length of the basis vectors and for the angle between them.

Assume that we have made an appropriate translation so that the origin of 𝒮1

coincides with the origin of 𝒮2. Imagine we have a vector c⃗ that we wish to express

in both 𝒮1 coordinates and 𝒮2 coordinates. Let the basis vectors for system 𝒮1 be

{q⃗, r⃗, s⃗}, and let the basis of 𝒮2 be {u⃗, 𝑣, �⃗�}. These are general bases, so although

they are sets of independent vectors, they may not be orthonormal.

If in 𝒮1 the coordinates are c⃗ = (a1, b1, c1), then this means that

c⃗ = a1q⃗ + b1r⃗ + c1s⃗ (5.1)

In the 𝒮2 system, let the coordinates be c⃗ = (a2, b2, c2), meaning that

c⃗ = a2u⃗ + b2𝑣 + c2�⃗� (5.2)
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Now suppose we have 𝒮1 coordinates for each of the basis vectors in the 𝒮2

system. That is, u⃗ = (uq, ur, us), 𝑣 = (𝑣q, 𝑣r, 𝑣s), �⃗� = (𝑤q, 𝑤r, 𝑤s). Using these

coordinates, we get equations for u⃗, 𝑣, and �⃗� similar to Equation 5.1. For example,
u⃗ = uqq⃗ + urr⃗ + uss⃗. Substituting these equations into Equation 5.2 and combining
terms gives the following matrix equation:

⎡⎢⎢⎣
a1
b1
c1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
uq 𝑣q 𝑤q
ur 𝑣r 𝑤r
us 𝑣s 𝑤s

⎤⎥⎥⎦
⎡⎢⎢⎣
a2
b2
c2

⎤⎥⎥⎦ = M
⎡⎢⎢⎣
a2
b2
c2

⎤⎥⎥⎦ (5.3)

Here, M is a 3 × 3 matrix because temporarily we do not need to consider translation
and therefore we do not need the larger 4 × 4 matrix operating on homogeneous coor-
dinates. Multiplication by the matrix M converts 𝒮2 coordinates to 𝒮1 coordinates.
Of course, if M has an inverse, then multiplication by M−1 converts 𝒮1 coordinates
to 𝒮2 coordinates.

A closer look at the matrix M reveals that the columns are just the 𝒮1 coordinates
for each of the basis vectors in 𝒮2. Since these columns come from a basis, they are
independent and M has a nonzero determinant. This ensures that M has an inverse
and consequently MB is a 4 × 4 matrix with M−1 in the upper left-hand corner. We
have found the matrix for the second part of the general coordinate transformation.

Result 5.1 (Coordinate Transformation). Let 𝒮1 and 𝒮2 be two coordinate sys-
tems with origins O1 and O2 and basis vectors {q⃗, r⃗, s⃗} and {u⃗, 𝑣, �⃗�}, respectively.
Suppose the 𝒮1 coordinates of the vector t⃗ = (O2 − O1) are (tq, tr, ts) and that the
𝒮1 coordinates for the basis vectors of 𝒮2 are u = (uq, ur, us), 𝑣 = (𝑣q, 𝑣r, 𝑣s), and
𝑤 = (𝑤q, 𝑤r, 𝑤s). Form the matrix M (defined in Equation 5.3) by using these 𝒮1

coordinates as columns.
The coordinate transformation from 𝒮1 to 𝒮2 is an affine transformation repre-

sented by the matrix M𝒮1→𝒮2
, where

0
M−1 0

0
1

−tq
−tr
−ts

0 0 0

1 0 0
0 1 0
0 0 1
0 0 0 1

M 
1→ 

2
 = MBMT = 

⎡
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎣

For the other direction from 𝒮2 to 𝒮1, the transformation matrix M𝒮2→𝒮1
is the

inverse of M𝒮1→𝒮2
.

If we are lucky enough to have orthonormal bases, then the inverse of M is actually
the transpose of M, M−1 = MT . In this case, the matrix M𝒮1→𝒮2

has a convenient
form:

M𝒮1→𝒮2
=

⎡⎢⎢⎢⎢⎣
uq ur us −u⃗ ⋅ t⃗

𝑣q 𝑣r 𝑣s −𝑣 ⋅ t⃗

𝑤q 𝑤r 𝑤s −�⃗� ⋅ t⃗

0 0 0 1

⎤⎥⎥⎥⎥⎦
(5.4)
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In the last column, we have dot products of basis vectors with the translation

vector t⃗.

Example 5.2 (Local and World Coordinates). Return to the scenario where the

graphics scene has a cube sitting on the ground in some orientation. We have both a

world coordinate system,𝒲 , and a local coordinate system,ℒ . We use the standard

vectors {⃗i, j⃗, k⃗} as an orthonormal basis for𝒲 . Set the basis forℒ as {u⃗, 𝑣, �⃗�}, where
temporarily u⃗ = i⃗, 𝑣 = j⃗, and �⃗� = k⃗. The bases ofℒ and𝒲 are aligned. Recall that

we set the cube vertices to have local coordinates (1, 1, 1), (1,−1, 1), (1, 1,−1), and
so on.

Since the coordinate systems use vectors {⃗i, j⃗, k⃗}, we will refer to the correspond-
ing axes as x, y, and z. The origin O𝑤 for the world system has, of course, world

coordinates (0, 0, 0), and the ground plane in our scene will be the xz plane leaving
the y-axis pointing up. To position the cube so that it is sitting on the ground some-

where off-center in the scene, we set the world coordinates of the local system origin,

Ol, to (5, 1, 8). (The y coordinate equal to one moves the local system up a bit from

the world system and pushes the cube up so that it is sitting on the ground plane.)

Rather than keeping the cube oriented with sides parallel to the coordinate axes,

we may want it rotated around, say, the y-axis. We have two choices. We can rotate

the cube vertices with respect to the local coordinate system, or we can rotate the

local coordinate basis vectors with respect to world coordinates (keeping the local

origin fixed). Rotating the basis vectors effectively rotates the cube as well, because

we keep the same local coordinates for the cube vertices as before; the vertex (1, 1, 1),
for example, will be repositioned relative to the world coordinate system. The choice

of approaches again depends on the context of the graphics application, but it may

be useful to keep the cube aligned with the local axes so that rotating the entire local

coordinate system seems like a decent choice.

Suppose we rotate the local coordinate system 𝜋∕4 radians counterclockwise

around the y-axis. Then vector u⃗ which was originally the same as i⃗ = (1, 0, 0) gets
new world coordinates. The local coordinates of u⃗ are still (1, 0, 0). We already know

the appropriate transformation matrix for a rotation around the y-axis, so applying it

gives the new world coordinates.

u⃗ne𝑤 = Mu⃗ =

⎡⎢⎢⎢⎢⎣

1√
2

0
1√
2

0 1 0

−1√
2

0 1√
2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣
1

0

0

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1√
2

0
−1√
2

⎤⎥⎥⎥⎥⎦
Similar multiplications give the new basis vectors 𝑣ne𝑤 = (0, 1, 0) and �⃗�ne𝑤 =( 1√
2
, 0,

1√
2

)
. These are all world coordinates for the new local coordinate basis. We

did not change the local origin, so we have simply rotated the local coordinate system

and, since the local coordinates for the cube vertices stayed the same, the cube was

rotated as well.
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The original task was to convert local coordinates to world coordinates. In the
notation of Result 5.1, we are set to use the world system as 𝒮1 and the local system
as 𝒮2. First, construct M𝒮1→𝒮2

, and then find the inverse to get M𝒮2→𝒮1
. We have

𝒮1 (world) coordinates for t⃗ = (Ol − O𝑤) = (5, 1, 8) and for the basis vectors of 𝒮2

(local coordinate system). The columns of M are the basis vectors of𝒮2 and, because
the systems are orthonormal, M−1 = MT .

M(𝒲→ℒ ) = MBMT =

⎡⎢⎢⎢⎢⎢⎢⎣

1√
2

0 −1√
2

0

0 1 0 0

1√
2

0
1√
2

0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0 0 −5

0 1 0 −1

0 0 1 −8

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

1√
2

0 −1√
2

3√
2

0 1 0 −1
1√
2

0
1√
2

−13√
2

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
The inverse matrix converts local coordinates to world coordinates:

M(ℒ→𝒲 ) = (MBMT )−1 = M−1
T M−1

B

=

⎡⎢⎢⎢⎢⎢⎣

1 0 0 5

0 1 0 1

0 0 1 8

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

1√
2

0
1√
2

0

0 1 0 0

−1√
2

0 1√
2

0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

1√
2

0
1√
2

5

0 1 0 1

−1√
2

0
1√
2

8

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
Multiplying M(ℒ→𝒲 ) times the local coordinates (1, 1, 1) [homogeneous coor-

dinates are (1, 1, 1, 1)] gives the world coordinates for one of the cube’s vertices,
(5, 2, 9.41) (Figure 5.3). ◽

This example is somewhat simple in that rotation was around a coordinate axis.
Later we will use the conversion technique to move to camera coordinates where the
orientation of the basis vectors is not readily seen as a rotation.
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5.2 CAMERAS

Usually, the selection of the world (𝒲 ) and local (ℒ ) coordinate systems is a sim-

plifying convenience. The graphics designer or graphics programmer picks the world

system from a global perspective, and often the center of the world is the origin. The

ground is possibly the xz plane formed by two basis vectors with the y-axis pointing
up; in this case, the first and third basis vectors determine the ground plane, and the

second basis vector is normal to the plane. Various attributes of the scene (mountain

ranges, roads, buildings, etc.) may make one orientation of the axes more intuitive

than another. For the local system, there may only be one object described by the

system and therefore the symmetry of the object calls the shots in determining axis

orientation. If there is more than one object, then maybe a subsystem inside the local

coordinate system is an appropriate design choice.

When it comes to the camera coordinate system (𝒞 ), we need to know where we

are looking and which way is up. It also is important to decide whether the system

is a right-handed or left-handed coordinate system. Most graphics systems rely on

right-handed systems, although in particular instances a left-handed system may be

useful.

Suppose then that we first pick the camera’s center position, Pc, and decide where

in the scene we are looking, say at the point Ps. The vector n⃗ = Pc − Ps is normal

to a plane (called the view plane) which we imagine holds the window into our

scene. We see the scene through this window and our perspective transformation

will map the scene onto this window. Just as a convention, the view plane normal

n⃗ points in the positive z direction and we are looking in the negative z direction

(Figure 5.4).

Let the vector 𝑣 point in the up direction. This vector may be user-supplied and,

although we know it should be perpendicular to n⃗, it may not be described that pre-

cisely, so we intend to adjust 𝑣 if necessary. To set up an orthonormal basis for the
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camera system 𝒞 , we define the following basis vectors:

�⃗�c =
n⃗|n⃗|

u⃗c =
𝑣 × �⃗�c|𝑣 × �⃗�c| (5.5)

𝑣c = �⃗�c × u⃗c

This set of vectors {u⃗c, 𝑣c, �⃗�c} forms an orthonormal basis for the coordinate sys-

tem𝒞 and the point Pc is the designated origin. It is a right-handed coordinate system

with u⃗c analogous to the x direction, 𝑣c (the up vector) analogous to the y direction,

and �⃗�c (pointing at the camera) analogous to the z direction.
We started with the normal n⃗ and the up vector 𝑣. Assuming the coordinates of

these vectors are given in world coordinates, we have the world coordinates for the

basis vectors in𝒞 . To view the scene from the camera position, we need to convert the

world coordinates for points in the scene to camera coordinates. Using the notation

u⃗c = (ux, uy, uz) for the world coordinates and letting t⃗ = (Pc − O𝑤), the appropriate
matrix that performs the coordinate transformation is

M𝒲→𝒞 =

⎡⎢⎢⎢⎢⎢⎣

ux uy uz −u⃗ ⋅ t⃗

𝑣x 𝑣y 𝑣z −𝑣 ⋅ t⃗

𝑤x 𝑤y 𝑤z −�⃗� ⋅ t⃗

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
(5.6)

Example 5.3 (Converting to Camera Coordinates). In Example 5.2, the cube vertex

(1, 1, 1) in local coordinates became (5, 2, 9.41) in world coordinates. Now, center

the camera at the point (10, 12, 18) and suppose we are looking at the origin of the

world system. The view plane normal is n⃗ = (10, 12, 18). If we select an up vector of



134 ORIENTATION

𝑣 = (1, 1, 0), then

�⃗�c =
(10, 12, 18)√

102 + 122 + 182
≈ (0.42, 0.50, 0.76)

u⃗c =
𝑣 × �⃗�c|𝑣 × �⃗�c| ≈ (0.71,−.71, 0.08)

𝑣c = �⃗�c × u⃗c ≈ (0.57, 0.50,−0.65)

To transform (1, 1, 1) to camera coordinates, wemultiply by the transformationmatrix

using t⃗ = (10, 12, 18).

M𝒲→𝒞

⎡⎢⎢⎢⎣
5

2

9.41

1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
0.71 −0.71 0.08 −0.02
0.57 0.50 −0.65 0

0.42 0.50 0.76 −23.88
0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
5

2

9.41

1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

2.95

−2.42
−13.63

1

⎤⎥⎥⎥⎦
The z coordinate of our vertex (2.86,−2.27,−13.63) is negative because the camera

position is far along the world system’s positive z-axis. Also, the camera is relatively

high with respect to the world system’s origin, so the y coordinate of the vertex is

also negative. (Note: The matrix M was calculated using the approximate values for

the basis vectors in 𝒞 . The value −0.02 in the matrix should theoretically be 0. See

Exercises for more detail.) ◽

5.2.1 Moving the Camera or Objects

Now that we have analyzed the mechanics of coordinate transformations, we can

combine the transformation matrix with the standard transformations we studied ear-

lier for changing the position or shape of an object, perhaps a cube. The task is to

start with a view of the scene from the camera-oriented position and to transform the

cube in some way. Suppose, first, that the cube is centered at the origin and we would

like to rotate it around an axis through its center. Multiplication by a rotation matrix

will alter the cube’s original vertex coordinates appropriately. The following trans-

formation matrix A will accomplish the conversion of local coordinates to rotated

coordinates and then to world coordinates.

A = Mℒ→𝒲 R

As we saw in Example 5.2, an alternate way of thinking about this transformation

is as a rotation of the local coordinate system itself rather than just the vertices of the

cube. That is, we rotate the basis vectors into new positions. Call the new rotated coor-

dinate system ℒ ∗. Now we interpret the matrix R as transforming ℒ ∗ coordinates
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into ℒ coordinates. So the matrix A is really the matrix converting ℒ ∗ coordinates
to𝒲 coordinates.

A = Mℒ∗→𝒲 = Mℒ→𝒲 ⋅ R

As an example, take the R matrix to be a rotation around the z-axis.

R =
⎡⎢⎢⎢⎣
cos 𝜃 − sin 𝜃 0 0

sin 𝜃 cos 𝜃 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦
Referring to our general coordinate transformation, let 𝒮1 = ℒ and 𝒮2 = ℒ ∗.

Then R is the matrix M because the columns of R are just the rotated coordinates

of the basis vectors {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The first column of R is the vector

(cos 𝜃, sin 𝜃, 0), which is just the rotation of vector (1, 0, 0). These are coordinates in
the local coordinate system ℒ . So R is indeed a coordinate transformation matrix

which convertsℒ ∗ coordinates toℒ coordinates. Multiplying by Mℒ→𝒲 then con-

verts the ℒ coordinates to𝒲 coordinates.

Focus on the cube vertex (1, 1, 1). These are local coordinates (systemℒ ). Multi-

plying by R either changes the local coordinates to (cos 𝜃 − sin 𝜃, sin 𝜃 + cos 𝜃, 1) or
it changes the basis vectors ofℒ giving a new systemℒ ∗. In theℒ ∗ system, the ver-

tex of the cube has coordinates (1, 1, 1). The advantage of the second interpretation

is that the coordinates of the cube vertices stay unchanged.

Transformations other than rotations work just as well here and the lesson is that

transforming coordinates can be thought of as transforming coordinate systems. Yet,

coordinate systems are all relative to each other, and usually there is some system,

often the world coordinate system𝒲 , that is absolute and unchanging. It is important

to realize that we transformed the cube by thinking of it locally; we rotated around an

axis through the center of the cube. Applying the rotation first accomplished this. If

we wanted to rotate with respect to the world coordinate system and swing the cube

around the world origin, we multiply by R after converting to world coordinates. In

this case, it makes most sense to think of R as rotating coordinates because the world

coordinate system is most likely fixed.

We view the scene from the camera position, so any movement or repositioning in

the scenemust ultimately take into account the camera coordinate system. The follow-

ing five orientation tasks offer an overview of the order of operations in developing

appropriate coordinate transformations:

1. Object Rotation. To rotate around an axis through the object’s center, the rota-

tion matrix R is applied to local coordinates first and then the sequence of

coordinate transformations ends with the camera coordinate system.

Mℒ→𝒞 = M𝒲→𝒞 ⋅ Mℒ→𝒲 ⋅ R
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This matrix is applied to local coordinates of the cube vertices to generate

the resulting camera coordinates showing the cube in a rotated position. To

rotate around the world origin, we move the rotation matrix to act on world

coordinates.

Mℒ→𝒞 = M𝒲→𝒞 ⋅ R ⋅ Mℒ→𝒲

2. Eye Position. The viewer’s eye sees the scene through the camera and, if the

viewer pivots his or her head left or right, the camera pivots left or right. When

we have camera coordinates, we apply a rotationmatrix. In this case, the rotation

is around the up vector, which is the vector 𝑣c in our notation.

Mℒ→𝒞 = R ⋅ M𝒲→𝒞⋅Mℒ→𝒲

Again, we imagine applying this matrix to local coordinates for an object.

3. User Control. As the viewer watches the scene, he or she may wish to move

to the right or left via some sort of input (perhaps the mouse) as in a computer

game. The resulting translation is a multiplication by a translation matrix Tn
once we have camera coordinates.

Mℒ→𝒞 = Tn ⋅ M𝒲→𝒞 ⋅ Mℒ→𝒲

4. Auxiliary Coordinate System. We may want objects in our scene to move with

respect to some temporary point. For example, to simulate the solar system with

moons revolving around planets which revolve around the sun, we may want

the position of Jupiter to perturb the orbit of some other body. To implement

this type of movement, we need an auxiliary coordinate system 𝒜 centered on

Jupiter and we then convert to 𝒜 , transform perhaps through rotation, convert

back to local coordinates, and continue the conversion to camera coordinates.

Mℒ→𝒞 = M𝒲→𝒞 ⋅ Mℒ→𝒲 M𝒜→ℒ ⋅ R ⋅ Mℒ→𝒜

Recall here that M𝒜→ℒ = M−1
ℒ→𝒜 .

5. Hierarchical Control. Each of two cubes may have their own coordinate sys-

tems, but they may then be placed into a group coordinate system. This allows

positioning of the cubes relative to each other and allows rotation of either cube

around its center. By building scenes in this hierarchical way, quick changes can

be made by transforming the coordinate systems.

In each of these listed cases, the sequence of transformation matrices can all be

multiplied together, producing one matrix for the overall transformation. Graphics

systems often use a stack data structure to keep track of the various matrices.
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5.2.2 Euler Angles

Rotations and translations serve mostly to orient objects in a scene. Specifying trans-

lations is fairly straightforward, requiring the coordinates of a single vector showing

the displacement, but specifying the rotations can be more of a problem.

The three-dimensional rotations we developed were all relative to some axis. We

rotated around the coordinate axes x, y, and z, and then we derived the rotation around
an arbitrary axis (ax, ay, az), finding its transform matrix Marb. From the derivation in

Chapter 4, recall the expression for Marb where c = cos 𝜃 and s = sin 𝜃.

Marb =
⎡⎢⎢⎢⎣

c + (1 − c)a2x (1 − c)axay − saz (1 − c)axay + say

(1 − c)axay + saz c + (1 − c)a2y (1 − c)ayaz − sax

(1 − c)axaz − say (1 − c)ayaz + sax c + (1 − c)a2z

⎤⎥⎥⎥⎦ (5.7)

What happens when we have a sequence of several rotations one after the other?

We saw this earlier in the derivation of the rotation around an arbitrary axis; there,

we multiplied five individual rotations together to get the single matrix result in

Equation 5.7. Surprisingly, no matter how many rotations we apply, one after the

other, the result is always the same as a single rotation around some axis. The eigh-

teenth centurymathematician Leonard Euler showed that nomatter what way a sphere

is rotated around its center, there always is an axis that remains fixed. For our purpose,

the theorem is clearer when stated for two rotations.

Theorem 5.1 (Euler on Rotations). In three dimensions, the composition of two
rotations is equivalent to a single rotation around some axis.

Applying this theorem several times to a long string of rotations shows that any

composition of rotations is equivalent to a single rotation. We certainly know that

multiplying all the rotation matrices together gives a single matrix, but the theorem

claims this single matrix is actually the matrix for a rotation around some axis. There

are proofs of Euler’s theorem using linear algebra or using the geometry on a sphere,

but here a simple example helps build some intuition about this result.

Example 5.4 (Two Rotations Equivalent to One). Consider a rotation around the

x-axis (basis vector i⃗) followed by a rotation around the z-axis (basis vector k⃗.) In
both cases, the angle of rotation is 𝜋∕2 counterclockwise. Then, the two rotation

matrices are Rx and Rz.

Rx =
⎡⎢⎢⎣
1 0 0

0 0 −1
0 1 0

⎤⎥⎥⎦ Rz =
⎡⎢⎢⎣
0 −1 0

1 0 0

0 0 1

⎤⎥⎥⎦
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Respecting the order of the rotations, the product matrix is

R = RzRx =
⎡⎢⎢⎣
0 0 1

1 0 0

0 1 0

⎤⎥⎥⎦
Now notice that R fixes the vector (1, 1, 1). If we normalize this vector, we get
1√
3
(1, 1, 1) and, when we look at Marb in Equation 5.7 using ax = ay = az =

1√
3
and

𝜃 = 2𝜋∕3, we see that R = Marb. This composition of two rotations is equivalent to

a single rotation of 𝜃 = 2𝜋∕3 radians around the axis (1, 1, 1). The point (1, 1, 0) is
sent to (0, 1, 1) as expected (after checking a sketch of the coordinate system). ◽

There are various perspectives we can take on the transformation R = RzRx from

the last example. The easiest is to recall how the rotation matrices were derived by

finding the new coordinates for a rotated point. Then the combination of two rotations,

or many rotations, is seen as moving a point within a fixed (local) coordinate system.

Points (hence, vertices) move and the coordinate system is fixed.

We can also imagine the coordinates of points staying fixed while the coordinate

basis vectors change. In this case, the matrices are coordinate transformations and

the coordinates for a vertex change because there is a new rotated coordinate system.

Look at Rx in terms of the rotation angle.

Rx =
⎡⎢⎢⎣
1 0 0

0 cos 𝜃 − sin 𝜃

0 sin 𝜃 cos 𝜃

⎤⎥⎥⎦
The columns of Rx are the coordinates of the transformed basis vectors (1, 0, 0),
(0, 1, 0), (0, 0, 1) under a counterclockwise rotation around the x-axis. This means

that, if M in Result 5.1 were a clockwise rotation, then Rx = M−1 is the matrix that

converts the original coordinates (𝒮1) into coordinates in the transformed system

(𝒮2). The system 𝒮2 is the result of rotating the original system (𝒮1) clockwise

around the x-axis.
A similar interpretation of Rz as the inverse of a clockwise rotation around z allows

us to give the composite conversion.

RzRx = M𝒮2→𝒮3
M𝒮1→𝒮2

= M𝒮1→𝒮3

Coordinate system 𝒮3 is system 𝒮2 transformed by a clockwise rotation around its

(new) z-axis. When thinking of coordinates, the vector (0, 0, 1) in𝒮3 is the z-axis and
this is fixed by Rz. Figure 5.5 shows the three coordinate systems using the rotations

from Example 5.4.

The pointP = (1, 1, 0) in system𝒮1 has coordinates (1, 0, 1) in transformed system

𝒮2 and coordinates (0, 1, 1) in the system 𝒮3. These last coordinates are the same

coordinates that the rotated point has in system 𝒮1.
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Figure 5.5 Two rotations

The rotation R = RzRx from the example can be interpreted as rotating the basis

vectors into a new coordinate system. These rotations are counterclockwise and the

basis vector (1, 0, 0) ends up as (0, 1, 0). Looking at the final transformed coordinate

system, multiplying R times the point with local coordinates (1, 1, 0) gives original
coordinates (0, 1, 1). So the transformation R converts the local coordinates in the

transformed coordinate system into original coordinates. This is exactly what we

want. To rotate an object, we apply a rotation matrix to the basis vectors. Then, rel-

ative to the original coordinate system, to find the coordinates for any vertex in the

rotated object, we multiply by the same rotation matrix.

In the previous analysis of two rotations, the fact that Rx, for example, has columns

that are the transformed basis vectors is not unique. Actually, all rotation matrices

have columns that are unit vectors perpendicular to each other. The same is true of

the rows. This characterization is summarized in the following result.

Result 5.2 (Rotation Matrices). Every rotation matrix is an orthogonal matrix,
which means that the columns considered as vectors all have length 1 and are
perpendicular to each other. The rows are also unit vectors that are perpendicular
to each other. This implies that R−1 = RT. Consequently, (R1R2)−1 = RT

2
RT
1

.

A combination of rotations is a single rotation, but since we are very comfortable

with rotations around the x-, y-, and z-axis, it is has traditionally been practical to

express any single rotation in terms of rotations around these axes. As an example,

the orientations of spacecraft are given in terms of three angles of rotation around

perpendicular axes. Unfortunately, there are various ways to order the three angles.

We could, for example, rotate around the x-axis, then around the new z-axis, and
finally around the new x-axis, or we could fix the three axes and rotate around each

in some order. In both cases, we can achieve all possible rotations.

There are several (12) possibilities for the order of rotations around axes that can

express all rotations. One common ordering is the one just given: rotate around the

x-axis, then the new z-axis, and finally around the new x-axis. We will settle on rotat-

ing first around the x-axis through angle 𝜃, then around the new y-axis through angle
𝛼, and finally around the newest z-axis through angle 𝛽. Form the product of the three

matrices:

RzRyRx =
⎡⎢⎢⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎥⎥⎦
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The entries in the above matrix are

r11 = cos 𝛽 cos 𝛼

r12 = cos 𝛽 sin 𝛼 sin 𝜃 − sin 𝛽 cos 𝜃

r13 = cos 𝛽 sin 𝛼 cos 𝜃 + sin 𝛽 sin 𝜃

r21 = sin 𝛽 cos 𝛼

r22 = sin 𝛽 sin 𝛼 sin 𝜃 + cos 𝛽 cos 𝜃

r23 = sin 𝛽 sin 𝛼 cos 𝜃 − cos 𝛽 sin 𝜃

r31 = − sin 𝛼

r32 = cos 𝛼 sin 𝜃

r33 = cos 𝛼 cos 𝜃 (5.8)

If we are given a rotation matrix (around some axis), then we know the entries rij and,

using the above equalities, we can solve for the angles 𝜃, 𝛼, 𝛽. In particular, we get

the following formulas for the three angles:

𝜃 = tan−1
(

r32
r33

)
𝛼 = −sin−1(r31)

𝛽 = tan−1
(

r21
r11

)
The three angles 𝜃, 𝛼, 𝛽 are called the Euler angles, but there are a few subtleties in

the formulas. For example, the second formula has more than one solution; we might

try to fix this by restricting the range of each angle appropriately. However, there

is still a problem with both the first and third formulas if cos 𝛼 = 0. This is more

significant and we can assess the difficulty by temporarily taking 𝛼 = 𝜋∕2. Then the

rotation matrix looks as follows:

⎡⎢⎢⎣
0 sin(𝜃 − 𝛽) cos(𝜃 − 𝛽)
0 cos(𝜃 − 𝛽) − sin(𝜃 − 𝛽)
1 0 0

⎤⎥⎥⎦
Since the entries in this matrix are constant or depend on 𝜃 − 𝛽, there are an infinite

number of solutions for the three Euler angles that give this rotation matrix. All values

that result, for example, in 𝜃 − 𝛽 = 𝜋∕3, give the same rotation matrix. No amount

of restricting the range of angles will help here. This situation is referred to as the

gimbal lock, where the name comes from the mechanical design of gyroscopes. In

orienting space craft, gimbal lock is a situation where the gyroscopic system cannot

rotate appropriately to compensate for all perturbations. Mathematically, it means
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that changing angles 𝜃 and 𝛽 changes the rotation only in a certain way. Changes in

𝜃 and 𝛽 do not give us enough degrees of freedom to reach all orientations close to

the current one.

Gimbal lock is indicative of a larger problem for computer graphics. In animation,

we need to move smoothly from one orientation to another. Some method of inter-

polation is necessary to generate the intermediate orientations for the transition. One

method is to take a linear combination of the initial and final orientations so that an

intermediate angle could be generated by (1 − t)𝜃1 + t𝜃2. If we generate intermediate

orientations by interpolating the three Euler angles in this way, the results are not

always satisfactory. For initial positions that are near the gimbal lock, the trajectory

for the animation can look odd. Many times the interpolations do look fine, but the

odd cases can occur somewhat unexpectedly. Theoretically, there are fixes for these

problems, but the resulting algorithms begin to become unwieldy. A better solution

is to turn to quaternions to represent orientations.

Euler angles often prove useful in orienting the camera for a scene. We imagine

our head positioned at the center of the camera looking toward the scene (down the

z-axis). Then, we can turn our head side to side (called yaw in aeronautic terminol-

ogy), or we can nod up and down (called pitch), or we can tilt our head side to side

(called roll). All these orientations can be described by one of the Euler angles, and

putting them together we get a single rotation matrix.

5.2.3 Quaternions

One of the predominant themes in the mathematics of computer graphics is the con-

nection between algebra and geometry. Adding vectors andmultiplyingmatrices both

have relevant geometrical meaning when we consider the vertices of some object.

Even the algebra of the real numbers can be connected to the geometry of points on

the one-dimensional number line.

Moving up to the complex numbers is yet another story. Complex numbers have

the form a + bi, where a and b are real numbers, and we then introduce i (not as
a vector here) which is a new imaginary quantity such that when we square it we

get −1. That is, i2 = −1. We are not expected to immediately visualize this quantity

or to have developed intuition about it. All we need to know is that its square is −1.
The number z = 2 + 3i is an example of a complex number, and we say it has real

part equal to 2 and imaginary part equal to 3. There is an algebra for these numbers,

which means we can add and multiply them.

(x1 + y1i) + (x2 + y2i) = (x1 + x2) + (y1 + y2)i

(x1 + y1i)(x2 + y2i) = (x1y1 − y1y2) + (x1y2 + y1x2)i (5.9)

Notice that when multiplying two complex numbers we get a minus sign in the first

term of the product because we replaced i2 with −1. The theory of complex numbers

was developed to help solve equations like x2 + 2 = 0 where real numbers were sim-

ply insufficient. They now play a pivotal role in mathematics, both theoretical and
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applied, but our current interest is limited to their connections to the geometry that
might benefit computer graphics. To that end, we need to go a little further in the
algebra.

For real numbers, we talk about the absolute value as a way of measuring their
size. The absolute value of a product is the product of absolute values. Similarly, we
introduce an absolute value for complex numbers which is more accurately called
a norm. We first define a conjugate and use the notation z for the conjugate of z. If
z = a + bi then z = a − bi. The norm of z, denoted |z| is defined by setting |z|2 = zz;
the square of the norm is z times its conjugate.

|z|2 = zz = (a + bi)(a − bi) = a2 + b2 =⇒ |z| = √
a2 + b2 (5.10)

It looks like the norm of z is exactly the same as the length of the vector (a, b).
In fact, there is an intimate connection between complex numbers and vectors

because we can represent both with two coordinates. The point z = a + bi is the point
in the regular Cartesian coordinate system with coordinates (a, b). We can also think
of z as analogous to the vector from (0, 0) to (a, b). Finally, it is important to note
that in the algebra of complex numbers, |z1z2| = |z1‖z2|. The norm of a product is
the product of the norms. One nice use of the norm is in producing a standard form
for nonzero complex numbers.

z = a + bi = |z| ( a|z| + b|z| i

)
= |z|(cos 𝜃 + i sin 𝜃) (5.11)

The idea here is that the numbers a∕|z| and b∕|z| are numbers between −1 and 1
such that the sum of their squares is 1. This means we can find a 𝜃 so that one of the
numbers is cos 𝜃 and the other is sin 𝜃. We have written the complex number z as its
length times a complex number with length 1. This canonical form is often useful in
calculations.

We are now in a position to focus on one of the key attributes of the connection
between complex numbers and geometry. Let 𝑤 = cos 𝜃 + i sin 𝜃. (We have written
the i before the sin 𝜃 just for clarity.) Since |𝑤| = 1, multiplying any z = a + bi by𝑤
preserves the length of z.

𝑤z = (cos 𝜃 + i sin 𝜃)(a + bi) = (a cos 𝜃 − b sin 𝜃) + (a sin 𝜃 + b cos 𝜃)i

If we think of points and vectors, the vector (a, b) which represents z has
been transformed through the multiplication by 𝑤 to another vector ((a cos 𝜃 −
b sin 𝜃), (a sin 𝜃 + b cos 𝜃)). If we look closer and remember the two-dimensional
rotation matrix, notice the result of multiplying by the rotation matrix:[

cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃

] [
a
b

]
=

[
a cos 𝜃 − b sin 𝜃
b cos 𝜃 + a sin 𝜃

]
Complex multiplication by𝑤 and multiplication by the rotation matrix give the same
resulting vector.
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We have discovered that complex multiplication is really rotation.What if wemul-
tiplied by a 𝑤 that was not of unit length? Then, we would use the canonical form
𝑤 = |𝑤|(cos 𝜃 + i sin 𝜃) and the product 𝑤z will be a scalar |𝑤| times the previous
result. This means that we rotated z and multiplied its length by |𝑤|. So geometrically
multiplication is a counterclockwise rotation through angle 𝜃 where the length of the
rotated vector is |𝑤z| = |𝑤‖z|. This is the key observation, and the more we look at
the algebra involved, the more we see how the addition of i to the number system
allowed us to introduce a minus sign at just the right place to form a geometrical
rotation. The natural next step is to see if we can generalize this to three dimen-
sions in the hope that a new algebra will lead to a more efficient way to manipulate
three-dimensional geometric objects.

5.2.4 Quaternion Algebra

In the middle of the nineteenth century, the Irish mathematician William Hamilton
invented a new algebraic system by starting with a collection of imaginary quantities
called quaternions. Although it might seem reasonable to start with complex numbers
and add another imaginary quantity, quaternions require two new imaginary quanti-
ties giving a set of three denoted by {i, j, k}. (Again, these are not vectors although the
letters conventionally used are also used for orthonormal basis vectors.) The square of
each of these quantities is−1, that is, i2 = j2 = k2 = −1. A quaternion is a generalized
complex number: q̂ = a + bi + cj + dk. Historically, the tricky part was to define the
algebra properly so that we get all the appropriate properties associated with addition,
multiplication, and a norm. Hamilton hit on a set of rules for the imaginary quantities
that led to a useful algebraic system.

Definition 5.2 (Quaternions). A quaternion is a mathematical object of the form q̂ =
a + bi + cj + dk, where the imaginary quantities {i, j, k} satisfy the following rules:

i2 = j2 = k2 = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j

It is not an accident that the rules for the imaginary quantities look similar to the
rules we adopted for cross products of the basis vectors in an orthonormal coordi-
nate system. (In fact, quaternions came first and led to the definitions of dot product
and cross product.) Just as in complex numbers, addition of two quaternions and
scalar multiplication takes place component-wise. If q̂1 = a1 + b1i + c1j + d1k and
q̂2 = a2 + b2i + c2j + d2k with scalar s, then

q̂1 + q̂2 = (a1 + a2) + (b1 + b2)i + (c1 + c2)j + (d1 + d2)k

sq̂1 = sa1 + sb1i + sc1j + sd1k (5.12)
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Multiplication of two quaternions happens just as we might expect by using the
distributive property to find 4 × 4 = 16. Using the rules for the imaginary quantities,
the result simplifies to

q̂1q̂2 =(a1a2 − b1b2 − c1c2 − d1d2)

+ (a1b2 + b1a2 + c1d2 − c2d1)i

+ (a1c2 + a2c1 + d1b2 − b1d2)j

+ (a1d2 + d1a2 + b1c2 − b2c1)k (5.13)

It is a little easier to present calculations if we refer to the quaternion q̂ by (a, �⃗�)
where �⃗� = (b, c, d). So a quaternion has a scalar part (a) and a vector part (�⃗�). Using
the dot product and cross product, we can express the product of two quaternions in
vector form:

q̂1q̂2 = (a1, �⃗�1)(a2, �⃗�2)

= ((a1a2 − �⃗�1 ⋅ �⃗�2), (a1�⃗�2 + a2�⃗�1 + �⃗�1 × �⃗�2)) (5.14)

By looking at the rules for the imaginary quantities, or by noticing the cross prod-
uct in the expression for the quaternion product, it is clear that quaternion multipli-
cation is not commutative. The product q̂1q̂2 does not always equal q̂2q̂1. To finish
describing the algebra, we need to define the conjugate for q̂.

Definition 5.3 (Conjugate). The conjugate for the quaternion q̂ = (a, �⃗�) is q̂∗ =
(a,−�⃗�).

Just as in the complex numbers, a quaternion times its conjugate gives the norm
squared.

|q̂|2 = q̂q̂∗ = ((a2 + |�⃗�|2), (a�⃗� − a�⃗� − �⃗� × �⃗�))

= a2 + b2 + c2 + d2 (5.15)

If a quaternion has norm equal to 1, we say it is a unit quaternion. In the case of
conjugates, a quick check shows q̂q̂∗ = q̂∗q̂. Using the conjugate again, we can define
another useful quaternion, the inverse q̂−1.

q̂−1 =
q̂∗|q̂|2 =⇒ (q̂−1)q̂ = q̂(q̂−1) =

q̂q̂∗|q|2 = 1 (5.16)

Finally, one more standard form helps us with calculations. For complex numbers,
we were able to write any number in the canonical form z = |z|(cos 𝜃 + i sin 𝜃). For
quaternions, there is a similar canonical form.

q̂ = (a, �⃗�) = |q̂| ( a|q̂| , |�⃗�||q̂| �⃗�|�⃗�|
)

= |q̂|(cos 𝜃, u⃗ sin 𝜃) (5.17)
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The vector u⃗ = �⃗�∕|�⃗�| has length 1, and since a2 + |�⃗�|2 = |q̂|2, we can set |�⃗�|∕|q̂| =
sin 𝜃. In fact, the quaternion û = (0, u⃗) acts like i does in complex numbers; they

are both square roots of −1. For any unit quaternion with zero scalar (û), we have

û2 = −1.

5.2.5 Rotations

We are interested in rotations of three-dimensional vectors, but quaternions are really

four-dimensional objects. When we use the form q̂ = a + bi + cj + dk, the four

parameters (a, b, c, d) suggest the connection with four-dimensional vectors. The

alternative form q̂ = (a, �⃗�) simply partitions the four parameters so that we have one

scalar a and one three-dimensional vector �⃗� = (b, c, d). If we restrict our attention

to quaternions with zero scalar, then we can draw a one-to-one relationship with

vectors in three space. Interestingly, a relatively simple quaternion transformation

results in rotating quaternions with zero scalar.

Theorem 5.2 (Quaternion Rotations). If �̂� is a quaternion with zero scalar and q̂ =
(a, �⃗�) is any unit quaternion, then the transformation T(�̂�) = q̂�̂�q̂−1 rotates �̂� around
the axis �⃗�.

Along with establishing why the transformation T is a rotation, we will need to

determine what the angle of rotation actually is. More practically, once we have an

axis and angle, we need to find the quaternion q̂ that defines a transformation giving

the desired rotation.

Example 5.5 (Quaternion Rotation around x Axis). We have called the unit vec-

tor that defines the x-axis i⃗ = (1, 0, 0). So consider the unit quaternion q̂ = 1√
2
(1, i⃗) =

1√
2
+ 1√

2
i. Note here that we have used both the vector i⃗ which is actually (1, 0, 0)

and the imaginary quantity i, a square root of −1, to define the quaternion. The stan-
dard basis vectors {⃗j, k⃗} correspond to the imaginary quantities j and k in exactly the

same way.

To see what the transformation T(�̂�) = q̂�̂�q̂−1 does, we check its effect on the vec-
tors (3, 0, 0) and (1, 0, 1), which correspond to quaternions �̂�1 = (0, 3⃗i) = 0 + 3i +
0j + 0k, and on �̂�2 = (0, i⃗ + k⃗) = 0 + i + 0j + k.

First we find q̂−1 = 1√
2
− 1√

2
i, and then we can calculate the effect of the trans-

formation on �̂�1.

T(�̂�1) = q̂�̂�1q̂−1 =

(
1√
2
+ 1√

2
i

)
(3i)

(
1√
2
− 1√

2
i

)
= 3i = �̂�1

The quaternion, and hence the vector (3, 0, 0), remains fixed under the transformation

T . This is consistent with the theorem, which claims the axis of rotation is i⃗.
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For �̂�2, the calculation is a touch trickier because we do need to keep track of the

order of multiplication between imaginary quantities.

T(�̂�2) = q̂�̂�2q̂−1 =

(
1√
2
+ 1√

2
i

)
(i + k)

(
1√
2
− 1√

2
i

)

=

(
1√
2

)2

(1 + i)(i + k)(1 − i)

= 1

2
(i + k + i2 + ik)(1 − i) = 1

2
(i + k − 1 − j)(1 − i)

= 1

2
(i + k − 1 − j − i2 − ki + i + ji) = 1

2
(i + k − 1 − j + 1 − j + i − k)

= (i − j)

The transformation expectedly fixed the i component, but rotated the k component

counterclockwise around i⃗ (x axis) through 𝜋∕2. This is exactly the result of rotating
the original vector (1, 0, 1) around the x-axis. Just for practice, we can recalculate the
transform using the vector form (Equation 5.14 ) of quaternion multiplication.

T(�̂�2) = q̂�̂�1q̂−1 = 1√
2
(1, i⃗)(0, (⃗i + k⃗)) 1√

2
(1,−i⃗)

=

(
1√
2

)2

((0 − 1), (⃗i + k⃗ − j⃗))(1,−i⃗) = 1

2
(−1, (⃗i − j⃗ + k⃗))(1,−i⃗)

= 1

2
((−1 − (−1)), (⃗i + i⃗ + k⃗ − j⃗ − (⃗j + k⃗))

= (0, (⃗i − j⃗)

= (i − j)

As expected, we get the same result. Just to keep clear on the meaning of

these quantities, the result of the transformation is i − j, which is the quaternion

i + (−1)j + 0k = (0, (1,−1, 0)). The original vector (1, 0, 1) was transformed to

the vector (1,−1, 0). It was rotated counterclockwise by 𝜋∕2 around the x-axis
(Figure 5.6). ◽

The previous example gives a little intuition about how quaternion transformations

can be used to rotate vectors, but we still need to establish carefully that the transfor-

mation T(�̂�) = q̂�̂�q̂−1 is a rotation where q̂ is a unit quaternion and �̂� is a quaternion

with zero scalar. The details are given in Section 5.4, but the idea is first to notice that

T is a linear transformation. To show that it is a rotation, we need to establish that

T transforms the basis vectors in a coordinate system the same way that a rotation
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x

y

z

(1, −1, 0)

(1, 0, 1)

Figure 5.6 Quaternion rotation

does. The linear transformation property then implies that T transforms any vector
the same way a rotation does.

Result 5.3 (Selecting q̂). If q̂ = (cos 𝜃, u⃗ sin 𝜃) and �̂� = (0, 𝑣), then the transforma-
tion T defined by T(�̂�) = q̂�̂�q̂−1 rotates 𝑣 around the axis u⃗ through an angle 2𝜃.

This result highlights the connection between the quaternion q̂ and the angle of
rotation. It is then easy to construct T .

Example 5.6 (Rotating with Quaternions). To rotate the vector (2,−1, 5) counter-
clockwise around the axis (1, 1, 2) through angle 𝜋∕3, we begin by setting up the
quaternion �̂� = (0, (2,−1, 5)). We need a unit vector in the direction of the rotation
axis, so u⃗ = 1√

6
(1, 1, 2). Since the rotation angle is 2𝜃 = 𝜋∕3, we have 𝜃 = 𝜋∕6 and

q̂ =
(√

3

2
,

1√
6
(1, 1, 2) 1

2

)
. Applying the transformation, we get

T(�̂�) =

(√
3

2
,

1√
6
(1, 1, 2)1

2

)
(0, (2,−1, 5))

(√
3

2
,− 1√

6
(1, 1, 2)1

2

)
≈ (−2.25, (3.16,−1.07, 3.72))(0.87, (−0.2,−0.2,−0.41))

≈ (0, (4.38, 0.07, 3.31))

Within round-off error, the length of the rotated vector (4.38, 0.07, 3.31) is equal
to the length of the original vector (2,−1, 5). This, of course, is expected of a
rotation. ◽

Composing two rotations is relatively easy. If the two corresponding unit quater-
nions are q̂1 and q̂2, then applying the first and then the second gives a new transfor-
mation T∗.

T∗(�̂�) = q̂2q̂1�̂�q̂−1
1

q̂−1
2

= (q̂2q̂1)�̂�(q̂2q̂1)−1
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Again, since quaternion multiplication is not commutative, we have to be careful

which rotation we want to do first and which second. We can produce a single unit

quaternion to do the combined rotations by simply multiplying q̂2 and q̂1 in that order.
Finding the inverse is easy once we have the conjugate and the norm of the prod-

uct. We have actually established a result we discovered earlier: the composition of

two three-dimensional rotations is equivalent to a single three-dimensional rotation

around the appropriate axis.

Using quaternions to rotate vectors is theoretically pleasing, but is it actually prac-

tical? We can compare elementary operations to give some indication of efficiency.

To multiply two quaternions, think about the basic form of the quaternion as a sum

a + bi + cj + dk and count the number of multiplication and additions of numbers. It

takes 16 multiplications and 12 additions. (Interestingly, multiplying using the vec-

tor form of quaternions takes the same number of multiplications and additions.)

Consequently, to apply the transformation T for rotation, it takes 2 quaternion multi-

plications or 32 multiplications and 14 additions. On the other hand, multiplying by

a single 3 × 3 rotation matrix takes only nine multiplications and six additions. The

comparison is lopsided in favor of the matrix multiplication.

However, manipulation of a graphics scene requires rotation after rotation, so com-

paring the composition of two rotations is also key. To compose two quaternion

rotations, we multiply two quaternions taking 16 multiplications and 12 additions.

For matrices, we need to multiply two 3 × 3 matrices taking 27 multiplications and

18 additions. Now, it seems there is an advantage for quaternions. Often, primitive

operations are implemented in hardware, so our comparisons are only indicative of

how speeds might compare.

Regardless of the efficiency gains or losses, another key reason to use quaternions

is to interpolate between two orientations of an object and this is what we turn to next.

5.2.6 Interpolation: Slerp

Summarizing what we have done, a unit quaternion q̂ determines a rotation in

three-space, with the vector part indicating the rotation axis and the scalar part

determining the rotation angle. A quaternion �̂� with zero scalar can be thought of

as a three dimensional vector, and the transformation T(�̂�) = q̂�̂�q̂−1 produces the

rotated vector. (The presence of q̂−1 in the definition of the transformation means

that, even if the quaternion q̂ does not have unit norm, we still get the same rotation

because |q̂| cancels out.) We now want to expand our concept of quaternions from

rotations to orientations.

If we start with the standard orthonormal Cartesian coordinate system with origin

O and unit basis vectors {⃗i, j⃗, k⃗}, then a unit quaternion represents a rotation which

transforms each of the basis vectors to form a new orthonormal coordinate system. As

an animated cube rotates while it moves from one position to another in the scene, its

local coordinate system is changing orientation from step to step of the animation. So,

in fact, a starting orientation represented by a unit quaternion q̂1 changes into a final

orientation represented by quaternion q̂2. Along the way, there is an entire sequence

of quaternions representing intermediate orientations. The center of the cube may
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also move through space, but this change is represented by translations and we can
consider the change separately from the orientation.

The interpolation problem is simply to construct a sequence of orientation quater-
nions beginning with q̂1 and ending with q̂2. It is desirable that the change from
quaternion to quaternion is smooth and that the rate of change is constant. A good
first guess at a scheme for doing this is to compute quaternions q̂(t) = (1 − t)q̂1 + tq̂2
as t goes from zero to 1. This is the affine combination we saw when finding points
on a line segment, and we say it interpolates the end points q̂1 and q̂2.

This linear approach to interpolation changes the orientation smoothly, but it does
not have a constant rate of change. To see this, it helps to envision the interpolation
more geometrically. A quaternion is a four-dimensional vector, so when we consider
unit quaternions, we are looking at points on a four-dimensional sphere. Visualizing
such spheres is tough, but thinking by analogy with three-dimensional spheres is eas-
ier. Restricting ourselves to unit quaternions, we have two points indicated by q̂1 and
q̂2 on the sphere in four dimensions. We want a path on the sphere between the two
points and it makes some sense to find the shortest path. (Think analogously to the
three-dimensional sphere where the shortest path between two points is the intersec-
tion of the sphere with a plane containing the two points and the center of the sphere.)
The linear interpolation procedure draws a straight line between the points, but it is
not on the sphere; the length of q̂(t) is not necessarily 1. Normalizing q̂(t) by dividing
by its length gives a (shortest) path of quaternions that are on the sphere.

Figure 5.7 shows a cross section of the situation. The key observation is that, since
linear interpolation takes uniform steps along the straight line, the angle 𝜃 in the figure
changes faster in the middle of the line and slower near the two end points. Instead,
we would like the angular change to be constant. To obtain this uniform change, the
angle between q̂1 and q̂(t) should be t𝜃. This sort of interpolation is called spherical
linear interpolation (or slerp, for short).

To develop a convenient formula for slerp, look at �̂� in the figure. The quater-
nions are four-dimensional vectors and we want to choose quaternion �̂� so that it

q1

q2

v

q(t)

θ

ˆ

ˆ

ˆ

ˆ

Figure 5.7 Slerp
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is perpendicular to q̂1 with length 1; that is, �̂� ⋅ q̂1 = 0. Define q̂(t) to be an affine

combination of q̂1 and �̂�.

q̂(t) = cos(t𝜃)q̂1 + sin(t𝜃)�̂�

Assuming we can find an appropriate �̂�, this definition has some nice properties. For

t = 0, q̂(0) = q̂1 and q̂(t) has unit length (see Exercises). By construction, the angle

between q̂1 and q̂(t) changes uniformly. For t = 1, the definition should give q̂2, and
we can use this constraint to solve for �̂�.

q̂2 = (cos 𝜃)q̂1 + (sin 𝜃)�̂�

=⇒ �̂� =
q̂2 − (cos 𝜃)q̂1

sin 𝜃
(5.18)

A quick check shows that, assuming q̂1 and q̂2 have length 1, �̂� does as well. Remem-

ber that the trigonometric addition formulas simplifies the expression for q̂(t).

q̂(t) = cos(t𝜃)q̂1 + sin(t𝜃)𝑣

= cos(t𝜃)q̂1 + sin(t𝜃)
q̂2 − (cos 𝜃)q̂1

sin 𝜃

= 1

sin 𝜃
((sin 𝜃 cos t𝜃 − sin t𝜃 cos 𝜃)q̂1 + (sin t𝜃)q̂2)

= sin(1 − t)𝜃
sin 𝜃

q̂1 +
sin t𝜃
sin 𝜃

q̂2

This gives q̂(t) as a combination of q̂1 and q̂2. It smoothly changes the orientation

and does so at a constant rate.

There is one ambiguity left. On the sphere, there are two paths between q̂1 and q̂2,
one is on the “front” side of the sphere and the other is on the “back.” We probably

want the shortest one, and to determine that we calculate the dot product of q̂1 and
q̂2 as four dimensional vectors. If the result is positive, we know the angle between

them is less than 𝜋∕2 and the slerp procedure will be mapping the shortest path on

the sphere. Otherwise, changing q̂2 to −q̂2 will give a positive dot product. Since −q̂2
represents the same rotation as q̂2, using −q̂2 in this second case will give the shortest
path.

Result 5.4 (Slerp Procedure). Given two unit quaternions q̂1 and q̂2, spherical lin-
ear interpolation produces the quaternions

q̂(t) = sin(1 − t)𝜃
sin 𝜃

q̂1 +
sin t𝜃
sin 𝜃

q̂2

If q̂1 ⋅ q̂2 < 0, use −q̂2 instead of q̂2.
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We can use slerp to move objects or to move the camera position. However, when

moving the camera position, there is no guarantee that the up vector will stay posi-

tioned up (i.e., parallel to its initial position) throughout the interpolation. This may

be fine, but it may be necessary to adjust the orientations.

5.2.7 From Euler Angles and Quaternions to Rotation Matrices

To orient an object in space, we position its center using a translation and then rotate

it into the desired orientation. The rotation can be described by a rotation matrix, by

the three Euler angles, or by an corresponding quaternion. Sometimes, in the midst

of coding a graphics application, it is necessary to move between these three descrip-

tions. We have seen how to go from a rotation matrix to Euler angles, and the reverse

direction simply requires multiplying the three individual rotation matrices together.

Now we need an algorithm for converting quaternions to matrices.

Since rotation is a linear transformation, we only need to know what the transfor-

mation does to the basis vectors in order to determine what it does to any vector. So

we will calculate the effect of a quaternion on the standard orthonormal basis vectors

{⃗i, j⃗, k⃗}. Let q̂ = (a, �⃗�) = (a, b, c, d). Assume q̂ is a unit quaternion, so a2 + b2 + c2 +
d2 = 1.

𝑣1 = q̂⃗iq̂−1 = (a, b, c, d)(0, 1, 0, 0)(a,−b,−c,−d)

= (−b, a, d,−c)(a,−b,−c,−d) = (0, a2 + b2 − c2 − d2, 2ad + 2bc, 2bd − 2ac)

𝑣2 = q̂⃗jq̂−1 = (a, b, c, d)(0, 0, 1, 0)(a,−b,−c,−d)

= (−c,−d, a, b)(a,−b,−c,−d) = (0,−2ad + 2bc, a2 − b2 + c2 − d2, 2cd − 2ab)

𝑣3 = q̂k⃗q̂−1 = (a, b, c, d)(0, 0, 0, 1)(a,−b,−c,−d)

= (−d, c,−b, a)(a,−b,−c,−d) = (0, 2bd + 2ac, 2cd − 2ab, a2 − b2 − c2 + d2)

Using these transformed vectors as columns gives us the correct rotation matrix.

R(q̂) =
⎡⎢⎢⎣
a2 + b2 − c2 − d2 2bc − 2ad 2bd + 2ac

2bc + 2ad a2 − b2 + c2 − d2 2cd − 2ab
2bd − 2ac 2cd + 2ab a2 − b2 − c2 + d2

⎤⎥⎥⎦
Going backwards to find the quaternion corresponding to a rotation matrix relies

on the algebraic relations between entries in this rotation matrix. There are several

algorithms for doing this, and one in particular starts by calculating the sum of the

diagonal elements, S = 3a2 − b2 − c2 − d2. If the quaternion is a unit quaternion, then

we can conclude that S + 1 = 4a2. In a similar vein, we find formulas for the other
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parameters (rii is a diagonal entry in the rotation matrix).

2r11 − S + 1 = −a2 + 3b2 − c2 − d2 + 1 = 4b2

2r22 − S + 1 = −a2 − b2 + 3c2 − d2 + 1 = 4c2

2r33 − S + 1 = −a2 − b2 − c2 + 3d2 + 1 = 4d2

We have an equation for each parameter, but solving them requires deciding whether
to take the positive or negative square root. One of these decisions is fine, because
we know that a quaternion and its negative represent the same orientation. How-
ever, once we solve for one parameter this way, we need other equations to guar-
antee the correct values of the remaining parameters. Notice that r12 + r21 = 4bc and
r21 − r12 = 4ad. Two other pairs of off-diagonal entries give similar equations, and
no matter which parameter we solve for first, we can find all the others using these
off-diagonal equations.

Since we can convert between Euler angles and rotationmatrices in both directions
and between quaternions and matrices in both directions, we can pass between all
three of these representations.

5.3 OTHER COORDINATE SYSTEMS

Assigning numbers to points was a historical breakthrough that changed the way
geometry was done. This led to a wide variety of coordinate systems with the venera-
ble Cartesian coordinate system usually in the front and center. An orthonormal basis
for the system adds considerably to the ease of calculation and fits reasonably with
most geometric situations. Yet, although many geometric objects have nice descrip-
tions in Cartesian coordinates, most objects in the natural world do not. We can try
to approximate them with simpler objects and fancier mathematical techniques, but
usually compact descriptions escape us. This argues for at least exploring the other
options for coordinate systems.

Keep inmind some of the attributes of a coordinate system that make it particularly
useful in graphics applications. First, it should be relatively easy to calculate with the
coordinates. Note how dot products are easy to compute in orthonormal Cartesian
systems. Second, although it is not necessary, it does help if there is a one-to-one
relationship between coordinates and points. Cartesian coordinates have this property,
but homogeneous coordinates do not. Without unique coordinates, algorithms often
have to deal with several cases. Third, the coordinate system should allow simple or
otherwise efficient descriptions of some common objects. Lines, planes, and therefore
cubes are easy to describe in Cartesian systems and are even more unified when using
homogeneous coordinates.

5.3.1 Non-orthogonal Axes

Rather than choosing basis vectors for a Cartesian coordinate system that aremutually
perpendicular (i.e., orthogonal), we may decide that non-perpendicular axes match
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u

au

b
O

P = (a,b)

Figure 5.8 Non-perpendicular axes

the shape of our object better. As we will see later, sometimes a pattern we wish to

superimpose on some flat face has a shape more conducive to skew axes. Much of

our analysis of coordinate systems including converting from one set of coordinates

to another allowed for non-perpendicular axes. In two dimensions, the situation is

easy to assess, and Figure 5.8 shows two non-perpendicular axes u⃗ and 𝑣 along with

the origin O and the coordinates (a, b) of a point P. The point P is then expressed as

O + au⃗ + b𝑣. A useful simplification is to require that u⃗ and 𝑣 are unit vectors.

We can no longer use the standard formula for dot product in this system because

u⃗ ⋅ 𝑣 ≠ 0. If we do have two vectors described in this system �⃗�1 = (a1, b1) and �⃗�2 =
(a2, b2), then the dot product requires a little more algebra.

�⃗�1 ⋅ �⃗�2 = (a1u⃗ + b1𝑣) ⋅ (a2u⃗ + b2𝑣) = (a1a2 + b1b2) + (a1b2 + a2b1)(u⃗ ⋅ 𝑣)

Here we assumed that u⃗ and 𝑣 are unit vectors. The same approach gives a formula for

the dot product of three-dimensional vectors described in a non-orthonormal coordi-

nate system.

It is often convenient to convert from a set of non-orthogonal basis vectors into a set

of orthogonal ones. The point is to find orthogonal vectors that in some sense match

the original set reasonably well. In two dimensions, we simply keep one basis vector

and write the other as a sum of a component projected on the first plus a component

that is perpendicular to the first.

Example 5.7 (Two Dimensions: Finding Orthogonal Basis Vectors). If the object

or pattern we are working with suggests we use the basis vectors u⃗ = (1, 2) and 𝑣 =
(−1, 3), we can first normalize them to get u⃗ = 1√

5
(1, 2) and 𝑣 = 1√

10
(−1, 3). Then

decide which vector fits the object or pattern best and take it as the first vector in

our new basis. Say u⃗ is the key vector, so set u⃗∗ = u⃗. Now project 𝑣 onto u⃗∗ to get

(u⃗∗ ⋅ 𝑣)u⃗∗. This projection is in the direction of u⃗∗, so subtracting this from 𝑣 gives a

vector 𝑣∗ that is perpendicular to u⃗∗

𝑣∗ = 𝑣 − (u⃗∗ ⋅ 𝑣)u⃗∗ =
1√
10

(−1, 3) − 1√
10

(1, 2) = 1√
10

(−2, 1)

We could have found a vector perpendicular to u⃗∗ in our sleep, but using the pro-

jection helps us to ensure that we find the one in the direction that matches 𝑣. After

renormalizing 𝑣∗, the two vectors form an orthonormal basis. ◽
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The situation in three dimensions is not much harder and we have already dealt

with the problem when looking for a suitable camera coordinate system. There we

started with the vector pointing at the scene plus an approximation to the vector point-

ing up. Then using cross products, we produced a perpendicular up-vector and a third

forming a right-hand coordinate system. In the current situation, we might have three

vectors to start with, {u⃗, 𝑣, �⃗�}. Take u⃗∗ = u⃗. Then either u⃗∗ × 𝑣 or 𝑣 × u⃗∗ gives a per-
pendicular vector that could serve as �⃗�∗. We decide which based on the dot product

with �⃗�. Then again, either u⃗∗ × �⃗�∗ or �⃗�∗ × u⃗∗ gives 𝑣∗.

Example 5.8 (Three Dimensions: FindingOrthogonal Basis Vectors). Take the vec-

tors u⃗ = (1, 1, 1), 𝑣 = (0,−2, 1), and �⃗� = (−2, 0, 3) as the initial basis vectors. Then,
u⃗∗ = u⃗ = (1, 1, 1). Finding the cross product gives u⃗∗ × 𝑣 = (3,−1,−2) or 𝑣 × u⃗∗ =
(−3, 1, 2).

If it is in the same direction as �⃗�, then the angle between them should be less than

𝜋∕2 and the dot product will be positive.

�⃗� ⋅ (−3, 1, 2) = 12 > 0 =⇒ �⃗�∗ = (−3, 1, 2)

Now, �⃗�∗ × u⃗∗ = (−1, 5,−4) and the dot product with 𝑣 is negative, so we take the

opposite direction, 𝑣∗ = (1,−5, 4).
The three vectors {(1, 1, 1), (1,−5, 4), (−3, 1, 2)} form an orthogonal system, and

once we normalize, they form an orthonormal system. Checking the cross products,

we find that the system is right-handed.

Instead of using cross products as we did in this example, we could proceed as

we did in Example 5.7 by projecting 𝑣 onto u⃗∗ and then projecting �⃗� onto the plane

determined by u⃗∗ and 𝑣∗. In linear algebra, this approach is called the Gram–Schmidt
process. ◽

5.3.2 Polar, Cylindrical, and Spherical Coordinates

We have already used angles for designating orientations, and if we push further, we

can use them for identifying points. In two dimensions, the origin plus the distance

to a particular point gets us started and the angle then indicates direction. The coordi-

nates called polar coordinates are (r, 𝜃); r is the distance and 𝜃 is the direction given in
radians. The direction angle is relative to a fixed direction, so this coordinate system

requires both a point designated as the origin and a direction designated as the fixed

direction. If there is a Cartesian coordinate system already established, then the fixed

direction is usually along the positive x-axis (Figure 5.9). If 𝜃 = 0, then the point is

somewhere on the positive x-axis. Angles are measured in a counterclockwise man-

ner, so 𝜃 = 𝜋∕2 radians means the point is on the positive y-axis. A negative angle

would then be a clockwise direction, so 𝜃 = −𝜋∕2 indicates a point on the negative

half of the y-axis.
Polar coordinates are not unique. The point P with Cartesian coordinates (1, 1)

has polar coordinates (
√
2, 𝜋∕4), where the polar coordinate system is arranged so

𝜃 = 0 indicates the positive x-axis. Clearly, adding a multiple of 2𝜋 to 𝜃 gives the
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r

O

P = (r, θ)

Figure 5.9 Polar coordinate system

same point, so, for example, P = (
√
2, 9𝜋∕2). This minor annoyance can be partially

patched up by insisting that the direction angle 𝜃 be constrained by 0 ≤ 𝜃 < 2𝜋. The

possibility of r being negative means that the polar coordinates (−
√
2,−3𝜋∕4) also

denotes P. Again, nonuniqueness rears its head, forcing us to restrict the distance
to be nonnegative if we want unique coordinates. However, even with constraints,
the origin still has multiple polar coordinates since r = 0 and 𝜃 can be anything. It
is probably not worth obsessing over this uniqueness problem and instead design
algorithms to deal with it appropriately.

Polar coordinates are particularly nice for planar objects that have circular sym-
metry. A circle, for example, has the property that all points are at a fixed distance
from the center. So in a local polar coordinate system with the origin at the center,
a circle of radius 4 can be described with the simple equation r = 4; all points with
r = 4 and with 𝜃 equal to anything are on the circle. A spiral becomes r = 𝜃, where
we take only nonnegative values for 𝜃, and one flower-like object is r = cos 2𝜃. See
the Exercises for relatively simple polar equations that produce aesthetically pleasing
(if not practical) patterns (Figure 5.10).

Of course, points have both polar and Cartesian coordinates, and to move between
them a little trigonometry finds the relationships.

x = r cos 𝜃

y = r sin 𝜃

r =
√

x2 + y2

𝜃 = tan−1y∕x (5.19)

Adding an axis perpendicular to the polar plane boosts polar coordinates into three
dimensions. The new axis, which wemight call z, gives a third coordinate, and (r, 𝜃, z)

r = 1 r = θ r = cos{2θ}

Figure 5.10 Polar curves
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r

z

θ

P = (r, z, θ)

Figure 5.11 Cylindrical coordinate system

now describes points in space. This cylindrical coordinate system easily describes a

cylinder because r = 4 now says that both 𝜃 and z can be anything. By using a set of
equations, we can extend our descriptive capabilities as, for example, when we use

r = 4 and z = 5 to describe a circle in space. The set of equations r = 4 and z = 𝜃

gives a spring (or helix) (Figure 5.11).

Thinking in terms of cylindrical coordinates can make some objects easier to

describe and then, if we need, we can convert to Cartesian coordinates for the stan-

dard transformations like rotation, scaling, and translation. The conversion proceeds

easily because x and y coordinates obey the polar coordinate conversion and z is the
same in both cylindrical and Cartesian coordinates.

Instead of just circular symmetry, many objects have close to spherical symme-

try. To design a coordinate system which better fits these objects, we start with polar

coordinates and add another angular direction rather than a standard axis. Imagine that

we have an established three-dimensional Cartesian right-handed coordinate system.

Then once again 𝜃 = 0 indicates points along the positive x-axis. Now we introduce

a new direction designated with the angle 𝜙 where 0 ≤ 𝜙 ≤ 𝜋 and 𝜙 = 0 indicates

points along the positive z-axis (Figure 5.12). The distance coordinate is now a dis-

tance in three dimensions rather than just two, so we give it a new designation, 𝜌. The

coordinates (𝜌, 𝜃, 𝜙) are called spherical coordinates. (Unfortunately, presentations
of spherical coordinates are not all consistent; the two directions 𝜃 and 𝜙 can appear

reversed from this presentation and sometimes just the names are reversed.)

ρ

ϕ

θ

z P = (ρ, θ, ϕ)

Figure 5.12 Spherical coordinate system
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ρ

ϕ

P

θ

z

Figure 5.13 Conversion between spherical and Cartesian coordinates

The point with spherical coordinates (
√
2,

𝜋

2
,
𝜋

4
) is the point (0, 1, 1) in the Carte-

sian system. Again, you can construct several sets of coordinates that denote the same

point in space. For example, any point on the z-axis has 𝜙 = 0, so the value of 𝜃 is

irrelevant; both (1, 0, 0) and (1, 𝜋, 0) are the same point.

In the spherical coordinate system, the equation 𝜌 = 4 now describes a sphere of

radius 4, and, together, the two equations 𝜌 = 𝜃 and 𝜙 = 𝜋∕6 (for nonnegative 𝜃)

describe a conical spiral.

To convert from spherical coordinates to Cartesian coordinates and back, take a

point P and drop perpendiculars to the z-axis and the xy plane. Then, consider the

triangles ΔPOA and ΔPOB in Figure 5.13. The segment PA has length 𝜌 sin𝜙 and

segment PB is 𝜌 cos𝜙 which is just the z coordinate. The equations to convert from

spherical to Cartesian coordinates become

x = 𝜌 sin𝜙 cos 𝜃

y = 𝜌 sin𝜙 sin 𝜃

z = 𝜌 cos𝜙 (5.20)

Going from Cartesian to spherical coordinates requires the following formulas:

𝜌 =
√

x2 + y2 + z2

𝜃 = tan−1
y

x

𝜙 = cos−1
z
𝜌

(5.21)

5.3.3 Barycentric Coordinates

Cartesian, polar, cylindrical, and spherical coordinates all require reference objects;

they need an origin and either axes or specified directions. What we are doing in

most coordinate systems is selecting references that match particular geometric sit-

uations. When we are focused on line segments, for example, picking the two end

points as references leads to a convenient way for identifying points on the segment.
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With A and B as end points, a point P on the segment can be described by noting that

P = A + t(B − A) = (1 − t)A + tB.
This expresses P as an affine combination of the two end points A and B. It is

a weighted average of the two points, and the coordinates 1 − t and t are called

barycentric coordinates. (The prefix “bary” refers to the Greek word for weight.)

These coordinates uniquely determine P. When t = 0, then P = A, and when t = 1,

P = B. The barycentric coordinates are weights and they always sum to 1. (Techni-

cally, we could just give the coordinate t knowing that the second one (1 − t) can be

readily calculated.)

Without constraining t to the interval 0 ≤ t ≤ 1, we can describe any point on the

line. If t > 1, then we are reaching a point P on the line extending past end point

B. Similarly, negative values of t give points on the line extending past end point A.
In both these situations, one of the barycentric coordinates is negative and the other

positive; the sum is always 1. If we have Cartesian coordinates for the end points,

then the weighted average produces Cartesian coordinates for P.
By specifying three reference points instead of two, we can use the same technique

to locate points in the plane. Consider points A, B, and C that are not collinear and set

them as reference points. Then, an arbitrary point P in the plane can be described by

P = 𝛼0A + 𝛼1B + 𝛼2C. The three barycentric coordinates (𝛼0, 𝛼1, 𝛼2) sum to 1, and if

they are all nonnegative, then the point is inside the triangle. This coordinate system

turns out to be very useful in computer graphics and will be explored in more detail

in the Chapter 6.

Generalizing to more reference points unfortunately proves difficult, but various

schemes have proved useful in specific situations. If the points are vertices of a poly-

gon with equal sides and angles, the generalization is almost straightforward.

5.4 COMPLEMENTS AND DETAILS

5.4.1 Historical Note: Descartes

The Cartesian coordinate system is named after René Descartes, a French philosopher

who wrote a book called Discourse on Method published in 1637. The book is really

the beginning ofmodern philosophy and contained three appendices whichweremore

scientific treatises. One of those treatises discussed geometry and suggested the con-

nections between algebra and geometry. There is no mention of perpendicular axes

or coordinates, so placing his name on a coordinate system is more the result of good

publicity than inventive mathematics. As with most results that bear someone’s name,

the true history is most likely more convoluted involving the contributions of many

along the way.

5.4.2 Historical Note: Hamilton

Sir William Rowan Hamilton was born in Dublin in 1843. As a student at Trinity

College, he proved to have exceptional ability in mathematics and went on to make
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major discoveries in optics and dynamics. He effectively unified dynamics with his
equations and brought the same level of analysis to optics. The worldwide recognition
that followed made him one of the most influential mathematicians of the time.

In themiddle of the nineteenth century, complex numbers were proving their worth
andmanywere drawing connections between complex numbers and two-dimensional
geometry. The desire to generalize the ideas to three dimensions piqued Hamilton’s
interest and he worked steadily trying to devise an algebra that mimicked the complex
number system where one imaginary quantity (i) plus the real numbers formed a
coherent system of numbers. For three dimensions, the natural generalization was to
add a second imaginary quantity. Yet, no one could define multiplication and addition
in order to produce an algebra with useful properties like associativity, commutativity,
and distributivity.

It turns out that there is no way to define an appropriate algebra for two imagi-
nary quantities, but there is for three imaginary quantities (i, j, k) if the insistence on
commutativity is abandoned. After years of work, the solution came to Hamilton one
night while walking over the Brougham Bridge in Dublin. The idea was so exciting to
him that he reportedly scratched the equations (i2 = j2 = k2 = ijk = −1) in one of the
bridge stones. Hamilton spent the next 22 years of his life developing techniques for
using quaternions in physics and mathematics. Others joined the cause, but possibly
due to the ponderous nature of the book Hamilton produced, not many reached the
inner circle and quaternions were somewhat slow to catch on. Later in the century,
the American physicist Josiah Gibbs (among others like Oliver Heaviside) drew from
Hamilton’s work to establish the foundations of modern vector analysis; in particu-
lar, the cross product operation grew out of quaternion algebra and became the key
in many analytical calculations.

Quaternions themselves never quite caught on although Hamilton was convinced
of their central position in mathematics. (Arguably, it was Hamilton’s work on quater-
nions that introduced the words “vector” and “scalar” into the mathematical lex-
icon). In the twentieth century, their connection with rotations pulled them from
curious examples to key analytical tools, and the development of computer graphics,
no doubt, helped assure quaternions a permanent position among important mathe-
matical objects.

5.4.3 Proof of Quaternion Rotation

To establish carefully that the transformation T(�̂�) = q̂�̂�q̂−1 is a rotation where q̂ is a
unit quaternion and �̂� is a quaternion with zero scalar, we can start by simplifying the
problem.

First, write q̂ in its canonical form |q̂|(cos 𝜃, u⃗ sin 𝜃). This means the conjugate is
q̂∗ = |q̂|(cos 𝜃,−u⃗ sin 𝜃) and the inverse is q̂−1 = 1|q̂| (cos 𝜃,−u⃗ sin 𝜃). Then the trans-
form T simplifies to

T(�̂�) = q̂�̂�q̂−1 = |q̂|(cos 𝜃, u⃗ sin 𝜃)(�̂�) 1|q̂| (cos 𝜃,−u⃗ sin 𝜃)

= (cos 𝜃, u⃗ sin 𝜃)(�̂�)(cos 𝜃,−u⃗ sin 𝜃) (5.22)
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In the transformation T , the length of q̂ cancels out, implying that any scalar multiple

of q̂ will give the same transformation. Specifically, q̂ and −q̂ correspond to the same

transformation.

Second, T is in fact a linear transformation. Using the definition of quaternion

multiplication, we can show that T(�̂�1 + �̂�2) = T(�̂�1) + T(�̂�2) and that T(a�̂�) = aT(�̂�)
(see Exercises). Rotation of three-dimensional vectors is also a linear transformation

(it is multiplication by a matrix). To show that these two linear transformations are the

same, we only need to show that they act the same on the orthonormal basis vectors

for a coordinate system. Then the linear transformation property implies that they act

the same on all vectors.

We will pick a coordinate system by starting with the quaternion û that appears

in the expression for q̂. This is a unit quaternion with zero scalar, so it corresponds

to a unit vector u⃗. For the second basis vector, any vector r⃗ perpendicular to u⃗ will

do, and for the third basis vector we can use u⃗ × r⃗ (Figure 5.14). We will show that

T fixes u⃗ and rotates the other two basis vectors through the same angle. Start with

vector u⃗ and the canonical form q̂ = (cos 𝜃, u⃗ sin 𝜃). We calculate how T transforms

û = (0, u⃗).

T(û) = q̂ûq̂−1 = (cos 𝜃, u⃗ sin 𝜃)(û)(cos 𝜃,−u⃗ sin 𝜃)

= (−(u⃗ ⋅ u⃗)(sin 𝜃), u⃗ cos 𝜃 + u⃗ sin 𝜃 × u⃗)(cos 𝜃,−u⃗ sin 𝜃)

= (− sin 𝜃, u⃗ cos 𝜃)(cos 𝜃,−u⃗ sin 𝜃)

= (− sin 𝜃 cos 𝜃 + (cos 𝜃 sin 𝜃)(u⃗ ⋅ u⃗), (sin 𝜃)2u⃗ + (cos 𝜃)2u⃗

− (cos 𝜃 sin 𝜃)(u⃗ × u⃗)

= (0, (sin 𝜃)2u⃗ + (cos 𝜃)2u⃗))

= (0, u⃗) = û

T fixes û and therefore fixes the vector u⃗. It follows that it fixes any multiple of u⃗ as

well. This is exactly what a three-dimensional rotation around the axes u⃗ does, so T
and the rotation agree on multiples of u⃗.

u

r

2θ

u × r

Figure 5.14 Quaternion rotation
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Now, take a vector r⃗ perpendicular to u⃗ and consider the quaternion r̂ = (0, r⃗).

T(r̂) = q̂r̂q̂−1 = (cos 𝜃, u⃗ sin 𝜃)(r̂)(cos 𝜃,−u⃗ sin 𝜃)

= (−(u⃗ ⋅ r⃗)(sin 𝜃), r⃗ cos 𝜃 + u⃗ sin 𝜃 × r⃗)(cos 𝜃,−u⃗ sin 𝜃)

= (0, r⃗ cos 𝜃 + (sin 𝜃)(u⃗ × r⃗))(cos 𝜃,−u⃗ sin 𝜃)

= (0 − (−sin2 𝜃)((u⃗ × r⃗) ⋅ u⃗), (cos2 𝜃)r⃗ + (cos 𝜃 sin 𝜃)(u⃗ × r⃗)

− (cos 𝜃 sin 𝜃)(r⃗ × u⃗) − (sin2 𝜃)(u⃗ × r⃗) × u⃗)

= (0, (cos2 𝜃)r⃗ + 2 cos 𝜃 sin 𝜃(u⃗ × r⃗) − (sin2 𝜃)r⃗)

= (0, cos(2𝜃)r⃗ + sin(2𝜃)(u⃗ × r⃗))

T sends r̂ to the quaternion (0, �⃗�), where �⃗� is a linear combination of r⃗ and u⃗ × r⃗.
In the plane of these last two vectors, r⃗ has been rotated counterclockwise through
an angle of 2𝜃. In other words, vectors perpendicular to u⃗ are rotated around the axis
formed by u⃗. This is precisely what the rotation would do.

For vectors along the axis u⃗ and for those perpendicular to it, the transformation T
and the three-dimensional rotation around u⃗ agree. For any vector, we can write it as
a sum of a vector parallel to u⃗ and one that is perpendicular. Consequently, T and the
rotation agree on every vector. We have shown that T is indeed a three-dimensional
rotation. Moreover, we have discovered the appropriate unit quaternion q for accom-
plishing a given rotation.

5.5 EXERCISES

1. Let the coordinate system𝒮1 have basis vectors {⃗i, j⃗, k⃗}. Relative to system𝒮1,

the system 𝒮2 has origin (2,−1, 5) and basis vectors k⃗, j⃗,−i⃗. Find the matri-
ces M𝒮1→𝒮2

and M𝒮2→𝒮1
. Use the matrices to find the 𝒮2 coordinates of P =

(−3, 6, 2) where these coordinates are in 𝒮1.

2. In Example 5.1, find the𝒮1 coordinates for the basis vectors in𝒮2 and use them
to verify the 𝒮2 coordinates found for P.

3. Let the coordinate system𝒮1 have basis vectors {⃗i, j⃗, k⃗}. Relative to system𝒮1,

the system 𝒮2 has origin (0, 0, 0) and basis vectors −k⃗, i⃗,−j⃗. Find the matri-
ces M𝒮1→𝒮2

and M𝒮2→𝒮1
. Use the matrices to find the 𝒮2 coordinates of P =

(1, 2, 3) where these coordinates are in 𝒮1.

4. Let the coordinate system 𝒮1 have basis vectors {⃗i, j⃗, k⃗}. Relative to system
𝒮1, the system 𝒮2 has origin (0, 0, 0) and basis vectors {(0, 1, 1), (1, 0, 2),
(1,−1, 0)}. Find the matrices M𝒮1→𝒮2

and M𝒮2→𝒮1
. Use the matrices to find

the 𝒮2 coordinates of P = (1, 1, 1) where these coordinates are in 𝒮1.

5. Assume the world coordinate system has basis vectors {⃗i, j⃗, k⃗}. There is a cube
with vertices (±1,±1,±1) sitting in the world. A camera is centered at location
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(20, 10, 5) looking at the point (1, 2, 2). The up vector is approximately (0, 1, 1).
Find the matrix M𝒲→𝒞 and use it to find the camera coordinates of the cube’s

vertices.

6. In the previous problem, suppose the cube is in its own local coordinate system

which coincides with the world coordinate system. Rotate the local system 𝜋∕4
around the y-axis. Now determine the camera coordinates for the cubes vertices.

7. By using the properties of linear transformations, show that once we know

where a linear transformation sends the basis vectors in a coordinate system,

we can determine where any vector is sent.

8. If system 𝒮1 is right-handed and system 𝒮2 is left-handed, what can we say

about the matrix M𝒮1→𝒮2
?

9. In Example 5.3, the matrix M𝒲→𝒞 has −0.02 in the upper right corner. Show

that, theoretically, this should be zero and, therefore, round-off error must

explain the difference.

10. An orthogonal matrix is square with orthonormal columns. Show that if M is

orthogonal, then MTM = I and hence M−1 = MT .

11. Reasoning by analogy with the three-dimensional case, give the 3 matrix that

transforms coordinates from one system to another. In particular, find M𝒮1→𝒮2

where 𝒮1 has basis vectors {⃗i, j⃗} (two dimensions) and 𝒮2 has origin (2, 6)
and basis vectors {(2, 2), (1, 3)}. Verify the matrix by converting (4, 5) from 𝒮1

coordinates to 𝒮2 coordinates.

12. Start with the standard orthonormal coordinate system in three dimensions and

rotate counterclockwise through 𝜋∕2 around the x-axis. Now, rotate 𝜋∕2 clock-
wise around the z-axis. This produces coordinate systems𝒮1,𝒮2, and𝒮3. Find

the𝒮1 coordinates for a point given in𝒮3 coordinates. Determine which matri-

ces transform coordinates from each of these systems to the others.

13. Let R =
⎡⎢⎢⎣
0.577 0.408 0.707

0.577 −0.816 0

0.577 0.408 −0.707

⎤⎥⎥⎦. Verify that R is a rotation matrix and find

the Euler angles appropriate for rotations around x, y, and z in that order.

14. Let z1 and z2 be complex numbers. Note that dividing z1 by z2 gives z1z2∕|z2|2.
Now take four points in the plane A, B, C, and D. Consider their coordinates

as complex numbers. Show that the line through A and B is parallel to the one

through C and D if and only if (A − B)∕(C − D) is a real (not complex) number.

Similarly, show that the lines are perpendicular if and only if (A − B)∕(C − D)
is a purely imaginary number (no real part).

15. If q̂, r̂, and ŝ are quaternions, show that q̂(r̂ + ŝ) = q̂r̂ + q̂r̂.

16. Use quaternions to rotate the vector (1, 1, 2) around the axis (−1, 2, 6) by 𝜋∕6
radians.
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17. Find the quaternions for a rotation of 𝜋∕3 around the axes (2, 0,−2) and

(−3, 1, 1). Determine the quaternion representing the composition of these two

in order. Find the axis of the resulting rotation.

18. In the slerp derivation, we assumed q̂1 and �̂� had unit length. Show that this

implies q̂(t) has unit length. Verify that the expression for �̂� in Equation 5.18

has unit length.

19. Sketch the graph of the polar equations r = 1 + sin 𝜃 and r = cos(2𝜃).

20. Find the polar equation of a unit circle.

21. In cylindrical coordinates, describe the shapes z = 5, r = 5, z = r.

22. Using spherical coordinates, describe a unit sphere with a cylindrical hole of

diameter 0.25 through the north pole and the south pole of the sphere.

23. An implicit or explicit equation for a two-dimensional line can be put in the

form mx + ny = 1. Then, the coordinates (m, n) uniquely describe the line since
the intercepts on the x- and y-axis are

( 1

m
, 0

)
and

(
0,

1

n

)
. The line can easily

be drawn between these intercepts (allowing for m or n to be zero). Show that

the equation m2 + n2 = 1 represents all lines tangent to the unit circle. (Other

interesting patterns of lines can be described by various equations using the line

coordinates.)

24. Show that T(�̂�) = q̂�̂�q̂−1 is a linear transformation by showing that it satisfies

the addition and scalar multiplication properties.

5.5.1 Programming Exercises

1. Write a program to keeping track of a cube of edge length 2 centered at (0, 0, 1).
Use a world coordinate system, a local coordinate system, and a camera coor-

dinate system. Draw the cube on the screen and allow the user to rotate around

the cube’s center or around the world origin. (If possible, draw the cube in

perspective.)

2. Write a program for graphing a polar equation. Use it to graph r = esin𝜃 −
2 cos(4𝜃) + sin5(𝜃∕12).



6
POLYGONS AND POLYHEDRA

Since lines and planes are fundamental to geometry, shapes bounded by lines and

planes at least have access to the center stage in computer graphics. Most modeling

efforts, no matter how they begin, usually end up with a vast assortment of triangles

because this shape is guaranteed to be planar even when the vertices are points in

space. There are online repositories of models composed entirely of very large sets

(thousands) of triangles. Understanding the geometry of triangles and how to effi-

ciently use them in computation is particularly important in graphics. More general

polygons arise when constructing complex objects (polyhedra) and when projecting

those objects to find shadows. The geometry of both polygons and polyhedra is the

key to much of graphics and gives rise to a wide range of mathematical tools.

6.1 TRIANGLES

Triangles are well studied in elementary geometry, and with vector geometry we have

the tools to calculate most of what we need in graphics: side lengths, angles, and

areas. One key problem is to determine whether a point of intersection is inside a

triangle in space. Although elementary tools can suffice, there is always a quest to find

better ways to express the problem in the hope of improving computational efficiency.

Barycentric coordinates offer a different view of triangle geometry and thereby lead

to some nice algorithms.

Mathematical Structures for Computer Graphics, First Edition. Steven J. Janke.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

164



TRIANGLES 165

6.1.1 Barycentric Coordinates

Recall from Chapter 2 (Section 2.1.1) that addition of points cannot be defined

uniquely. However, if we take an affine combination
∑n

i=0 𝛼iPi, where
∑n

i=0 𝛼i = 1,

then we do get a well-defined point. This is why we can represent points on a line as

P = (1 − t)P0 + tP1. The numbers (1 − t) and t are called barycentric coordinates
and determine the location of a point relative to the reference points P0 and P1. For

a triangle, the three vertices become reference points.

Start with an arbitrary point P somewhere insideΔP0P1P2 and let the line through

P0 and P intersect the side P1P2 at point Q (Figure 6.1). Drawing on our experience

with line segments, Q = (1 − t)P1 + tP2 for 0 ≤ t ≤ 1. Now let P0 and Q be the two

end points so P = (1 − s)P0 + sQ, where 0 ≤ s ≤ 1. Algebraic simplification gives P
as a weighted average of the three reference points.

P = (1 − s)P0 + sQ

= (1 − s)P0 + s(1 − t)P1 + stP2

= 𝛼0P0 + 𝛼1P1 + 𝛼2P2 (6.1)

A quick check shows that 𝛼0 + 𝛼1 + 𝛼2 = 1 and 0 ≤ 𝛼i ≤ 1 for i = 0, 1, 2. The three

coefficients (𝛼0, 𝛼1, 𝛼2) are the barycentric coordinates of P relative to the triangle

ΔP0P1P2.

If P is outside the triangle as shown on the right in Figure 6.1, then the line from

P0 to P still intersects P1P2 at Q, but now P = (1 − s)P0 + sQ with s > 1. The sum

of the 𝛼i’s is still 1, but now one of them is negative. In the figure, the geometric

construction takes a line from P0 through P. Yet, the same sort of construction could

have taken a line starting at P1 through P. (In fact, when P is outside the triangle,

it may be necessary to take a line starting at some vertex other than P0 in order to

ensure intersection with the opposite side.) If we use one of these other lines to find

the barycentric coordinates, will we get the same answer as before?

To answer this question, revisit Equation 6.1 and notice that, since the sum of the

barycentric coefficients is 1 (𝛼0 = 1 − 𝛼1 − 𝛼2), we can rearrange the equation to get

P − P0 = 𝛼1(P1 − P0) + 𝛼2(P2 − P0) (6.2)

P0

P1 P2

P

Q

P0

P1 P2

P
Q

Figure 6.1 Determining barycentric coordinates
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This is an equation about vectors because the subtraction of one point from another

gives a vector. A linear combination of the two vectors (P1 − P0) and (P2 − P0)
gives the vector (P − P0). We can actually think of the two vectors on the right as

designating the axes of a coordinate system (possibly non-orthogonal axes) and the

coefficients are coordinates in that coordinate system. If there were another possible

set of barycentric coordinates, then there would be different values for either 𝛼1 or 𝛼2
(or both) that satisfy the equation. That is

P − P0 = 𝛼∗
1
(P1 − P0) + 𝛼∗

2
(P2 − P0) (6.3)

Subtracting Equation 6.3 from Equation 6.2 gives

(𝛼1 − 𝛼∗
1
)(P1 − P0) + (𝛼2 − 𝛼∗

2
)(P2 − P0) = 0

=⇒ (P1 − P0) =
(𝛼2 − 𝛼∗

2
)

(𝛼1 − 𝛼∗
1
)
(P2 − P0)

If there were another set of barycentric coordinates, then (P1 − P0) is a multiple of

(P2 − P0), but this could only be true if the triangle were really just a line. If the

vertices are noncollinear, then the barycentric coordinates must be unique.

Definition 6.1 (Barycentric Coordinates). Given three noncollinear points P0,P1,

and P2 forming the vertices of a triangle, if an arbitrary point P can be expressed as
P = 𝛼0P0 + 𝛼1P1 + 𝛼2P2 with 𝛼0 + 𝛼1 + 𝛼2 = 1, then the coefficients (𝛼0, 𝛼1, 𝛼2) are
called barycentric coordinates relative to the triangle ΔP0P1P2.

Result 6.1 (Barycentric Coordinates). Every point in the plane of a triangle has
unique barycentric coordinates with respect to that triangle. The point P is inside or
on the triangle if and only if its barycentric coordinates satisfy 𝛼i ≥ 0 for i = 1, 2, 3.

The definition of barycentric coordinates only requires that we have the vertices

of a triangle. That triangle can be positioned in two or three dimensional space. If we

have the barycentric coordinates of a point and the Cartesian coordinates (ordered

pairs or ordered triples) for the vertices of the reference triangle, then we can cal-

culate the Cartesian coordinates of the given point. For example, to find P(x), the x
coordinate of the point P, calculate P(x) = 𝛼0P0(x) + 𝛼1P1(x) + 𝛼2P2(x).

Notice that the barycentric coordinates of the reference points P0, P1, and P2 are,

respectively, (1, 0, 0), (0, 1, 0), and (0, 0, 1). For any point on the line through P1 and

P2, we have 𝛼0 = 0. Similarly, 𝛼1 = 0 and 𝛼2 = 0 indicate points on lines containing

the sides opposite the reference points P1 and P2, respectively.

6.1.2 Areas and Barycentric Coordinates

Somewhat surprisingly, barycentric coordinates are related to areas in the triangle. In

Figure 6.2, ΔP0P1P2 is drawn with dotted lines P0E and PF indicating the altitudes
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P0

P1 P2

P

QE F

Figure 6.2 Barycentric coordinates and areas

of the larger triangle and the smaller ΔPP1P2, respectively. Both triangles have the
same base P1P2, so the ratio of the smaller triangle’s area to the larger triangle’s area

is the same as the ratio of the lengths of PF to P0E.
ΔPFQ and ΔP0EQ are similar (right) triangles, so PF∕P0E equals PQ∕P0Q. This

ratio is 𝛼0 = (1 − s) because in our derivation P = (1 − s)P0 + sQ. So the barycentric

coordinate 𝛼0 is the ratio of the area of a triangle formed by P to the area of the entire

reference triangle.
Barycentric coordinates are unique, so drawing a similar diagram with a line

through P1 and P shows that the barycentric coordinate for P1 is also a ratio of areas.

One more application of the argument shows that it is true for P2 as well. Let T be
the area of the reference triangle ΔP0P1P2.

𝛼0 =
Area of ΔPP1P2

T

𝛼1 =
Area of ΔPP2P0

T

𝛼2 =
Area of ΔPP0P1

T
(6.4)

Figure 6.2 places the point P inside the triangle. If it is outside the triangle, then
at least one of the barycentric coordinates must be negative. In particular, suppose

P is underneath the bottom edge P1P2 in the figure. Then ΔPP1P2 has a negative

altitude and the vertices given in the order P,P1,P2 are traced in a clockwise order
rather than in the counterclockwise order when P is above the bottom edge. Both

these characteristics indicate that we should assign a negative area to the triangle.

Now the ratio of this area to the area of the reference triangle is negative, indicating
that 𝛼0 will be negative.

The point P could be outside the triangle but still above the bottom edge P1P2,

indicating that the area is still positive. Yet, the other two coordinates, 𝛼1 and 𝛼2,

are determined by the triangles P forms with the other two sides of the triangle. If
P is outside the reference triangle, at least one of these smaller triangles will have

negative area.
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We know how to find the areas of triangles by using cross products, and using the

order of the vertices to determine the order of the cross product will guarantee that we

keep track of positive and negative areas. However, another slightly more straightfor-

ward method offers an approach that can be more computationally efficient.

Figure 6.3 again shows the reference triangle, but we set up vectors for two of the

sides plus one vector locating the point P.

𝑣1 = P0 − P1 𝑣2 = P2 − P1 �⃗� = P − P1

The vector n⃗ in the figure is a unit vector perpendicular to P1P2 and pointing to the

inside of the triangle. Projecting 𝑣1 onto n⃗ gives the altitude of the reference triangle,

and by keeping track of the direction of the altitude we can tell whether the area

should be positive or negative.

First we need an expression for n⃗. The plan is to break 𝑣1 into two components:

one called u⃗‖, which is parallel to 𝑣2, and one called u⃗⊥, which is perpendicular to 𝑣2.
To start, normalize 𝑣2 and then project 𝑣1 onto it. The projection is u⃗‖. Subtracting
this from 𝑣1 gives u⃗⊥, and normalizing gives n⃗.

u⃗⊥ = 𝑣1 − u⃗‖ = 𝑣1 − (𝑣1 ⋅ 𝑣2)
𝑣2|𝑣2|2

n⃗ =
u⃗⊥|u⃗⊥|

Referring back to the figure, the altitude of ΔP0P1P2 is the projection of 𝑣1 onto n⃗,
and the altitude of ΔPP1P2 is the projection of �⃗� onto n⃗. They both have the same

base, which is the length of 𝑣2. The areas are now simple to compute.

Area of ΔP0P1P2 =
1

2
(𝑣1 ⋅ n⃗)|𝑣2|

Area of ΔPP1P2 =
1

2
(�⃗� ⋅ n⃗)|𝑣2|

P0

P1 P2

P
v1

v2

w n

Figure 6.3 Using vectors to find barycentric coordinates
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The ratio of the two areas is 𝛼0.

𝛼0 =
(�⃗� ⋅ n⃗)|𝑣2|
(𝑣1 ⋅ n⃗)|𝑣2| = �⃗� ⋅ u⃗⊥

𝑣1 ⋅ u⃗⊥

= �⃗� ⋅
u⃗⊥

𝑣1 ⋅ u⃗⊥
= �⃗� ⋅

|𝑣2|2𝑣1 − (𝑣1 ⋅ 𝑣2)𝑣2|𝑣2|2|𝑣1|2 − (𝑣1 ⋅ 𝑣2)2
= �⃗� ⋅ k⃗0 (6.5)

The barycentric coordinate 𝛼0 is the dot product of �⃗� with a vector called k⃗0 which
depends on 𝑣1 and 𝑣2. This vector can be precomputed and then used to find 𝛼0 for

any point P. Moreover, returning to Figure 6.3, the coordinate 𝛼2 can be derived in

a manner similar to what we did for 𝛼0. This time, vector �⃗� and 𝑣2 are projected

onto a vector perpendicular to 𝑣1. The result is simply the expression we have for

𝛼0 with 𝑣1 and 𝑣2 interchanged. The vector k⃗0 becomes k⃗2, and 𝛼2 = �⃗� ⋅ k⃗2. Finally,
𝛼1 = 1 − 𝛼0 − 𝛼2. Little changes if P is outside the triangle because the dot products

can be negative and produce a negative coordinate.

Example 6.1 (Finding Barycentric Coordinates). Suppose the reference triangle has

vertices with the following Cartesian coordinates:

P0 = (1, 1, 1)

P1 = (−5,−2, 13)

P2 = (5,−7, 17)

To find the barycentric coordinates of the point P = (0,−2, 9), first determine the

vectors we designated in the derivation.

𝑣1 = P0 − P1 = (6, 3,−12)

𝑣2 = P2 − P1 = (10,−5, 4)

�⃗� = P − P1 = (5, 0,−4)

At this stage, we are assuming that P actually is in the plane of the triangle. We can

check this quickly by taking the cross product 𝑣1 × 𝑣2 to find a vector perpendicular

to the plane of the triangle.

𝑣1 × 𝑣2 =
|||| 3 −12
−5 4

|||| i⃗ −
|||| 6 −12
10 4

|||| j⃗ +
|||| 6 3

10 −5
|||| k⃗ = (−48,−144,−60)

Then we calculate �⃗� ⋅ (−48,−144,−60) = 0 and conclude that �⃗� is in the plane,

which implies P is also in the plane.
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The calculation of k⃗0 proceeds as follows:

k⃗0 =
|𝑣2|2𝑣1 − (𝑣1 ⋅ 𝑣2)𝑣2|𝑣2|2|𝑣1|2 − (𝑣1 ⋅ 𝑣2)2

= 141(6, 3,−12) − (−3)(10,−5, 4)
141 ⋅ 189 − (−3)2

≈ (0.033, 0.015,−0.063)

Now, 𝛼0 = �⃗� ⋅ k⃗0 ≈ 0.417. We need k⃗2 in order to calculate 𝛼2.

k⃗2 =
|𝑣1|2𝑣2 − (𝑣1 ⋅ 𝑣2)𝑣1|𝑣2|2|𝑣1|2 − (𝑣1 ⋅ 𝑣2)2

= 189(10,−5, 4) − (−3)(6, 3,−12)
141 ⋅ 189 − (−3)2

≈ (0.072,−0.035, 0.027)

This gives 𝛼2 = �⃗� ⋅ k⃗2 ≈ 0.252, and, finally, 𝛼1 = 1 − 0.417 − 0.252 ≈ 0.331 (The

exact coordinates are ( 5

12
,
1

3
,
1

4
). Round-off error explains our approximations.) We

could have rearranged Figure 6.3 and defined vectors from P2 to the other vertices.

This would have given us an expression for k⃗1 whichwe could use to find 𝛼1. However,
once we have 𝛼0 and 𝛼2, subtracting from 1 gives us the third coordinate immediately.

Before we leave this example, notice that the barycentric coordinates for P are all

positive and less than 1. The point is actually inside the triangle. Since we have cal-

culated k0 and k2, we can find the coordinates for any point in the plane. For example,

take P0 = (1, 1, 1) with a new �⃗� = (1, 1, 1) − (−5,−2, 13) = (6, 3,−12). To find the

barycentric coordinates, two dot products do the trick.

𝛼0 = �⃗� ⋅ k⃗0 = (6, 3,−12) ⋅ (0.033, 0.015,−0.063) ≈ 0.999

𝛼2 = �⃗� ⋅ k⃗2 = (6, 3,−12) ⋅ (0.072,−0.035, 0.027) ≈ 0.003

These are reasonable approximations to the exact coordinates (1, 0, 0). ◽

Example 6.2 (Intersection). Many of the calculations in graphics begin by consid-

ering a ray of light emanating from some point in space and traveling in a given direc-

tion. Imagine a ray emanating from the point with Cartesian coordinates (5, 41, 18)
and traveling in the direction of the vector (−2,−5,−3).

To determine whether this ray intersects the triangle in Example 6.1, we first find

the plane containing the triangle and then calculate where the ray intersects the plane.
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As we calculated in the previous example, the vector (−48,−144,−60) is perpendic-
ular to the plane and we know that the point P0 = (1, 1, 1) is on the plane. To simplify

a little, the vector (4, 12, 5) is also perpendicular to the plane. The ray is just a line, and
any point on the line is P = (5, 41, 18) + t(−2,−5,−3). Recalling the vector solution
for the intersection of a line and plane gives the value of t.

t = (4, 12, 5) ⋅ ((5, 41, 18) − (1, 1, 1))
(4, 12, 5) ⋅ (−2,−5,−3)

= 7

We then find the point of intersection and the new vector �⃗�.

P = (5, 41, 18) + 7(−2,−5,−3) = (−9, 6,−3)

�⃗� = (−9, 6,−3) − (−5,−2, 13) = (−4, 8,−16)

Following Example 6.1, we calculate the barycentric coordinates using the vectors k⃗0
and k⃗2.

𝛼0 = �⃗� ⋅ k⃗0 = (−4, 8,−16) ⋅ (0.033, 0.015,−0.063) ≈ 0.996

𝛼2 = �⃗� ⋅ k⃗2 = (−4, 8,−16) ⋅ (0.072,−0.035, 0.027) ≈ −1.00

One coordinate is negative, indicating that the point of intersection is outside the tri-
angle. (Again, the approximations are within round-off error of the exact barycentric

coordinates (1, 1,−1)). ◽

6.1.3 Interpolation

Barycentric coordinates in one dimension express points on a line as P = (1 − t)P0 +
tP1 using P0 and P1 as reference points. In two dimensions, points in the plane of a tri-

angle can be expressed as affine combinations of the triangle’s vertices. We can, if we
wish, move up another dimension and express a point P in space as an affine combina-

tion of four points. In each of these cases, the barycentric coordinates give us a conve-
nient way to explore a particular geometry by tying everything to the reference points.

One very useful result is the ability to interpolate other quantities, like color, across
a line segment or across the face of a triangle. Suppose that the line segment is part

of an object sitting in a scene and that the color of the point P0 is red with intensity
0.2 on a scale 0–1. Let the reference point P1 also be red with intensity 0.8. What

colors are the rest of the points on the line segment? This again is a standard graphics
problem where we only know colors at a few points and need to fill in the rest.

To determine the color of the midpoint of the line segment, we could argue that
the intensity of the red color increases linearly across the segment, so at the mid-

point the intensity is 0.2 + 1

2
(0.8 − 0.2) = 0.5. Of course, this is the same as using

the barycentric coordinates to calculate
1

2
0.2 + 1

2
0.8 = 0.5. In general, if c(P) is the

color of a point, and if we assume that it changes linearly across a line segment, then

c(P) = (1 − t)c(P0) + tc(P), where the barycentric coordinates of P are ((1 − t), t).
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Looking just a little closer at the characteristics of the function c, notice that it is
a linear function. That is, c(x + y) = c(x) + c(y) and c(kx) = kc(x) for constant k. The
function could be a function of scalar quantities (like intensity of red), or it could be
a vector quantity (like three color components red, green, blue). The technique we
are describing is a way of assigning the values of a linear function to points on a line
when we only know the values at the reference points. If f is a linear function and the
values f (P0) and f (P1) are known, then f (P) = (1 − t)f (P0) + tf (P1). This is called
linear interpolation.

Barycentric coordinates relative to a triangle give us a convenient way to linearly
interpolate colors across the entire triangle. If P0 and P1 are the intensity of red given
before and P2 has intensity 0.3, then the color of a point P (probably inside the trian-
gle) with barycentric coordinates (𝛼0, 𝛼1, 𝛼2) is c(P) = 𝛼0(0.2) + 𝛼1(0.8) + 𝛼2(0.3). In
a later chapter when discussing lighting, we will associate vectors with each reference
point. Then, the same linear interpolation technique applied to each vector coordinate
could find vectors associated with any point in the triangle. There is one caveat with
vector interpolation, however; that is, if we want unit vectors, there is no guarantee
that the interpolated vectors will have unit length. We may have to normalize.

Interpolation plays a key role throughout graphics, and the current technique
assumes that the function we are interpolating is linear. This is often a desirable
assumption, but there are other techniques that do not make the linearity assumption.
We saw this when interpolating quaternions for orientation purposes; linear inter-
polation applied directly to quaternions gave awkward orientation changes, so the
better method was to try a spherical interpolation.

6.1.4 Key Points in a Triangle

Barycentric coordinates form a particularly useful tool when investigating the geom-
etry of the triangle. The fact that a point is inside a triangle precisely when the
barycentric coordinates are all positive (and sum to 1) is a key result, but there are
other cases where the barycentric coordinates offer relatively simple algebraic inter-
pretations of important geometric relationships. Ceva’s theorem is somewhat central
to the geometry of triangles and follows readily from the development of barycentric
coordinates.

Figure 6.4 shows three line segments starting at vertices and intersecting at the
point P. The line segments intersect the sides of the triangle at Q, R, and M. As
before,

Q = (1 − t)P1 + t(P2) =⇒
P1Q

QP2

= t
1 − t

Also, as before, P = (1 − s)P0 + sQ, and this leads us to

P = (1 − s)P0 + s(1 − t)P1 + stP2 = 𝛼0P0 + 𝛼1P1 + 𝛼2P2

=⇒
𝛼2
𝛼1

= t
1 − t

=
P1Q

QP2
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P0

P1 P2

P

Q

R
M

Figure 6.4 Ceva’s theorem

Now move on to the line segment P1R and suppose R = (1 − r)P2 + rP0. Since

barycentric coordinates are unique, the same reasoning as before leads us to

𝛼0

𝛼2
= r

1 − r
=

P2R

RP0

The third side of the triangle equates another two ratios and the following equations

summarize the results:

𝛼2 =
t

1 − t
𝛼1, 𝛼0 =

r
1 − r

𝛼2, 𝛼1 =
m

1 − m
𝛼0

=⇒ t
(1 − t)

r
(1 − r)

m
(1 − m)

= 1 (6.6)

Each of the three ratios in this last equation is equal to the ratio of line segments in

the triangle. Substituting these segment ratios into the equation gives Ceva’s theorem

(named after the Italian mathematician who published it in 1678).

Theorem 6.1 (Ceva). In ΔP0P1P2, if line segments from each vertex to the opposite
side intersect in point P, then

P1Q

QP2

⋅
P2R

RP0

⋅
P0M

MP1

= 1.

The theorem assumes that the three line segments intersect at point P, but we can
also argue in the other direction. Suppose three line segments produce three ratios

(call them 𝜌0, 𝜌1, 𝜌2) such that 𝜌0𝜌1𝜌2 = 1. Then, if the third segment did not pass

through P, there is another segment from the same vertex that does and it divides the

opposite side into the ratio 𝜌∗
2
. But then Ceva’s theorem holds, and 𝜌0𝜌1𝜌

∗
2
= 1. This

forces 𝜌∗
2
= 𝜌2, and the original third segment must have passed through the point P.

Figure 6.4 shows Q, R, and M on the three sides of the triangle. However, the

theorem still holds if, for example, t or (1 − t) is negative. This puts Q outside the

line segment P1P2 but still on the line containing it. The derivation of the theorem
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works just as before, although we have to think of line segment lengths as being

signed. P1Q has a positive length, but QP1 is negative. Often, the line segments

P0Q,P1R, and P2M, called cevians, intersect inside the triangle, yet they can inter-

sect outside. In both cases, Ceva’s theorem holds.

Example 6.3 (Medians). A median of a triangle connects a vertex to the midpoint

of the opposite side. So it divides the side in two parts with a ratio of 1. Consequently,

all three medians produce ratios whose product is 1 and they must meet at a point C
(Figure 6.5).

This point is called the centroid of the triangle. Since all the ratios are 1,

Equation 6.6 implies that all the barycentric coordinates for C are equal. Since they

sum to 1 and C is inside the triangle, we can solve for the coordinates.

Centroid:
1

3
P0 +

1

3
P1 +

1

3
P2 (6.7)

One result of the three coordinates being equal is that the centroid divides eachmedian

in the ratio of 2 : 1 (see Exercises). ◽

Example 6.4 (Angle Bisectors). Another set of three line segments bisect each ver-

tex angle and intersect the opposite side. In Figure 6.6, segment P0Q bisects the angle

𝜃 = ∠P1P0P2. There are two triangles formed by this angle bisector, ΔP0QP1 and

ΔP0QP2.

Let 𝛽1 = ∠P1QP0 and 𝛽2 = ∠P2QP0. Then 𝛽1 + 𝛽2 = 𝜋, so sin 𝛽1 = sin 𝛽2. Apply-

ing the law of sines (Chapter 1) to two angles in each of the two triangles gives

sin
1

2
𝜃

P1Q
=

sin 𝛽1
P1P0

sin
1

2
𝜃

QP2

=
sin 𝛽2
P2P1

=⇒
P1Q

QP2

=
P1P0

P2P0

P0

P1 P2

C
Midpoint

Figure 6.5 Triangle medians
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P0

P1 P2

I

Q

β1 β2

θ

Figure 6.6 Triangle angle bisectors

The angle bisectors divide the opposite side in a ratio equal to the ratio of the length
of two adjacent sides. For notational simplicity, label the side lengths, l0 = P1P2, l1 =
P2P0, and l2 = P0P1. The product of the ratios is now

P1Q

QP2

⋅
P2R

RP0

⋅
P0M

MP1

=
l2
l1

⋅
l0
l2

⋅
l1
l0

= 1

This shows, again via Ceva’s theorem, that the angle bisectors all meet at point I
called the incenter. Since any point on a bisector is equidistant from the sides of the
angle, the incenter is the center of a circle inscribed in the triangle just touching the
sides.

Recalling Equation 6.6 , we have

𝛼2 =
l2
l1
𝛼1, 𝛼0 =

l0
l2
𝛼2, 𝛼1 =

l1
l0
𝛼0

From these equations, we can write 𝛼1 and 𝛼2 in terms of 𝛼0. Then, since the sum of
the three coordinates is 1, we get an equation in 𝛼2.

𝛼0 +
l1
l0
𝛼0 +

l2 ⋅ l1
l1 ⋅ l0

𝛼2 = 1 =⇒ 𝛼0 =
l0

l1 + l2 + l3

Let the perimeter of the triangle be Lp = l0 + l1 + l2.

Incenter:
l0
Lp

P0 +
l1
Lp

P1 +
l2
Lp

P2 (6.8)

The radius rI of the incircle is not difficult to find because it is the altitude, for

example, of ΔP1IP2, which means the area of the triangle is
1

2
rIl0. Similarly, the

radius is the altitude of ΔP2IP0 and ΔP0IP1. Adding the area of the three triangles
together gives the area of the whole triangle.

Area of ΔP0P1P2 =
1

2
rI(l0 + l1 + l2)
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The radius of the incircle is twice the area of the entire triangle divided by its
perimeter. With the incenter and the radius, we can draw the incircle. Any time we
need a circle tangent to three lines, we can use this technique. ◽

Example 6.5 (Altitudes). If the cevians P0Q, P1R, and P2M are perpendicular to
the opposite sides, they are called the altitudes. Figure 6.7 shows the case where the
altitudes all lie inside the triangle. Once more, for notational simplicity, denote the
length of the sides by l0 = P1P2, l1 = P1P0, and l2 = P0P1.

Both ΔP1QP0 and ΔP2QP0 are right triangles, so cos 𝛽1 =
P1Q

l2
and cos 𝛽2 =

QP2

l1
.

Dividing the two equations gives
P1Q

QP2
= l2 cos 𝛽1

l1 cos 𝛽2
. This same analysis looking at the tri-

angles formed by the other cevians establishes formulas for the three ratios in Ceva’s
theorem.

P1Q

QP2

=
l2 cos 𝛽1
l1 cos 𝛽2

,
P2R

RP0

=
l0 cos 𝛽2
l2 cos 𝛽0

,
P0M

MP1

=
l1 cos 𝛽0
l0 cos 𝛽1

Multiplying the three equations together shows that the product of the segment ratios
is 1. It follows that the altitudes intersect in a point O called the orthocenter of the
triangle. If the triangle has an angle larger than 𝜋∕2, then the altitudes will intersect
at a point outside the triangle and we need to keep track of the signed lengths of the
appropriate segments.

Just as we did for the angle bisectors, we can use Equations 6.6 along with the
ratios we have established for the altitudes to calculate the barycentric coordinates.

𝛼2 =
l2 cos 𝛽1
l1 cos 𝛽2

𝛼1, 𝛼0 =
l0 cos 𝛽2
l2 cos 𝛽0

𝛼2, 𝛼1 =
l1 cos 𝛽0
l0 cos 𝛽1

𝛼0

Since the sum of the barycentric coordinates is 1, the three equations above can be
solved for 𝛼0.

𝛼0 =
l0 cos 𝛽1 cos 𝛽2

l0 cos 𝛽1 cos 𝛽2 + l0 cos 𝛽1 cos 𝛽2 + l0 cos 𝛽1 cos 𝛽2

This expression is a little messy, so we write the cosines in terms of dot products.

P0

P1 P2

O

Q

Figure 6.7 Triangle altitudes
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b0 = (P2 − P0) ⋅ (P1 − P0) = l1l2 cos 𝛽0

b1 = (P0 − P1) ⋅ (P2 − P1) = l2l0 cos 𝛽1

b2 = (P1 − P2) ⋅ (P0 − P2) = l0l1 cos 𝛽2

k0 = b1b2, k1 = b0b2, k2 = b0b1

K = k0 + k1 + k2

Orthocenter:
k0
K

P0 +
k1
K

P1 +
k2
K

P2 (6.9)

If the altitudes intersect outside the triangle, some of the dot products will be negative,

which is consistent with the barycentric coordinates for the points outside. ◽

Example 6.6 (Perpendicular Bisectors). For one more key point in the triangle, we

look for the center of a circle that goes through the three vertices. The center must be

equidistant from each of the vertices, so it is on the perpendicular bisectors for each

of the triangle’s sides. These bisectors are not cevians because they do not go through

the vertices, but they are related to cevians in another triangle.

In Figure 6.8, the points Q0,Q1, and Q2 are midpoints of the sides and the dotted

lines are perpendicular bisectors for each side. Although the bisectors are not cevians

for ΔP0P1P2, notice that they are cevians for0 ΔQ0Q1Q2. In addition, because each

Qi is a midpoint, the sides of ΔQ0Q1Q2 are each parallel to a side of ΔP0P1P2. This

means that the perpendicular bisectors of ΔP0P1P2 are altitudes of ΔQ0Q1Q2. We

know the altitudes intersect in a single point labeled CC in the figure and we have the

barycentric coordinates relative to ΔQ0Q1Q2. The point CC is the circumcenter for
ΔP0P1P2.

Since each Qi is a midpoint, they can be expressed as affine combinations of the

larger triangle’s vertices; for example, Q0 =
1

2
P1 +

1

2
P2. This allows computation of

P0

P1 P2

CC

Q0

Q1Q2

Figure 6.8 Perpendicular bisectors of triangle sides
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barycentric coordinates relative to the larger triangle ΔP0P1P2. Using the notation
from the previous example on altitudes, we have

CC =
k0
K

Q0 +
k1
K

Q1 +
k2
K

Q2

=
k0
K

(
1

2
P1 +

1

2
P2

)
+

k1
K

(
1

2
P0 +

1

2
P2

)
+

k2
K

(
1

2
P0 +

1

2
P1

)
=

(k1 + k2)
2K

P0 +
(k0 + k2)

2K
P1 +

(k0 + k1)
2K

P2

Circumcenter:
(k1 + k2)

2K
P0 +

(k0 + k2)
2K

P1 +
(k0 + k1)

2K
P2 (6.10)

The quantity 2K is equal to the perimeter ofΔP0P1P2. The circumcenter is equidistant
from each vertex and is the center of the circumcircle that encloses the triangle. Just
as for altitudes, the circumcenter can be outside the triangle, and in that case some of
the barycentric coordinates will be negative. ◽

6.2 POLYGONS

Triangles are the most primitive shape in graphics, but polygons show up so often
that we have to be prepared to analyze and manipulate them. A polygon description
includes a set of vertices and a set of edges; more precisely, we have the following
definition:

Definition 6.2 (Polygon). A polygon is an ordered set of distinct points
P0,P1, … ,Pn−1, called vertices such that (P0P1), (P1P2), … , (Pn−1P0) are the
edges.

With distinct points and edges that go from one vertex to the next, the definition
does not allow polygons to have holes inside. Clearly, a triangle is a polygon and there
can be all types of other polygons from those that appear nicely symmetric with equal
sides to those that are twisted with edges that intersect each other. To categorize them,
we start by defining simple polygons to be those such that only two edges intersect
at each vertex, and no two edges intersect anywhere else. This eliminates twisted
figures, so we will concentrate our investigation on simple polygons (Figure 6.9).

The edges of a simple polygon form an enclosed fence around the inside. However,
the fence can be quite wiggly, so we further categorize polygons into those that are
convex and those that are concave.

Definition 6.3 (Convex Polygon). If for any two points inside or on an edge of a
polygon the line segment bounded by those points is entirely inside (or on an edge)
the polygon, the polygon is convex.
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Convex Concave Twisted

Figure 6.9 Types of polygons

P0

P1

P2

P3

P4

n
v2

Figure 6.10 Traversing polygon edges

6.2.1 Convexity

A triangle is always a convex polygon. Convexity is a nice geometric property and

constrains the position of the edges so that, as we follow the edges around the polygon,

we always turn in the same direction at each vertex. We do not turn right at one

vertex and left at the next. It is convenient to think of the edges as vectors, so we

let 𝑣i = Pi+1 − Pi for i = 0, 1, … , n − 2 and 𝑣n−1 = P0 − Pn−1. Following the edge

vectors one after the other gives a direction to the perimeter of the polygon. The

definition of vector addition shows that the sum of all the edge vectors is the zero

vector, that is,
∑n−1

i=0 𝑣i = 0.

Imagine rotating an edge vector 𝜋∕2 radians clockwise to get a normal vector. The

normal can help determine if the next edge vector in the sequence involves turning to

the right or left. If the dot product of the normal with the next edge vector is positive,

then it is a right turn. Otherwise, it is a left turn. The turns are not necessarily 𝜋∕2
radians, but rather simply in the left or right direction. This leads to a method for

deciding if the polygon is convex. If all the turns are in the same direction, the polygon

is convex (Figure 6.10).

Example 6.7 (Determining Convexity). In order, the points (1, 5), (4, 8), (5, 4),
(6, 2), (2,−1) describe a polygon. The edge vectors are then

𝑣0 = (3, 3) 𝑣1 = (1,−4) 𝑣2 = (1,−2)

𝑣3 = (−4,−3) 𝑣4 = (−1, 6)
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Rotating a vector by 𝜋∕2 radians in the clockwise direction involves multiplying by
the correct rotation matrix, and in this case the vector (x, y) becomes (y,−x). So the

normals are

n⃗0 = (3,−3) n⃗1 = (−4,−1) n⃗2 = (−2,−1)

n⃗3 = (−3, 4) n⃗4 = (6, 1)

To determine the turn moving from 𝑣0 to 𝑣1, calculate n⃗0 ⋅ 𝑣1 = 15 > 0. The pos-

itive dot product implies it is a right turn. The rest of the turns can be calculated
similarly, but from 𝑣1 to 𝑣2, we get n⃗1 ⋅ 𝑣2 = −2 < 0. This is a left turn and indicates

that the polygon is not convex.
Notice that, if the vertices are given in a clockwise order, then the normals point

inside the polygon. ◽

A problem that emerges often in graphics and is common in computational geom-

etry is to enclose a set of points in a convex polygon. The smallest such polygon is
called the convex hull. One simple algorithm for finding the convex hull proceeds

by forming the set of all vectors between points (in both directions). Then select all
vectors that do not have any of the other points sitting to the left of the vector. (We

can calculate the appropriate normal and test the appropriate dot product.) Of all the
selected vectors, pick one and find the next that starts where the first ends. Continue

until there is an ordered set of vectors and hence an ordered set of points describing
the convex polygon (Figure 6.11).

This straightforward algorithm checks all possible vectors (n2 vectors) and is con-
sequently a little slow. Faster algorithms exist that consider the coordinates of the
points when selecting the next vector.

6.2.2 Angles and Area

An interior angle for a polygon is an angle at a vertex between the two adjacent edges
measured on the inside of the polygon. An exterior angle is the angle of a right turn

at a vertex as we travel around the polygon perimeter with the interior on the right. It
should be easy to see that the sum of all the exterior angles is 2𝜋.

Figure 6.11 Convex hull
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For convex polygons, select any vertex and draw new edges to each other vertex.

(There are already edges to the adjacent vertices.) Each new edge lies entirely inside

the polygon, so they divide the polygon into n − 2 triangles where n is the number

of polygon edges. Each triangle has three angles summing to 𝜋 radians and, conse-

quently, all the interior angles of the polygon sum to (n − 2)𝜋. In a convex hexagon,

for example, the sum of the interior angles is (6 − 2)𝜋 = 4𝜋. As long as the polygon

(convex or not) can be divided into k triangles by drawing nonintersecting diagonals,

the sum of the interior angles is k𝜋.
If the angles in a convex polygon are all equal and the edges are also equal, then

the polygon is called regular. The interior angles of a regular polygon are each equal
to (1 − 2

n
)𝜋. For a regular hexagon, each of the angles is

2

3
𝜋 (Figure 6.12).

For the area of a convex polygon, consider the previous division into triangles

and simply sum the areas of each triangle. For polygons in two dimensions, we pick

the vertex P0 as the common vertex (any vertex will do) and take half the sum of

the lengths of the cross products. However, in two dimensions the length of a cross

product reduces to a determinant.

Area of polygon (2D) =
||||||12

n−2∑
i=1

||||| (Pi − P0)
(Pi+1 − P0)

|||||
|||||| (6.11)

The vectors between vertices are rows in the 2 × 2 determinants. If the vertices of the

polygon are listed in counterclockwise order, then the determinants are positive. If

the order is clockwise, then each determinant is negative. In either case, an absolute

value gives the area.

If the polygon is concave, then we may have the situation shown at the right in

Figure 6.13. Here, the trouble is that the trianglesΔP0P1P2,ΔP0P2P3, and ΔP0P3P4

all contain some area outside the polygon.With the vertices listed in counterclockwise

order, triangles ΔP0P1P2 and ΔP0P2P3 will both yield positive determinants, and

ΔP0P3P4 will have a negative determinant. So if we consider signed areas, then the

area of ΔP0P3P4 is both added and subtracted, leaving just the area of the polygon.

When a triangle “folds back” over others, then it generates a negative determinant.

2π/3

Figure 6.12 Angles in a hexagon
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P0 P0

P4

P4

P3 P3

P2

P2

P1 P1

Figure 6.13 Area of a polygon

By counting the regions of fold-back, we can prove that the final sum is indeed the area

of the polygon. If the vertices appear in clockwise order, the same argument works,

but the final sum will be negative. In both cases, Equation 6.11 gives the correct area.

In three-dimensional polygons, the areas of the triangles do not reduce to one-half

the determinants; rather, the cross products produce arbitrary vectors and do not gen-

erally simplify. To account for signed areas, we use the direction of the cross product

which either points in the same direction as a normal to the polygon plane or in

the opposite direction. Let n⃗ be a unit normal to the plane of the polygon. Then

n⃗ ⋅ ((P1 − P0) × (P2 − P0)), the scalar triple product, gives the volume of a paral-

lelepiped, but since the height is 1 (because of the unit normal), the volume is just

twice the signed area of the triangle ΔP0P1P2. Summing over triangles gives us a

formula for the area.

Area of Polygon (3D) =
||||||12 n⃗ ⋅

n−2∑
i=1

(Pi − P0) × (Pi+1 − P0)
|||||| (6.12)

We may need to check three-dimensional polygons to see if they are indeed planar.

Two tests present themselves immediately. We can take any four vertices and use the

scalar triple product to determine the volume of a parallelepiped; zero volume implies

the points are coplanar. Unfortunately, we need to check several sets of four vertices

to guarantee that all vertices are in the plane. For a more basic method, we can find

the equation of the plane containing any three vertices and check to see if all other

vertices are in that plane. (Computationally, all these calculations are looking to see

if the dot products are within a small distance of zero.)

There is one last useful generalization. The common vertex P0 we selected

in the previous derivations could be any point in the plane of the polygon. For

two-dimensional polygons, it could be the origin. This means we do not have to

subtract to find vectors. Yet, it often means that the vectors have large lengths which

could lead to computational errors.

Example 6.8 (Area of a Polygon). The vertices of a two-dimensional polygon are

P0 = (4, 1), P1 = (5, 3), P2 = (3, 4), P3 = (4, 7), and P4 = (1, 3). It is clear by sketch-
ing their positions that the vertices are in counterclockwise order. Using P0 as the
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common vertex, the vectors are (1, 2), (−1, 3), (0, 6), and (−3, 2).

Area = 1

2

(|||| 1 2

−1 3

|||| + ||||−1 3

0 6

|||| + |||| 0 6

−3 −2
||||
)

= 8.5

Notice that the second determinant is negative.

If we use the origin as the common vertex, then, for example, 𝑣0 = P0 − 0 = (4, 1),
so the vectors have the same components as the points.

Area = 1

2

(||||4 1

5 3

|||| + ||||5 3

3 4

|||| + ||||3 4

4 7

|||| + ||||4 7

1 3

|||| + ||||1 3

4 1

||||
)

= 8.5

With this second approach, there are as many determinant terms as there are vertices.

However, we did not have to subtract vertices to find the vectors.

The two-dimensional polygon lies in the xy plane. Suppose we project it onto

another plane (by following lines perpendicular to the first polygon) and get the fol-

lowing vertices:

Q0 = (4, 1, 1) Q1 = (5, 3,−1) Q2 = (3, 4, 0.5)

Q3 = (4, 7,−2) Q4 = (1, 3, 3)

For a quick check to see if the vertices do lie on a plane, calculate the scalar triple

products:

(Q3 − Q0) ⋅ ((Q1 − Q0) × (Q2 − Q0))

= (0, 6,−3) ⋅ ((1, 2,−2) × (−1, 3,−0.5))

= (0, 6,−3) ⋅ (5, 2.5, 5) = 0

(Q4 − Q0) ⋅ ((Q1 − Q0) × (Q2 − Q0))

= (−3, 2, 2) ⋅ ((1, 2,−2) × (−1, 3,−0.5))

= (0, 6,−3) ⋅ (5, 2.5, 5) = 0

The two scalar products are zero and they include all vertices, so the polygon is

planar. To calculate its area, we need to find a normal to the polygon. The cross

product just calculated will do, and we divide by its length to get a unit normal:

n⃗ = 1√
56.25

(5, 2.5, 5). Now the area is a scalar triple product.

Area = 1

2
n⃗ ⋅ ((Q1 − Q0) × (Q2 − Q0) + (Q2 − Q0) × (Q3 − Q0)

+ (Q3 − Q0) × (Q4 − Q0))

= 1

2
√
56.2

(5, 2.5, 5) ⋅ (17, 8.5, 17) = 12.75
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The fact that this area is larger than the area of the polygon in the xy plane makes
intuitive sense because the second polygon is projected perpendicularly onto the xy
plane to get the first polygon. The angle between the two planes is the angle between
their normals, and the cosine of that angle is

2

3
. A little trigonometry shows that the

ratio of the areas should be the same as the cosine of the angle between the planes.
Consequently, the ratio of the two areas (8.5/12.75) is two to three. ◽

6.2.3 Inside and Outside

As with triangles in particular, checking a point to see if it is inside or outside of a
polygon is a common task in graphics. Barycentric coordinates formed a key tool
in working with triangles, but, although generalizing these coordinates to arbitrary

polygons can work for convex polygons, it is not practical for concave polygons.
In the case of convex polygons, one approach defines the barycentric coordinates as
ratios of areas much like the case for triangles. However, the areas used are more
complicated than those used for triangles (See Section 6.4 for details).

Recall that the point P = 1

3
(P0 + P1 + P2) is the centroid of a triangle and is inside

the triangle. It is natural to consider the point P = 1

n
(P0 + P1 + · · · + Pn−1) for an

arbitrary polygon with n vertices. Assume the polygon is convex. Then, the affine
combination of two vertices P0 and P1 is on the edge of the polygon, and hence
we consider it inside the polygon. Moving up one step to three vertices, the affine
combination of three vertices is also inside the polygon because we can write it as an

affine combination of a point on the edge and a vertex. This process can be continued
until we reach an affine combination of all vertices.

Q0 =
1

2
(P0 + P1)

Q1 =
1

3
P2 +

2

3
Q0 =

1

3
(P0 + P1 + P2)

⋮

Qn−2 =
1

n
Pn−1 +

n − 1

n
Qn−3 =

1

n
(P0 + P1 + · · · + Pn−1) (6.13)

Each Qi is a point inside the polygon because it is on the line segment between two

points already in the polygon and the polygon is convex. Consequently, P = 1

n
(P0 +

P1 + · · · + Pn−1) is inside a convex polygon. (Note: This point is not the centroid of

a polygon where a uniform polygonal plate would balance; it is, instead, the balance
point if weights were only at the vertices.) The same type of argument can be used to
find a variety of points inside the polygon. However, for concave polygons, the point

may well be outside.
Convex polygons have some nice properties. One in particular is useful in answer-

ing the question about whether a point is inside or outside the polygon. Consider the
line containing any edge of the polygon; it is determined by two adjacent vertices. All

the other vertices in the polygon are on the same side of this line. This can be detected
by taking the dot products with a normal to the edge. (There is a slight complication
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if a point falls on the line, but then it is inside only if it is on an edge.) Each edge of

the polygon has this same property if the polygon is convex. Now, a given point P is

inside a convex polygon if and only if it is on the same side of each edge (line) as the

other vertices. For each edge, the algorithm for implementing this technique checks

P and one vertex to see if they are on the same side.

A more general technique for deciding whether a point is inside or outside a poly-

gon (convex or concave) starts by considering a ray emanating from the point in any

direction. A ray here means that we take a line P + t𝑣 containing the point P in ques-

tion and consider only positive values for t. The idea is to determine how many times

the ray crosses the polygon’s boundary. More precisely, the polygon’s vertices are

given in some order, so they form edge vectors following the boundary. If an edge

crosses (intersects) our ray, then we note the direction it crosses. A crossing from left

to right will be recorded as +1 and a crossing from right to left will be noted as −1.
If the sum of all the crossing numbers (often called the winding number) is zero, then

the point P is outside the polygon. Otherwise, it is inside (Figure 6.14).

To determine whether a crossing is left to right (+1) or right to left (−1), one tech-
nique is to calculate a normal to the ray vector 𝑣 by rotating the vector 𝜋∕2 clockwise.
Then take the dot product of this normal with an edge vector, and if it is positive, the

crossing is left to right (+1); negative means it is right to left (−1).
The algorithm then first determines which edge vectors cross the ray. This can be

done by deciding whether the end points of the edge vector are on opposite sides

of the ray’s line or not. Then for each intersection, the direction of the crossing is

recorded as +1 or −1. Checking the sum of these directions tells whether the point is

inside or outside the polygon.

Example 6.9 (Inside or Outside of a Polygon). Assume a polygon has the following

vertices:

P0 = (1,−1) P1 = (8, 3) P2 = (2, 4)

P3 = (6, 7) P4 = (−1, 8)

Note that the polygon is concave.

P0

P1

P2

P3

P4

nP

Figure 6.14 Inside or outside a polygon
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To decide whether the point P = (3, 6) is inside or outside the polygon, we pick
a ray emanating from P. A simplifying choice is the ray (3, 6) + t(0,−1); this is a
vertical ray with a simple direction vector. The first task is to find the edges that

intersect the ray. Pick (−1, 0) as the normal to the ray because it results from rotating

the direction vector 𝜋∕2 clockwise. Now form vectors from P to each vertex and take

the dot product with the normal:

P0 − P = (−2,−7) =⇒ (−2,−7) ⋅ (−1, 0) = 2 > 0

P1 − P = (5,−3) =⇒ (5,−3) ⋅ (−1, 0) = −5 < 0

P2 − P = (−1,−2) =⇒ (−1,−2) ⋅ (−1, 0) = 1 > 0

P3 − P = (3, 1) =⇒ (3, 1) ⋅ (−1, 0) = −3 < 0

P4 − P = (−4, 2) =⇒ (−4, 2) ⋅ (−1, 0) = 4 > 0

Because of the choice of the ray, the dot product is particularly easy to calculate.

Systematically checking all five edges, if the two end points are on opposite sides

of the ray (positive and negative dot products), there is an intersection. Edge P0P1

has end points on opposite sides, so there is an intersection, but edge P4P0 does not

intersect. Four edges P0P1, P1P2, P2P3, and P3P4 intersect the line containing the

ray. The corresponding edge vectors are

𝑣0 = (7, 4) 𝑣1 = (−6, 1)

𝑣3 = (4, 3) 𝑣4 = (−7, 1)

One edge, P3P4, is behind the ray. That is, the intersection with the line containing

the ray has t < 0. The algorithm could actually calculate the intersection and get t ≈
−1.43, or it could employ additional checks to eliminate this edge (see Exercises).

In this particular example, the dot products between the direction vector for the ray

𝑣 and the vectors to P3 and P4 are both negative, indicating that the intersection will

occur for t < 0.

The three edges P0P1, P1P2, and P2P1 intersect the ray and need to be classified as

left to right or right to left. Dot products between edge vectors and the normal (−1, 0)
determine the directions.

𝑣0 ⋅ (−1, 0) = −7 < 0 =⇒ Direction: − 1

𝑣1 ⋅ (−1, 0) = 6 > 0 =⇒ Direction: + 1

𝑣2 ⋅ (−1, 0) = −4 < 0 =⇒ Direction: − 1

The directions are based on looking down the ray in the direction of 𝑣, so the edge

P0P1, for example, crosses from right to left which is denoted −1. The sum of the

directions is −1, which is not zero, so we conclude that the point P is inside the

polygon.
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From this example, it appears that we could have just counted the number of
intersections with the ray and noted whether the number was odd or even. An odd
number indicates that the point is inside. This works for a simple polygon, but for
twisted ones the directional approach can be more useful. ◽

6.2.4 Triangulation

Three-dimensional objects in computer graphics are usually built from triangular
patches which match up at edges and vertices. Practically, points on the object can
often be sampled and stored in preparation for some algorithm to turn the set of points
into a coherent set of triangles (called a mesh). It is not a simple matter to decide how
to do this or what division into triangles is the best. To get an idea of the analysis
involved in producing a mesh of triangles, a more common two-dimensional example
shows some of the key geometry. A terrain map results from sampling the altitudes
of several points in a geographic area. If we position the points on a plane, draw
triangles with the points as the vertices, and then raise the points according to their
altitudes, we get a three-dimensional look at the terrain (Figure 6.15). The key in this
construction is to find a triangulation of the points in the plane.

Definition 6.4 (Triangulation). A triangulation of a set of points is a set of edges
between the points such that no two edges cross (i.e., intersect other than at their end
points) and any additional edge not in the set would cross some edge in the set.

This definition implies that, starting with a set of points, the edges forming the
convex hull of the points are always in the triangulation. It also implies that the inte-
rior of the convex hull is divided into triangles. So to study triangulations, we can
begin with a convex polygon and analyze ways to divide the polygon into triangles
(Figure 6.16).

There is a simple way to make the division. Start with the edges of the convex
polygon and add diagonals from a selected vertex to all the others. This produces
N − 2 triangles if the polygon has N edges.

There are several ways to divide a convex polygon into triangles, but any one will
work to triangulate a set of points. Beginning with any set ofM points, find the convex

Figure 6.15 Terrain from a triangular mesh
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P0

P1

P2

P3

P4

P5

Figure 6.16 Triangulations

hull, and triangulate the resulting convex polygon. If we assume that no three points

are collinear, then N points are on the convex hull, N edges are in the convex hull,

N − 2 triangles partition the polygon, and M − N points are left inside the polygon.

Each of these inside points falls inside one of the triangles. Pick one of the points

and connect it to the vertices of its containing triangle. One triangle has been divided

into three, so there is a net addition of two triangles. Again pick an inside point and

locate its containing triangle. Connect it to the three vertices. Continue in this manner

until there are edges to each point.

The assumption that no three points are collinear was convenient for presenting

the method, but it is not critical. If some point is on the edge between two others,

we can simply add additional edges, forming more triangles. The only difficulty with

collinearity is the degenerate case where all the points lie on a line.

Result 6.2 (Number of Triangles). Let Nh be the number of vertices in the convex
hull and let NI be the number of points inside the hull. As long as not all the points
are collinear, the number of triangles in a triangulation of the set of points is always
2NI + Nh − 2.

The number of triangles in a partition of the convex hull is Nh − 2. Then each time

we select an interior point, we add two triangles to this total (Figure 6.17). Conse-

quently, the total is 2NI + Nh − 2. This verifies the result for the algorithm developed

above, but the result is actually true for any triangulation. The proof depends on

Euler’s formula and is presented in Section 6.3.4.

Figure 6.17 Triangulating a cluster of points
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6.2.5 Delaunay Triangulation

Two triangulations of a set of points have the same number of triangles, but that does

not guarantee that the two triangulations are equally desirable. There aremany criteria

we could bring to bear in measuring the optimality of a triangulation. For example, in

producing a terrain map, we may have four points forming a quadrilateral, with high

altitudes at two diagonally opposite vertices and low altitudes at the other two. Then,

depending on how we triangulate, there could be an edge between the high vertices

or between the low vertices. In the first case, the terrain map indicates a mountain

range, and in the other there is a valley. This type of detail is a little difficult to resolve

because one or the other may indicate the true topography but one choice of an edge

often looks more natural than the other.

One situation that is often troublesome for graphics is the presence of “skinny”

triangles in the triangulation. These are triangles with at least one small angle. Since

the lighting characteristics of an object depend on treating the triangles individually,

skinny triangles could complicate the lighting calculations and introduce artifacts into

the resulting image. An awkward look to the object can often be traced to these skinny

triangles.

The Delaunay triangulation, named after a twentieth century Russian mathemati-

cian, addresses this problem by ordering triangulations based on the presence of

skinny triangles. If a triangulation for a set of points has k triangles, then there are

m = 3k angles and we can order these angles from the smallest to the largest. For

two triangulations T1 and T2 of the same set of points, order them by comparing their

associated list of increasing angles. Let A1 = (𝜃1, 𝜃2, … , 𝜃m) be the angle list for T1;

similarly, A2 = (𝛽1, 𝛽2, … , 𝛽m) is the list for T2.

Definition 6.5 (Order of Triangulations). By comparing 𝜃i to 𝛽i (starting with
i = 1), let j be the first index where the two angles differ. If 𝜃j < 𝛽j, then T2 is said to
be larger than T1.

For example, suppose there are only two triangles in each of T1 and T2 and suppose

the angle lists are as follows:

A1 = (10∘, 10∘, 20∘, 80∘, 80∘, 160∘)

A2 = (10∘, 10∘, 80∘, 80∘, 90∘, 90∘)

Then the two sequences differ for the first time in the third position where 20∘ < 80∘.
This means that T2 is larger than T1. Small angles have to be accompanied by larger

angles because the sum of the angles in a triangle is 𝜋. To say that T2 is larger than T1

is to say that the triangulation T2 tends to have fewer skinny triangles than T1. This

captures the essence of the problem we are trying to minimize.

Every interior edge (not on the convex hull) in a triangulation borders two trian-

gles which together form a quadrilateral. The interior edge forms a diagonal in the

quadrilateral (Figure 6.18). We could delete this diagonal and add the other diagonal.

If it results in a larger triangulation based on the ordered angle lists, then we will call
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Figure 6.18 Two diagonals in a quadrilateral

this new edge good and the original edge bad. Otherwise, the original edge is good
and new one is bad.

There is an awkward case that arises if the quadrilateral has vertices on a circle.

Envision a square where each diagonal divides the square into triangles with the same

angle list. The diagonals are both good edges. Usually, we assume that no four points

in the original set of points lie on a common circle. Then an edge is either good or

bad. It is not difficult to handle this awkward case when designing an algorithm.

Definition 6.6 (Delaunay Triangulation). A triangulation that only includes good
edges is a Delaunay triangulation.

The Delaunay triangulation maximizes the minimum angle in all triangles. The

definition of triangulation suggests that one algorithm is to simply consider all adja-

cent triangles and decide whether to flip the diagonal of the quadrilateral formed by

the pair of triangles. In order to make the decision, we need to find a new angle list

and again compare the two triangulations.

Actually, with two triangles, changing the diagonal means that we need to revise

six angles in the original angle list. So if T1 is revised into T2, the two angle lists differ

only in six positions. It still seems like a bit of work to decide whether a particular

edge is good or bad, but further geometric analysis can clear things up.

Figure 6.19 shows the circumcircle for triangle ΔABC. The vertex D is inside the

circumcircle and forms the triangle ΔADC. These two adjacent triangles share the

edge AC. From basic geometry, ∠ACB is one-half the angle extended by the arc AB.

A

B

C

D

Figure 6.19 Triangle circumcircle
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Since D is inside the circle, ∠ADB > ∠ACB. (This can be verified by considering

ΔADB and comparing it with the one where D is on the circle.) If D is on the circle,

then ∠ADB = ∠ACB, and if D is outside the circle, ∠ADB < ∠ACB.
Viewing the two triangles (ΔABC andΔADC) as coming from a triangulation, they

form a quadrilateral ABCD with the edge AC. To see whether this edge is good or bad,

we compare the angles in the current configuration with those we get by replacing

AC with DB. Figure 6.20 labels the angles inside the two triangles. With D inside the

circumcircle, 𝛽1 > 𝜃1. Similar reasoning shows that 𝛽2 > 𝜃2.

The angles ∠ADC = 𝛽1 + 𝛽2 and ∠ABC = 𝛽3 + 𝛽4 are opposite angles in the

quadrilateral. If D were on the circle, then the sum of these two angles would be 𝜋

radians because both angles are one-half the angle extended by the arcs bounded by

A and C. Since D is inside the circle, (𝛽1 + 𝛽2) + (𝛽3 + 𝛽4) > 𝜋. Now, consider the

circumcircle for ΔADC. If B were on or outside the circumcircle, then the sum of the

𝛽i’s would not be larger than 𝜋. This implies that B must be inside the circumcircle

for ΔADC (Figure 6.21).

Using this new circumcircle, the same arguments as before establishes that 𝛽3 > 𝜃3
and 𝛽4 > 𝜃4. Let T1 be the triangulation which includes the edge AC, and let T2 be the

triangulation which includes the edge BD. The angle lists differ only in six angles.

β1

β2 β3

β4

θ1

θ2

θ3

θ4

A

B

C

D

Figure 6.20 Quadrilateral angles

θ3

β3

A

B

C

D

Figure 6.21 Circumcircle for ΔADC
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The six angles for each triangulation (not given in any particular order) are

T1 ∶ (𝜃1, 𝜃2, 𝜃3, 𝜃4, (𝛽1 + 𝛽2), (𝛽3 + 𝛽4))

T2 ∶ (𝛽1, 𝛽2, 𝛽3, 𝛽4, (𝜃2 + 𝜃4), (𝜃1 + 𝜃3))

We do not have to put these angles in order to see the outcome. For every angle
in T2, there is an angle in T1 that is smaller. This argues that T2 is larger than T1.
Consequently, the edge AC should be replaced with BD. If we start again and assume
that D is not in the original circumcircle, then our result will be reversed and we keep
AC. This is the heart of a criterion for determining whether we do have a Delaunay
triangulation.

Result 6.3 (Delaunay Criteria). If in a triangulation each pair of adjacent trian-
gles, ΔABC and ΔADC, has vertex D outside the circumcircle of ΔABC, then the
triangulation is a Delaunay triangulation.

(Again, we are avoiding the awkward case where D is on the circumcircle by
assuming that no four of our original points lie on the same circle.) With the barycen-
tric coordinates for the circumcircle, the algorithm for implementing this result is
more or less straightforward. To construct a Delaunay triangulation, one point after
another can be added, ensuring each time that the Delaunay criterion is still true.

6.3 POLYHEDRA

Polygons can be taped together along an edge to form a solid called a polyhedron
(derived from theGreek for “many bases”). Graphics objects are often custom polyhe-
dra with large numbers of polygons; simpler polyhedra can form building blocks for
the more complicated ones. Perhaps the most common polyhedron is the cube, which
plays a significant role in computer graphics, but there are many others including
those in Figure 6.22 called Platonic solids which are rather symmetric and uniform.

Of course, there are many other, less uniform, polyhedra with various polygonal
faces, occasional stellations, and even holes (Figure 6.23).

Defining polyhedra is not a simple matter, mostly because there are odd solids
like two tetrahedrons joined only at one vertex, two cubes joined along one edge, or
self-intersecting solids that violate the spirit of what is means to be a solid. A core
intuitive definition is the following:

Definition 6.7 (Polyhedron). A polyhedron is a collection of polygons with the fol-
lowing properties:

1. Each edge of a polygon meets exactly one other polygon along a mutual edge.

2. Each corner of a polygon meets another polygon at a corner.

3. The subset of polygons meeting at a vertex are all connected to each other with-
out passing through the vertex.
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Tetrahedron Cube Octahedron

Dodecahedron Icosahedron

Figure 6.22 Regular (Platonic) polyhedra

Figure 6.23 Asymmetric polyhedra

The third property in the definition ensures that we do not have, for example, two

tetrahedra touching only at one vertex. (There are more awkward examples that are

also avoided with this property.)

For polyhedra, we have vertices where polygons meet at corners, edges where two

polygons meet along their mutual side, and faces (which are just the polygons). The

faces are all planar, and the angle between the planes containing two adjacent faces

is called the dihedral angle.
To bring some order to the study of polyhedra, there are a variety of ways to clas-

sify them. One of the most important categories relies on convexity and mimics the

similar property for polygons.

Definition 6.8 (Convex Polyhedra). If for any two points inside or on an edge of
a polyhedron the line segment bounded by those points is entirely inside (or on an
edge) the polyhedron, then the polyhedron is convex.

Other classifications count the number of holes through the solid, so polyhedra

like those in Figures 6.22 and 6.23 are said to have genus zero, and polyhedra

shaped like doughnuts have genus 1. Mathematicians over the ages have settled on
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various classes of polyhedra and then set about counting how many there are in each

class and what properties they share.

6.3.1 Regular Polyhedra

The Platonic solids in Figure 6.22 are convex, and each one has faces that are regular

polygons (equal edges and equal interior angles). Moreover, all the faces are congru-

ent (i.e., all equal polygons). Surprisingly, there are other polyhedra that share this

property of having regular polygons as faces but are not quite as symmetric as the

Platonic solids. Figure 6.24 shows two examples.

A key to regaining some symmetry is the configuration at a vertex. If a vertex is

cut off uniformly across each face, it reveals a polygonal cross section called a vertex
figure. For the Platonic solids, each vertex figure is a regular polygon; for example,

the vertex figure in a cube is an equilateral triangle. In this class of polyhedra, the

faces are congruent regular polygons and the vertex figures are all the same regular

polygon. This class is referred to as regular polyhedra and it contains the Platonic

solids. For example, the dodecahedron’s faces are regular pentagons and its vertex

figures are equilateral triangles.

Instead of requiring the vertex figures to be regular polygons, there are several

other properties that would also define the regular polyhedra.

Result 6.4 (Regular Polyhedra). A regular polyhedron is convex, has congruent reg-
ular polygons for faces, and displays the following equivalent properties:

1. The vertex figures are all the same regular polygon.

2. All the vertices lie on a sphere.

3. The same number of faces meet at each vertex.

4. All the dihedral angles are equal.

In other words, once we have a convex polyhedron with congruent regular

faces, then any one of the listed properties implies that all of the properties hold

and the polyhedron is regular. Table 6.1 gives the vertex coordinates for the

Figure 6.24 Deltahedra
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TABLE 6.1 Coordinates for the Platonic Solids (𝝓 = 1+
√
5

2
)

Tetrahedron (1, 1, 1) (1,−1,−1) (−1, 1,−1) (−1,−1, 1)
Cube (±1,±1,±1)
Octahedron (±1, 0, 0) (0,±1, 0) (0, 0,±1)
Dodecahedron (0,±𝜙−1,±𝜙) (±𝜙, 0,±𝜙−1) (±𝜙−1,±𝜙, 0) (±1,±1,±1)
Icosahedron (0,±𝜙,±1) (±1, 0,±𝜙) (±𝜙,±1, 0)

Platonic solids. (In the table, 𝜙 is the golden ratio, which is a root of the quadratic

𝜙2 − 𝜙 − 1 = 0.)

Are there more Platonic solids than those shown in Figure 6.22? Each of these

polyhedra has faces that are regular polygons, so let p be the number of edges in

each polygon, which means the interior angles are (1 − 2

p
)𝜋. At each vertex, the same

number of faces meet, so let q be this number. Then, at each vertex the sum of the

angles in all the faces meeting is q times the interior angle of a polygon. This sum

must be less than 2𝜋 because this is the sum of the angles completely surrounding a

point in the plane.

q

(
1 − 2

p

)
𝜋 < 2𝜋 =⇒ 1

q
+ 1

p
>

1

2

The only positive integer solutions, (p, q), to the last inequality are (3, 3),(3, 4), (4, 3),
(5, 3), (3, 5) and these correspond to the five polyhedra in Figure 6.22. There are

only five convex regular polyhedra. An inventory of their vertices, edges, and faces is

listed in Table 6.2. Yet another nice symmetry emerges from the five Platonic solids

by forming new polyhedra from each of the five. Take the midpoint of each face

and connect it to another midpoint if the two faces share an edge. This means, for

example, that there are six midpoints for a cube and connecting them gives eight new

faces, forming an octahedron. Similarly, the midpoints of the octahedron connected

appropriately give a cube. These two polyhedra are duals as are the dodecahedron

and the icosahedron. The dual of the tetrahedron is itself.

Oneway to enlarge the class of regular polyhedra is to loosen the restriction that the

faces are all congruent regular polygons. Instead, drop the congruency requirement

TABLE 6.2 Shape of the Platonic Solids (Angles in radians)

Faces Vertices Edges Dihedral Angle

Tetrahedron 4 4 6 1.23

Cube 6 8 12 1.57

Octahedron 8 6 12 1.91

Dodecahedron 12 20 30 2.03

Icosahedron 20 12 30 2.41
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Figure 6.25 Some of the 13 Archimedean solids

Figure 6.26 Nonconvex regular polyhedra

and focus on regular polygons of any number of edges. This adds 13 polyhedra to

the 5 regular polyhedra. The discovery of these extra somewhat regular polyhedra is

attributed to Archimedes and, consequently, they are called the Archimedean solids.
A few are shown in Figure 6.25.

Finally, dropping the convexity requirement from regular polygons admits some

stellated examples to the class. There are some subtleties involved in handling faces

that intersect; Figure 6.26 shows three of these polyhedra.

6.3.2 Volume of Polyhedra

Finding the area of a polygon involves dividing it into triangles, and the area of a

triangle is half the length of the cross product of vectors formed from the edges. The

same type of approach works for the volume of a polyhedron; only here the primitive

shape is a pyramid and we can divide the polyhedron into pyramids. The first step is

then to find the volume of a pyramid (Figure 6.27).

Start with a pyramid that has a triangular base with one side s and the altitude a.
Let h be the height of the pyramid. There are geometric dissections that divide easily

calculated volumes (like that of a cube) into pyramids in order to deduce particular

volumes, but a foolproof way to find a pyramid’s volume is to turn to calculus. Think

of the cross sections as wemove down the pyramid from the apex to the base. Halfway

down, the triangular cross section has a side that is half the side of the base and an

altitude that is half the altitude of the base. At the apex the cross-sectional area is

zero, and at the base the area is the area of the triangle. Anywhere in between, we
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a
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h

Figure 6.27 Volume of a triangular pyramid

have gone a fraction,
x
h
, of the distance to the base, and the area is

Cross-sectional area = 1

2

( x
h
⋅ a

)( x
h
⋅ s

)
= x2

h2

(
1

2
as

)
Adding up all these cross sections gives the following integral:

Volume of Pyramid = ∫
h

0

x2

h2

(
1

2
as

)
dx

= 1

2
as ⋅

x3

3h2
||||
x=h

x=0
= 1

3

(
1

2
as

)
h

= 1

3
× Base × Height

Let P0,P1, and P2 be the vertices of the base triangle and let P3 be the apex. Then,

form vectors 𝑣1 = (P1 − P0), 𝑣2 = (P2 − P0), and 𝑣3 = (P3 − P0). The area of the

base is 1

2
|𝑣1 × 𝑣2|, and the volume is then one-sixth of the scalar triple product.

Volume of Triangular Pyramid = 1

6
|𝑣3 ⋅ (𝑣1 × 𝑣2]| (6.14)

Example 6.10 (Volume of Dodecahedron). Table 6.1 gives the vertex coordinates

of a dodecahedron. The distance from any vertex to the origin is
√
3, and notice that

the affine combination
∑19

i=0
1

20
Pi of the vertices gives (0, 0, 0). We conclude that the

dodecahedron is centered at the origin. It is a little hard to tell which vertices belong to

a single pentagonal face, but by referring to the figure of a dodecahedron, we can settle
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on the following five vertices (in counterclockwise order looking from the outside of

the dodecahedron):(
1

𝜙
, 𝜙, 0

)
, (1, 1, 1),

(
𝜙, 0,

1

𝜙

)
,

(
𝜙, 0,− 1

𝜙

)
, (1, 1,−1)

These are the vertices for one of the 12 faces of the dodecahedron. Together with the

origin, they form one of 12 pyramids that comprise the volume of the dodecahedron.

Remember that 𝜙 =
√
5+1
2

and that 𝜙2 − 𝜙 − 1 = 0. Some algebra also shows that

𝜙2 = 𝜙 + 1 and 1

𝜙
= 𝜙 − 1. We will keep 𝜙 in the picture as long as possible to mini-

mize round-off. To find the center of the pentagonal face, take the affine combination

of the vertices using coefficients 1

5
to get

Midpoint of face = 1

5
(3𝜙 + 1, 𝜙 + 2, 0)

Form vectors 𝑣1 and 𝑣2 from the midpoint of the face to two consecutive vertices.

𝑣1 =
(
1

𝜙
, 𝜙, 0

)
− 1

5
(3𝜙 + 1, 𝜙 + 2, 0) =

(
2𝜙 − 6

5
,
4𝜙 − 2

5
, 0

)

𝑣2 = (1, 1, 1) − 1

5
(3𝜙 + 1, 𝜙 + 2, 0) =

(
−3𝜙 + 4

5
,
−𝜙 + 3

5
, 1

)
The cross product of the two vectors gives a normal to the face:

𝑣1 × 𝑣2 =
(
4𝜙 − 2

5
,−2𝜙 − 6

5
, 0

)
It may not look like it at first glance, but this vector is parallel to the vector, call it 𝑣3,

from the origin to the midpoint of the face and again verifies that the dodecahedron’s

vertices are on a sphere centered at the origin.

The volume of the pyramid with apex at the origin and base formed by the two

vectors 𝑣1 and 𝑣2 is given by

Volume of pyramid = 1

6
|𝑣3 ⋅ (𝑣1 × 𝑣2]|

= 1

6

|||||15 (3𝜙 + 1, 𝜙 + 2, 0) ⋅
(
4𝜙 − 2

5
,−2𝜙 − 6

5
, 0

)|||||
= 𝜙 + 2

15



POLYHEDRA 199

There are five of these pyramids in a larger pyramid with one pentagonal face as the
base. Twelve of these larger pyramids fill the dodecahedron.

Volume of dodecahedron = 12 × 5 × 𝜙 + 2

15
= 4(𝜙 + 2) ≈ 14.47

Clearly, the volume depends on the edge size of the dodecahedron, so to uncover
that connection, find the distance between two adjacent vertices to get the edge size
for this particular dodecahedron.

|||||
(
1

𝜙
, 𝜙, 0

)
− (1, 1, 1)

||||| =
√(

1

𝜙
− 1

)2

+ (𝜙 − 1)2 + 1 = 2

𝜙

The volume is proportional to the cube of an edge, so to find the proportionality
constant, divide the volume by the cube of the edge length.

4(𝜙 + 2) ⋅ 𝜙
3

8
= 7𝜙 + 4

2
=

15 + 7
√
5

4

A formula for the volume as a function of the edge length s is

Volume of dodecahedron =

(
15 + 7

√
5

4

)
s3

◽

Generalizing to other pyramids is not difficult. The dodecahedron in the example
was a regular polyhedron, so all the internal pyramids making up the volume were
all congruent with equal volumes. Other regular polyhedra can be treated similarly,
and for nonregular polyhedra the dissection into pyramids involves constructing a
pyramid for each face where the apex of each pyramid can conveniently be some
common center point for the polyhedron. The altitude for each pyramid may not be
the vector from the apex to the center of a face, but by projecting this vector onto the

normal to the face we do get the altitude. Let A⃗i be a normal vector to the ith face

with length equal to the area of the face. (In the dodecahedron example, A⃗i was a
cross product used to find the area of a triangular face.) If �⃗�i is the vector from the
apex to the face, then the volume of the polyhedron is

Volume of polyhedron =
n∑

i=1

1

6
(�⃗�i ⋅ A⃗i) (6.15)

The vector A⃗i is a normal to the face, and if it consistently points out of the polyhe-
dra, then the volume of each pyramid is a signed volume. Consequently, the common
apex point for the pyramids can be anywhere. Just as with polygons, some areas
are negative and some positive, but the sum is exactly the area of the polygon. These
signed volumes also allow generalization to nonconvex polyhedra. Volumes will can-
cel each other when lying outside the polyhedra.
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6.3.3 Euler’s Formula

The number of vertices, faces, and edges in a polyhedron is not arbitrary. As the

mathematician Leonard Euler discovered, there is a simple formula that ties all these

quantities together. Thinking first of polyhedra that do not have holes through them,

imagine that the edges are all made of some elastic material. Looking at one face,

stretch it until it encompasses the rest of the faces and then squash the entire network

onto a plane. When this is done to a cube and the projection is straightened out, the

result looks like the diagram in Figure 6.28(a). The planar network preserves the

number of vertices and edges, but the stretched face is not apparent. All the other

faces have become polygons in the network, so the total number of faces depicted is

one less than the number of faces in the cube.

Letting V be the number of vertices, F the number of faces, and E the number

of edges, the quantity key to Euler’s formula is V + F − E. In the diagram for the

cube, the faces are quadrilaterals, and by adding diagonals (Figure 6.28(b)) we create

a network of triangles. Adding one diagonal increases the number of faces by 1 and

increases the number of edges by 1. The number of vertices stays fixed, so the quantity

V + F − E remains the same. For the network of triangles, the quantity V + F − E is

the same as in the first diagram and it is one less than in the cube because one face is

missing.

The idea is to now remove boundary triangles one after the other keeping track of

how the quantity V + F − E changes. Removing one triangle from the cube’s network

requires that we remove one outer edge. This decreases both F and E by 1, leaving

V + F = E the same. Boundary triangles are actually of two types: those that can be

removed by deleting a single edge, and those that must have two edges and one vertex

deleted to complete the removal. For the second sort, F and V are decreased by 1 and

E is decreased by 2; the quantity V + F − E again stays the same.

Continuing in this manner by removing boundary triangles of either type, the dia-

gram reduces to a single triangle where V = 3, F = 1, and E = 3. Finally, V + F −
E = 1. Since the quantity has not changed throughout the process, the original count

must have given V + F − E = 1. There was one face missing in the planar diagram,

so for the cube V + F − E = 2.

(a) (b)

Figure 6.28 (a,b) Planar version of Euler’s formula
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Reviewing the procedure for reaching this final formula shows that any time we

can stretch a face and squash the polyhedron onto the plane, we can deduce that

V + F − E = 2. There are some subtleties. The planar diagram cannot have any edges

that cross each other, and it is important to remove the boundary triangles in a way

that does not leave degenerate cases, although even in these cases the verification can

be patched up. It intuitively appears that for any convex polyhedra the procedure and

hence the formula hold. In fact, it is even more general. As long as we can deform the

polyhedron by stretching and shrinking (but not tearing) into a sphere, the formula

holds.

Result 6.5 (Euler’s Formula). For any polyhedron that can be deformed smoothly
into a sphere, V + F − E = 2.

The formula applies to each of the regular polyhedra listed in Table 6.2. For

example, the icosahedron has V = 12, F = 20, and E = 30, giving 12 + 20 −
30 = 2.

To construct an example where the formula does not hold, start with a cube and cut

a square hole from the middle of the front face to the middle of the back face. This is

not technically a polyhedron because the front and back faces are no longer polygons,

so by adding edges as in the figure, the front and back each has four quadrilateral

faces. The altered cube has 16 vertices, 16 faces, and 32 edges, giving V + F − E = 0.

The altered cube can no longer be smoothly deformed into a sphere, which is why it

no longer satisfies Euler’s formula as given above (Figure 6.29).

However, there is a generalization of Euler’s formula that does work for the cube

with a hole. The key is to classify polyhedra according to how many holes there are.

A standard cube has zero holes, which is why we can deform it into a sphere, but

with one hole it can be smoothly deformed into a doughnut (torus). By incorporating

the number of holes, called the genus and denoted g, we get the general version of

Euler’s formula: V + F − E = 2 − 2g. For the cube with a hole, 16 + 16 − 32 = 2 −
2(1). (See [2] for a more thorough historical approach to Euler’s formula.)

Figure 6.29 Cube with a hole
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To count edges on a polyhedron, notice that each edge borders two faces, and if

the faces are all triangles, then each face borders three edges. The quantity 2E counts

each face as many times as there are edges on a face. This means 2E = 3F if all the

faces are triangles. Triangles are the polygon with the least number of edges, so, in

general, for any polyhedron, twice the number of edges is greater than or equal to

three times the number of faces. Similar reasoning applied to the vertices leads to

two inequalities:

2E ≥ 3F and 2E ≥ 3V (6.16)

Combining these inequalities with Euler’s formula (V + F − E = 2) algebraically
leads to the following inequalities:

V ≤ 2F − 4 and V ≥ 1

2
F + 2 (6.17)

These four inequalities (6.16 and 6.17 ) taken together constrain the number of ver-

tices, faces, and edges that can appear in a polyhedron (without holes).

For one curious application, suppose a polyhedron had no triangles, quadrilaterals,

or pentagons as faces. Then, 2E ≥ 6F and substituting into Euler’s formula gives

V ≥ 2F + 2, which contradicts an inequality in 6.17 . Hence, every polyhedron must

have at least one face with less than six edges.

6.3.4 Rotational Symmetries

Some polyhedra, particularly the regular ones, exhibit various degrees of symmetry

under a rotation. To understand what is meant by symmetry, recall the coordinates for

the cube given earlier. These coordinates position the cube centered at the origin with

the centers of opposite faces along one of the three Cartesian axes. A rotation of 𝜋∕2
counterclockwise around the x-axis brings the cube back to a position indistinguish-

able from the original one, but the vertices, edges, and faces have been moved. There

are some fixed points: the centers of the two faces on the x-axis have not moved. The

cube position, however, looks like its starting position. The counterclockwise rotation

of 𝜋∕2 is said to be a symmetry transformation. Each rotation has a representation

as a matrix, so the current task is to account for all the matrices that are symmetry

rotations for the cube (Figure 6.30).

Rotations of 𝜋 and 3𝜋∕2 counterclockwise around the x-axis are also symmetry

rotations. Since the clockwise rotation of 𝜋∕2 brings the cube to the same position

as the counterclockwise rotation of 3𝜋∕2, these two rotations are equivalent. Each of
the three axes allows three counterclockwise rotations. These three rotations along

with the identity rotation give four matrices Mx(0), Mx(𝜋∕2), Mx(𝜋), and Mx(3𝜋∕2).
Together, these four matrices form a mathematical entity called a group. Given any

matrix in the group, there is another one in the group that is the inverse. For example,

Mx(𝜋∕2)Mx(3𝜋∕2) = Mx(0) = I, where I is the identity matrix. These four matrices

represent four symmetries for the cube. (The identity matrix is counted as a symmetry

matrix because it leaves the cube in a position indistinguishable from the original.)
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Figure 6.30 Rotations of a cube around axes

Focusing on counterclockwise rotations here is not a restriction. A rotation of 3𝜋∕2
counterclockwise, for example, has the same effect as a clockwise rotation of 𝜋∕2.
In fact, the corresponding matrices are the same.

Of course, there are two other groups of matrices: one for rotations around the

y-axis, and one for those around the z-axis. All three groups of four matrices share

the identity matrix M(0), so we have identified 10 symmetry matrices for the cube.

Yet, there are more rotational axes to explore. There are four diagonals in the cube

running from one vertex to the opposite vertex. Around each of these axes, the cube

can be rotated by 2𝜋∕3 and 4𝜋∕3 counterclockwise and these rotations leave the

cube in a position indistinguishable from the original. Each set of two rotations plus

the identity forms another group. Recall from earlier work on transformations that

there is a matrix that corresponds to each rotation around the diagonal axes. We have

introduced 8 new symmetry matrices and now have a total of 18.

Any symmetry axis for the cube must go through the center of the cube and be

symmetrically positioned relative to other parts of the cube. The only axes not yet

considered are those that go through the midpoints of opposite edges. With 12 edges,

there are 6 of these axes. Around each axis, a rotation of 𝜋 puts the cube back in

position. This introduces 6 new symmetry matrices, bringing the final total to 24. Not

surprisingly, this corresponds to all the ways we can position a cube. Imagine placing

a cube on the table. Any of six faces can be placed down, and then any of four other

faces can be rotated to the front position. The total is 6 × 4 = 24.

Taken all together, the 24 matrices form the octahedral symmetry group. Any

matrix in the group has an inverse that is also in the group, and multiplying two of

thematrices results in anothermatrix in the group. The earlier smaller sets ofmatrices,

like the rotations around the x-axis, are subgroups of this larger one.
All of the regular polyhedra have corresponding symmetry groups. Interestingly,

since the cube and the octahedron are dual polyhedra (the centers of each face of

the cube form an octahedron), any symmetry transformation of the cube is a sym-

metry transformation of the octahedron, and vice versa; they share the same sym-

metry group. Similarly, the icosahedron and the dodecahedron share the symmetry
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TABLE 6.3 Symmetry Groups for Regular Polyhedra

Axes Tetrahedral Octahedral Icosahedral

Opp. faces 0 3 (3) 10 (2)

Opp. vertices 0 4 (2) 6 (4)

Edges 3 (1) 6 (1) 15 (1)

Vertex/face 4 (2) 0 0

Total 12 24 60

group called the icosahedral symmetry group, and the tetrahedron is left by itself

with the tetrahedral symmetry group. The three symmetry groups are summarized

in Table 6.3, with the number of each type of axis shown along with the number of

rotations around those axes in parentheses. (The identity matrix is in each group.)

Regular polyhedra are not the only ones that can have rotational symmetries. The

pyramid and prism shown in Figure 6.31 also can be rotated into a new position

indistinguishable from the original position. For the pyramid, the axis of rotation

must be from the apex through the center of the base. Then, a rotation of 2𝜋∕5 is

a symmetry rotation, and if we denote the corresponding rotation matrix as R, then
R0 = I, R1, R2, and R3 are all symmetry rotations. Notice that R4 = I. The pattern

here is cyclic and the symmetry group is called cyclic.
The prism in the figure has equilateral triangles as the top and bottom faces. An

axis running through the middle of these faces is a principal axis for the polyhedron,

and three rotations (including the identity) around this axis are symmetry rotations for

the prism. In addition, there are three other axes that are all perpendicular to the prin-

cipal axis. They pass through the middle of one side edge and one rectangular face.

The identity rotation and a rotation of 𝜋 around these axes are symmetry rotations

for the prism. One principal axis and several perpendicular secondary axes make this

symmetry group the dihedral group.
Interestingly, the five symmetry groups profiled so far cover all the possible cases.

If a polyhedron has any rotational symmetry at all (some do not), then the symmetry

group must be one of these five.

Rotation axis
Primary axis

Figure 6.31 Cyclic and dihedral symmetry
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Result 6.6 (Polyhedral Symmetry Groups). If a polyhedron has rotational
symmetry, then the symmetry group must be cyclic, dihedral, tetrahedral, octahedral,
or icosahedral.

A proof of this result involves enumerating the characteristics of rotation axes.
(See [2] for a detailed exposition.)

6.4 COMPLEMENTS AND DETAILS

6.4.1 Generalized Barycentric Coordinates

Barycentric coordinates are convenient to use in modeling situations and especially
for interpolation. It is natural to consider generalizations to more than three refer-
ence points. Instead of using a triangle as the basic reference, could the vertices of
a polygon serve the same purpose? To examine the possibilities here, the following
properties ensure that the coordinates are useful.

1. For point P inside the convex hull of P0,P1, … ,Pn,

P =
n∑

i=1
𝛼iPi with 0 ≤ 𝛼i ≤ 1 and

n∑
i=1

𝛼i = 1

2. For points outside the convex hull, at least one 𝛼i is negative.

3. For points on the edge between two adjacent vertices, only the coordinates asso-
ciated with the two vertices should be nonzero.

4. Each 𝛼i changes smoothly as any reference point changes.

The first two properties imply that examining the coordinates of a point determines
whether it is inside the convex hull of the reference points. The third property just fits
our intuition that the coordinates should reduce to those for a line segment. As the
reference points are repositioned, the third property guarantees that sharp or sudden
changes do not occur in the coordinates. In fact, a more mathematical translation of
this property is that each 𝛼i is an infinitely differentiable function of the reference
points.

Generalizing barycentric coordinates to regular polygons is almost straightfor-
ward. Consider the regular pentagon in Figure 6.32 with point P inside. Mimicking
the technique for a triangle, where the area opposite a vertex is used to calculate the
barycentric coordinate, the areas of triangles opposite a vertex in the pentagon are
used to determine coordinates.

This time, the product of areas is the key idea, and to find 𝛼0, take the product of
the areas of triangles ΔPP1P2, ΔPP2P3, and ΔPP3P4. That is, take all the triangles
except the ones containing the vertex P0. Call the product A0. In general,

Ai =
∏

j≠i−1
j≠i

Area(ΔPPjPj+1) =⇒ 𝛼i =
Ai∑n

j=0 Aj

(6.18)
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P0

P1

P2 P3

P4P

Figure 6.32 Barycentric coordinates in a regular pentagon

After calculating Ai, division by the sum of all Aj normalizes the coordinates, so

that
∑n

i=1 𝛼i = 1. The fact that the polygon is regular (edges are equal) ensures that

the coordinates satisfy the listed properties.

To generalize further to irregular convex polygons, a little more work has to be

done. Ai must be multiplied by the area ofΔPi−1PiPi+1. This compensates for the fact

that the angles and edges are no longer equal. (See [3] and [4] for details.) Barycentric

coordinates are unique for triangles, but there are several approaches available when

using larger polygons as a reference. It is also possible to move up a dimension and

locate points inside a polyhedron.

6.4.2 Data Structures

To incorporate polyhedra in graphics programs, information about vertices, faces,

and edges has to be stored in a way that allows easy access during computation. The

obvious approach is to build a table for the vertices and a table for the faces, that is,

an ordered list of vertices giving the three coordinates for each one and an ordered

list of faces specifying which vertices form each face. Table 6.4 shows the two tables

for a cube.

The face table adds more information than is immediately apparent since the ver-

tices listed for each face are given in counter-clockwise order looking from the outside

TABLE 6.4 Vertex and Face Tables
Vertex x y z

0 1 1 1

1 1 1 − 1

2 1 − 1 − 1

3 1 − 1 1

4 − 1 1 1

5 − 1 − 1 1

6 − 1 − 1 − 1

7 − 1 1 − 1

Face v1 v2 v3 v4
0 0 3 2 1

1 1 2 6 7

2 7 6 5 4

3 4 5 3 0

4 1 7 4 0

5 6 2 3 5
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of the cube. This makes computing normals simpler in terms of keeping the direction

correct; a vector from the first vertex to the second cross the first vertex to the fourth

will always point out of the cube.

The two tables are sufficient to hold the basic information needed to produce the

cube on the display screen. However, there is information that is not readily available.

Which faces meet at vertex number 3? This type of information will be useful later

when discussing lighting calculations. From the two tables, it is not hard to compute

the answer by searching through the face table to find all faces that include vertex

3. Faces 0, 3, and 5 meet at vertex 3. Imagine, though, the work required to search

through a face table with hundreds of thousands of entries.

There are often tradeoffs made in deciding what data structure to use in a particular

case. The vertex and face tables minimize space used in memory, but some queries

about the polyhedron might take a while to answer. Balancing speed and space is

often the key task in designing data structures. In the case of polyhedra, there are

several pieces of information that an algorithm might need. Which edges bound a

face? What two faces meet at a given edge? What is the counterclockwise order of

the faces meeting at a vertex? These and other questions can be answered by the

simple vertex and face tables, but the computation might be considerable. Adding an

edge table helps, but a sophisticated data structure is really needed to field the many

possible queries.

One successful approach to storing information about polyhedra is the winged
edge data structure introduced in the 1970s by Bruce Baumgart. This data structure

adds an edge table to the vertex and face tables, but it includes additional information

that further details the topology of the polyhedron. Figure 6.33 shows a schematic of

edge information.

In addition to the vertices at the end points of an edge, the structure stores a direc-

tion by distinguishing the first and second end points. Then, while moving in the

direction of the edge, the faces on the left and right are stored. Traversing the left

face counterclockwise gives a previous edge and a successor edge to the main edge.

Traversing the right face counterclockwise means switching the direction of the main

edge, but it also gives a previous edge and a successor edge. The first entry in Table 6.5

e0

e1

e3e8

e9

0

0

1

4

Figure 6.33 Winged edge data structure for a cube’s edge
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TABLE 6.5 Winged Edge Data Table for the Cube

Edge V1 V2 FL FR Pr.L Su.L Pr.R Su.R

e0 0 1 4 0 e8 e9 e1 e3
e1 1 2 1 0 e9 e10 e2 e0
e2 2 3 5 0 e10 e11 e3 e1
e3 3 0 3 0 e11 e8 e0 e2
e4 4 5 3 2 e8 e11 e5 e7
e5 5 6 5 2 e11 e10 e6 e4
e6 6 7 1 2 e10 e9 e7 e5
e7 7 4 4 2 e9 e8 e4 e6
e8 0 4 3 4 e3 e4 e7 e0
e9 1 7 4 1 e0 e7 e6 e1
e10 2 6 1 5 e1 e6 e5 e2
e11 3 5 5 3 e2 e5 e4 e3

for the cube is for edge e0. When traversing this edge from vertex 0 to vertex 1, face 4

is on the left and face 0 is on the right. In a counterclockwise listing of edges bounding

face 4, edge e8 (Pr.L) comes before edge e0 and edge e9 (Su.L) comes after. Similarly,

for face 0, the counterclockwise ordering gives e1, e0, and e3. There are other edges
bounding the faces, but the table immediately gives the order for three edges.

To find faces meeting at vertex 3, a search that discovers edge e3 starts at vertex 3.
Then the Pr.L (e11) and Su.R (e2) entries lead to the other edge entries that will com-

plete the three faces meeting at 3. Various searches like this will answer the needed

queries in, hopefully, reasonable amounts of time.

6.5 EXERCISES

1. A triangle has vertices P0 = (2, 8), P1 = (15,−1), P2 = (9, 16). Find the

barycentric coordinates of P = (8, 12) and Q = (16, 6).

2. Extend the lines of a triangle to divide the plane into seven sections. Explain

what the barycentric coordinates look like in each section.

3. Using the reference triangle with vertices P0 = (1, 1, 4), P1 = (−2, 8,−15), and
P2 = (10, 4, 1). Find the barycentric coordinates for P = (3, 1, 5).

4. Suppose point P is not in the plane of the triangle, but does project to the interior

of the triangle. After calculating the barycentric coordinates using the standard

area method, what is true of the coordinates?

5. In Example 6.1, find k1 directly and use it to verify the value for 𝛼1.

6. For the triangle with vertices P0 = (−5, 2), P1 = (−1,−6), and P2 = (3, 3), the
color of vertex P0 is (50, 100, 80) where the three components represent the

intensity of red, green, and blue light, respectively. The color ofP1 is (60, 75, 90)
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and the color of P2 is (30, 58, 104). Using linear interpolation, what is the color
of the origin (0, 0, 0)?

7. In Example 6.3, �⃗� = 𝛼0𝑣1 + 𝛼2𝑣2. By taking the dot product of both sides of

this equation with 𝑣1 and with 𝑣2, produce two equations in the unknowns 𝛼0
and 𝛼2. Solve for both, and verify they give the same barycentric coordinates as

in the example.

8. Show that points on a line through P0 in a triangle satisfy the equation 𝛼1 = c𝛼2
for some constant c.

9. Let P be a point with barycentric coordinates (𝛼0, 𝛼1, 𝛼2) relative to triangle T .
If the vertices of T are transformed by an affine transformation, show that the

barycentric coordinates of P are unchanged.

10. A face of a polyhedron has vertices A = (4, 0, 12), B = (−3,−4,−1), and C =
(2, 36,−1). A light source is at (16, 25,−4) and a ray travels in the direction

(−3,−1, 2). Doe is hit the face? (Use barycentric coordinates.)

11. Consider the triangle with vertices P0 = (−6,−3), P1 = (−1, 7), and

P2 = (4,−1). Find a circle tangent to all three sides. (Note that there is

more than one such circle.)

12. Show that the centroid of a triangle divides the medians in the ratio 2 : 1.

13. Compare the tetrahedron’s coordinates from Example 3.24 to those in Table 6.1.

Find a transformation (matrix) that converts one set to the other.

14. Find the vertices of a regular pentagon with edge length 1. Show the connection

between the pentagon and the golden ratio by finding the length of a diagonal.

15. The three vertices (−8, 7), (10, 2), and (4,−6) form a triangle. Find the center

and radius for both the incircle and the circumcircle.

16. Consider the points (2, 1), (12,−1), (4, 8), (6, 1), (9,−8), and (6,−9). Using
determinants, find the area of the convex hull.

17. The following points are vertices of a polygon given in counterclockwise order:

(−2, 3), (−5, 0), (−4,−1), (12,−3), (1, 1), (11, 2). Determine whether the point

(3, 0.4) is inside or outside the polygon by using a horizontal ray and thewinding
number. Repeat using a vertical ray.

18. Start with an arbitrary convex pentagon and count how many triangulations

there are. Repeat the count for convex polygons with six and seven edges. (In

general, if there are m + 2 vertices, there are 1

m+1

(
2m
m

)
triangulations.)

19. Determine the Delaunay triangulation for the four points (1, 8), (4,−3), (5, 10),
and (7, 2).

20. For the regular polyhedra listed in Table 6.2, verify the dihedral angles by cal-

culating the angles between faces.



210 POLYGONS AND POLYHEDRA

21. Find the volume of the icosahedron whose coordinates are given in Table 6.1.

22. In Example 6.10, the volume of the dodecahedron was calculated by adding

smaller pyramids together. Instead of using the origin as the apex for each pyra-

mid, use (2, 0, 0)which is outside the dodecahedron. Using signed volumes, find

the volume of the dodecahedron and verify that it agrees with the calculation in

the example.

23. The inequalities 6.17 are satisfied for V = F as long as V ≥ 4. Show that there

actually exist such polyhedra for all V ≥ 4. (Hint: Consider pyramids.)

24. Construct a winged edge table for the tetrahedron.

25. A right tetrahedron is one where three faces meet at right angles. Such a

polyhedron can be positioned with a vertex at the origin and edges along

each of the three axes. The face that does not contain the origin is analogous

to the hypotenuse of a right triangle. In fact, there is a generalization of the

Pythagorean formula that works for the right tetrahedron. Show that the square

of the area of the “hypotenuse” face is equal to the sum of the squares of the

areas of the other three faces.

26. Another, occasionally useful, formula for the area of a triangle is based on

the lengths of the sides. For a triangle with sides a, b, and c, the area is A =√
s(s − a)(s − b)(s − c) where s = 1

2
(a + b + c). This is known as Heron’s for-

mula. For the trianglewith vertices (−5, 7), (4, 2), and (1,−8), show that Heron’s

formula gives the correct area.

27. In the Example 6.9, the ray intersects some of the edges of the polygon. Edges

that intersect the ray where t < 0 can be ignored. Develop an algorithm for

determining if an edge intersects the ray with t < 0.

28. Suppose we color the cube with six different colors, one for each face. Two

colorings are indistinguishable if there is a rotation symmetry that transforms a

cube with the first coloring to a cube with the second coloring so that the colors

on the faces match up. How many distinguishable colorings (using six colors)

are there for the cube?

29. Three vectors determine a tetrahedron. Show that the volume of the tetrahedron

is one-sixth the determinant of the 3 × 3 matrix formed by putting the three

vectors in the three rows of the matrix.

30. For a triangulation (or any triangular mesh without holes), show that an altered

Euler’s formula, V + F − E = 1, holds.

31. To send one triangle face of an object to the graphics processor for rendering on

the screen, three vertices must be sent. A triangle strip is a series of triangles.

More specifically, a set of vertices P0,P1,P2, … ,Pn is a strip if each consecu-

tive sequence of three vertices (Pi−1PiPi+1) forms a triangle in the strip. Show

that the average number of vertices per triangle approaches 1 as the strip gets

longer. This is a more efficient way to transfer triangle data.
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6.5.1 Programming Exercises

1. Implement the algorithm for determining whether a point is inside a polygon

(given by an ordered set of vertices) by calculating the winding number.

2. Code an algorithm for finding the convex hull for a set of points in the plane.

Input a set of coordinates and output the points forming the vertices for the

convex hull.

3. Write a method (function) for taking a list of points and returning a list of edges

in the Delaunay triangulation.



7
CURVES AND SURFACES

A straight line segment is a key primitive in computer graphics and, consequently, any

flat triangular (or more generally, polygonal) surface is easy to draw on the screen.

Yet, curves are indispensable when designing objects like cars, door knobs, archways,

and any number of animated characters. Although we end up approximating these

forms with many triangles with their straight edges, the problem is still how to find

vertices that ultimately give a global look of curvature. If we add the animation stage

where we let a car bounce along the dirt roadway or move the camera as though we

are flying through the city, then the paths describing these motions rely on various

curves.

There are several ways to describe curves, but in order to display them on a com-

puter screen we eventually need coordinates for various points on the curve. Con-

necting the points with line segments then completes the approximation of the curve

(Figure 7.1). An implicit algebraic description of a circle, such as x2 + y2 = 4, is

familiar and compact, but to find point coordinates we have to solve for one coor-

dinate in terms of another. An alternative description, x = 2 cos(t) and y = 2 sin(t),
relies on computing trigonometric functions but, unlike the implicit description, it has

the nice property of uniformly moving around the circle as the parameter t increases
uniformly. Which sort of representation is best for graphics algorithms? How do we

alter the description if we need a circle slightly flattened on one side? If we push a

curve here and pull it there, how do we encode the changes? Can we put two or more

pieces of curves together and guarantee that they look smooth? These are the issues

that command the attention of the graphics designer and programmer.

Mathematical Structures for Computer Graphics, First Edition. Steven J. Janke.
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Figure 7.1 Curve composed of line segments

7.1 CURVE DESCRIPTIONS

Setting aside a straight line, which is indeed a curve, perhaps the most familiar

two-dimensional curves are the circle and the parabola. The general circle with

implicit algebraic description (x − h)2 + (y − k)2 = r2 is centered at the point (h, k)
and has radius r. Its symmetry certainly constrains which points are on the curve,

but if the designer specifies three noncollinear points, P0, P1, and P2, there is always

a circle passing through them. (Pick the circumscribing circle for the triangle.)

Mathematically, we say that the circle interpolates the points P0, P1, and P2; the

curve includes the given points and fills in points between them. Similarly, one

form of the parabola has an explicit algebraic description y = x2. (The description is

explicit because it directly gives one coordinate in terms of the other.) Generalizing

this gives y = ax2 + bx + c, which describes parabolas with a central axis parallel

to the y-axis. It still allows the designer to find a parabola passing through three

specified points (no two on the same vertical line). The parabola is determined by

the values of a, b, and c, and with three specified points, we have three equations in

the three unknowns.

Another way to describe the circle is to introduce a new parameter, often denoted

t, and let the coordinates change as t changes. Since the coordinates x and y are now

functions of t, we should write x(t) and y(t), but the simpler notation, x and y, usually
is not confusing. If we set x = r cos(t) and y = r sin(t), where r is fixed and t varies
over all real numbers, then we generate points on a circle of radius r centered at the

origin. To see that we still have a circle, calculate x2 + y2 and note that it equals r2.
This is a parametric description of the circle and we can make it more general by

including an arbitrary center: x = r cos(t) + h and y = r sin(t) + k.
One advantage of this description is that t is really the angle around the center and

increasing the parameter t in equal amounts guarantees that we are taking equal steps

around the circumference of the circle. This means that drawing line segments from

one point to the next gives a regular polygon approximation to the circle.

In constructing parametric descriptions, flexibility in choosing the parameter (or

parameters) means that these descriptions are not unique. A simple second example

for the circle is x = r cos(2𝜋 − t) + h and y = r sin(2𝜋 − t) + k. These coordinate

expressions trace the circle in the opposite direction from before. For the parabola,

x = t and y = at2 + bt + c form a trivial parametric description, and replacing t with
2t gives another one that traces the parabola twice as fast (i.e., dx

dt
has doubled).
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In fact, replacing t with other functions like t2 + 1 produces yet other parametric
descriptions.

Definition 7.1 (Curve Descriptions). A two-dimensional curve is a collection of
points described by any of the following expressions:

1. Explicit: y = f (x) for some continuous function f .

2. Implicit: F(x, y) = 0 for some continuous function F.

3. Parametric: x = f (t) and y = g(t) for continuous functions f and g.

Three-dimensional curves simply add a third coordinate to the points. For an
explicit description, we need two equations expressing two of the coordinates in
terms of the third [e.g., x = f (z) and y = f (z)]. Implicit descriptions require two
conditions: F(x, y, z) = 0 and G(x, y, z) = 0. The two equations allow us to pick one
coordinate and solve for the other two. Finally, the parametric descriptions use one
expression for each coordinate: x = f (t), y = g(t), z = h(t).

Parametric descriptions are arguably the most useful descriptions for computer
graphics. Actually, we have already been using these descriptions because our expres-
sion for a line segment (a curve) is P(t) = tP0 + (1 − t)P1 where 0 ≤ t ≤ 1 and P0 and
P1 are points. Here, instead of one equation for each coordinate, we have combined
them into one using points. The individual coordinate functions for a line segment in
two dimensions are x = tx0 + (1 − t)x1 and y = ty0 + (1 − t)y1. For a line segment in
three dimensions, we add a third coordinate, z = tz0 + (1 − t)z1. If the coordinates are
polynomial functions of the parameter, we say the curve is a polynomial curve and
its degree is the highest power of the parameter in any of the coordinate functions.
More generally, if the coordinate functions are quotients of polynomials (f (t)∕g(t)),
then the curve is a rational curve.

Example 7.1 (Conics). Conics are the familiar two-dimensional curves obtained by
intersecting a plane with a cone. They can be implicitly described by

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (7.1)

Various restrictions on the coefficients classify the conics as a pair of straight lines,
parabola, ellipse, or hyperbola (see Exercises). For example, the following expression
factors nicely:

x2 − 2xy − 3y2 + 3x − 5y + 2 = (x − 3y + 1)(x + y + 2) = 0

This implies that the curve includes points such that x = 3y − 1 or x = −y − 2. Hence
the curve is just a pair of straight lines, a degenerate conic. If we wish, we can easily
give parametric equations for each of the lines.

If the coefficients are A = 2,B = 0,C = 0,D = −4,E = −1,F = 5, then the
description becomes 2x2 − 4x − y + 5 = 0 and this easily rearranges to become
y = 2(x − 1)2 + 3, a parabola. Again, the parametric description is easy, x = t and
y = 3(t − a)2 + 3 (Figure 7.2).
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The familiar equation of an ellipse centered at the origin and oriented so its axes
are parallel to the coordinate axes is

x2

a2
+

y2

b2
= 1

It is easy to see that this equation comes from Equation 7.1 by setting A = b2,C =
a2,F = −a2b2 and the rest equal to zero. One parametric description for the ellipse
is x = a cos(t) and y = b sin(t). With a = b = r, we get the description of a circle
which we saw earlier. The advantage of this parametric description is the fact that the
parameter t does represent the angle around the center.

Another more curious parametric description for the ellipse is composed of these
two functions:

x = a(1 − t2)
1 + t2

and y = 2bt
1 + t2

(Check to see that these expressions for x and y do satisfy the familiar equation for
the ellipse.) For a = b, this gives a circle where, for uniformly spaced t, the points are
almost equally spaced around the circle and it only requires simple calculation rather
than trigonometric functions.

Finally, the hyperbola with the familiar equation
x2

a2
− y2

b2
= 1 can also be put into

the implicit form of Equation 7.1. The equations x = a sec(t) and y = b tan(t) give a
parametric description (for values of t where the functions are defined). There is also
another interesting description for hyperbolas:

x = a(b2 + a2t)
a2t2 − b2

and y = 2ab2t
a2t2 − b2

where t ≠ b
a
. ◽

Example 7.2 (Conics Continued). In graphics work, it is useful to be able to look
at a description and determine if it is a conic. The key will be to compare the descrip-
tion to Equation 7.1 which is a general form for conics; all conics can be put in this
implicit form.

Parabola Ellipse Hyperbola

Figure 7.2 Conics
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Consider the following parametric description:

x = t2

t + 1
and y = 2t2 + 3

t + 1

Multiplying through to clear denominators gives us two quadratic equations in twhich
must both be true for any point on the curve. We solve the two simultaneously to get

an expression for t.

(t + 1)x − t2 = 0

(t + 1)y − 2t2 − 3 = 0

=⇒ (t + 1)(y − 2x) − 3 = 0

=⇒ t = 3

y − 2x
− 1

Substituting this expression for t into either of the original parametric equations gives

10x2 − 7xy + y2 + 12 − 6y + 9 = 0

Consequently, the curve is a conic. In fact, it turns out that by checking the sign of

B2 − 4AC (= (−7)2 − 4 ⋅ 10 ⋅ 1 > 0) we can determine that this conic is a hyperbola.

Or, we can actually plot it and see what it looks like. ◽

The parametric description for our conic used rational functions and in such a

description, as long as the denominators are the same and both the numerators and

denominators are quadratic functions, we have a conic.

Result 7.1 (A Parametric Form for Conics). The parametric description given by

x =
px(t)
q(t)

and y =
py(t)
q(t)

where px, py, and q(t) are quadratic functions of t, describes a conic. Moreover, all
nondegenerate conics can be described in this way.

This result does not claim that all parametric descriptions of conics have this

rational form, but it does say that given a conic we can find such a rational param-

eterization. It also gives us a convenient way to quickly use the parametric form to

determine whether the curve is a conic.

Example 7.3 (Change of Coordinates). Curves can have more or less convenient

descriptions in different coordinate systems. Consider the curve with implicit descrip-

tion xy − 1 = 0. This is a conic because it fits our general form, but it may not be

clear which conic it is. A change of coordinate system will change the description
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and perhaps put it in a form we recognize. Suppose we wish to describe the curve in
a coordinate system where the x- and y-axis have been rotated counterclockwise by 𝜃.
The coordinates of a point on the curve will then be rotated clockwise by 𝜃. Letting
the new coordinates be (u, 𝑣), we convert with the following expressions:

x = u cos 𝜃 − 𝑣 sin 𝜃

y = u sin 𝜃 + 𝑣 cos 𝜃

Setting 𝜃 = 45∘, we can substitute into the original implicit description.

xy − 1 =

(
u√
2
− 𝑣√

2

)(
u√
2
+ 𝑣√

2

)
− 1 = u2

2
− 𝑣2

2
− 1 = 0

The expression on the right is the implicit description of a hyperbola. If the coefficient
for xy in the general implicit form for a conic is nonzero, it is a good indication that
the conic is oriented with axes that are not parallel to the coordinate axes. ◽

Of course, not all curves are conics, and not all curves are described efficiently in
Cartesian coordinates. In polar coordinates, a spiral is given by r = 𝜃; converting to
Cartesian coordinates gives x = t cos(t) and y = t sin(t), a little less compact.

Example 7.4 (Three-Dimensional Curves). Adding a z coordinate gives us
three-dimensional curves. For example, the helix (a spring-shaped spatial curve) can
be described parametrically by x = cos(t), y = sin(t), and z = t.

Any of the two-dimensional curve can be made three dimensional by positioning it
in space. The curve x = 1, y = t, and z = t2 lies on the plane x = 1, and since z = y2,
it is a parabola in this plane. We can rotate the plane and the curve to get another
spatial parabola. Suppose we rotate counterclockwise around the z-axis by 𝜃 = 𝜋∕3
radians. Then the transformed coordinates (xr, yr) of points on the curve satisfy

xr = x
(
1

2

)
− y

(√
3

2

)

yr = x

(
−

√
3

2

)
+ y

(
1

2

)
Since x = 1 and y = t, we have a new parameterization:

xr =
1 − t

√
3

2
yr =

√
3 + t

2
zr = t2

The result is still a parabola in space. ◽

Example 7.5 (Tangents). Parametric descriptions give each coordinate as a function
of t. Consider the two-dimensional curve given by x = 2t + 1 and y = t3. The vector
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from the origin to a point on the curve is then

r⃗(t) = x⃗i + y⃗j = (2t + 1)⃗i + t3 j⃗

From calculus, we can find the slope of a tangent to the curve by calculating the
derivative dy∕dx. The chain rule helps for parametric descriptions.

dy

dx
=

dy∕dt

dx∕dt
= 3t2

2

The slope of the tangent line in terms of t is the quotient of dy∕dt and dx∕dt. If we
use these individual derivatives as components of a vector, we get the tangent vector

r⃗′(t).

r⃗′(t) =
(dx

dt

)
i⃗ +

(
dy

dt

)
j⃗ = 2⃗i + 3t2 j⃗

This vector is the direction vector for the tangent line and its length tells us how
fast we are moving around the curve relative to the change in t. For this particular
curve, the length is |r⃗′(t)| = √

4 + 9t4. At the point where t = 1, we are moving in
the direction of the tangent vector at a rate which covers 13 units on the curve for
every 1 unit of change in t (Figure 7.3).

Tangent vectors are handy when we are trying to match the end of one curve seg-
ment to the next. If the tangent vectors are parallel, then the tangents to the curve
segments have the same direction and the transition will look smooth. For our curve,
the slope of the tangent at the point where t = 1 is 1.5, and if a new curve segment
starts with this slope, the transition will have what we call C1 continuity. C0 conti-
nuity simply means that one curve segment starts where the other ends and higher
levels of continuity (C2 and above) mean that several higher derivatives match. ◽

7.1.1 Lagrange Interpolation

Curve descriptions whether they are explicit, implicit, or parametric give the recipe
for putting a curve on the screen, but we need to know how to pick the right curve to

i

j

r (t)

r ′(t)

Figure 7.3 Tangent vector
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achieve what we want graphically. Moving the camera, for instance, in an animation

sequence most likely involves following a smooth custom curve that passes through

key points along the way. If there are only two key points, then perhaps a straight line

path will work and the curve is then P(t) = (1 − t)P0 + tP1.

Suppose, however, there are three key points and we need a curve to interpolate

the key points P0, P1, and P2. Then a compact parametric description might look like

this:

P(t) = 𝛼0(t)P0 + 𝛼1(t)P1 + 𝛼2(t)P2 (7.2)

The functions 𝛼0, 𝛼1, and 𝛼2 are blending functions and serve to combine the influ-

ences of the three points as the parameter t changes. In particular, if 𝛼0(0) = 1 while

𝛼1(0) and 𝛼2(0) are both zero, then P(0) = P0; the first point is on the curve when

t = 0. Following this pattern, we could specify the blending function values at t = 1

and t = 2 in order to guarantee that P(1) = P1 and P(2) = P2.

An easy way to pick the function 𝛼0 is to realize that it should be 1 for t = 0 and

zero for t = 1 and t = 2. This suggests the form

𝛼0(t) = c(t − 1)(t − 2)

for some constant c. Since 𝛼0(0) = 1, we have c = 1∕2. Reasoning in this way gives

the blending functions:

𝛼0(t) =
1

2
(t − 1)(t − 2)

𝛼1(t) = −t(t − 2)

𝛼2(t) =
1

2
t(t − 1)

The final parametric description is

P(t) = 1

2
(t − 1)(t − 2)P0 − t(t − 2)P1 +

1

2
t(t − 1)P2 (7.3)

In two dimensions, this compact form includes two parametric equations, one for

each coordinate, each of which is a quadratic function of t.

Example 7.6 (Curve to Interpolate Three Points). Take P0 = (−1, 3), P1 = (2, 5),
and P2 = (4, 1). Then our interpolation procedure gives the following description:

P(t) = 1

2
(t − 1)(t − 2)

[
−1
3

]
− t(t − 2)

[
2

5

]
+ 1

2
t(t − 1)

[
4

1

]
=⇒ x = −1

2
(t2 − 7t + 2) and y = −3t2 + 5t + 3
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P0

P1

P2

Figure 7.4 Lagrange interpolation

The coordinate parametric equations are both quadratic as our method predicts from
the way we chose the blending functions. A quick check when t = 0, 1, 2 shows that
the curve does pass through the three specified points (Figure 7.4).

From 7.1, we know this curve is a conic, and if we use the procedure we saw earlier
for converting a parametric description to an implicit description, we can verify that
this curve is a parabola (since B2 − 4AC = 0). ◽

This interpolation procedure is named after the mathematician Lagrange (who
published his investigations in 1795) although others including Edward Waring
(1779) used the technique earlier. It can be generalized to interpolate n + 1 points by
picking n + 1 blending functions so that the curve goes through the specified points
when t = 0, 1, … , n. The blending functions are defined as the product of terms, so
we use the symbol

∏
to indicate product.

𝛼i(t) =
n∏

k=0
k≠i

(t − k)
(i − k)

(7.4)

The definition ensures that 𝛼i(i) = 1 and 𝛼i(j) = 0 for j an integer between 0 and n but
not equal to i. Each blending function is a polynomial of degree n.

Result 7.2 (Lagrange Interpolation). Given the n + 1 points P0,P1, … ,Pn, define
the n + 1 blending functions 𝛼0, 𝛼1, … , 𝛼n by Equation 7.4. Then the curve with para-
metric description P(t) =

∑n
i=0 𝛼i(t)Pi interpolates the n + 1 given points.

Since each blending function is a polynomial, the resulting coordinate paramet-
ric equations are also polynomials. For example, x =

∑n
i=0 𝛼i(t)xi is a polynomial of

degree at most n, and since the curve goes through each of the given n + 1 points, the
value of the polynomial is xi for t = i (0 ≤ i ≤ n).

If there were another polynomial that took the same values xi when t =
i (0 ≤ i ≤ n), then we could subtract one from the other to get a polynomial of degree
at most n that was zero at n + 1 values of t. Although it is an advanced result, we
know that a polynomial of degree n can have at most n zeroes unless it is identically
zero. This implies that the difference of our two polynomials must be identically
zero. In other words, the Lagrange polynomial we constructed is unique.
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In addition to the uniqueness, there is one other property of the Lagrange method

that is very important. Notice in Example 7.6 that the sum of the three blending func-

tions is 1.

𝛼0(t) + 𝛼1(t) + 𝛼2(t) =
1

2
(t − 1)(t − 2) − t(t − 2) + 1

2
t(t − 1) = 1

This is not accidental. Rather, using an argument similar to the one for uniqueness, if

all xi are 1, then the polynomial must be identically 1. However, when all xi = 1, we

just have the sum of the blending functions, so this sum must be 1.

Result 7.3 (Lagrange Interpolation Properties). Using Lagrange interpolation on n
points gives a parametric description with the following two properties:

1. The parametric coordinate functions are unique polynomials of degree at most
n − 1.

2. The sum of the blending functions is 1:
∑n

i=0 𝛼i(t) = 1.

These two properties indicate both a drawback and an advantage to using the

Lagrange interpolation method. Using the technique, the graphics designer can find

the description of a curve passing through an arbitrarily finite set of points. However,

our work is not done because with n + 1 specified points, the resulting coordinate

parametric functions may have degree as high as n. From calculus, we know that such

polynomials can have as many as n − 1 maxima and minima, indicating that the curve

could be very wiggly (Figure 7.5). Adding points in an effort to further constrain the

curve will generate higher degree polynomials for the parametric functions and possi-

bly introduce more gyrations in the curve. Another approach is to reduce the number

of points and try to patch several segments of curves together. This is a reasonable

approach, but patching curves in a smooth way requires knowing their tangents, and

for Lagrange curves these depend in complicated ways on the specified points.

The advantage to the method has to do with transforming the curve. In construct-

ing graphics scenes, we apply many transformations and often change coordinate

Figure 7.5 Rapidly changing Lagrange curve
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systems.We would like any curves we design to hold their general shapes as we apply

these transformations. That is, if we transform the specified points and then apply the

blending functions, we would like a curve of the same type as before. Luckily, the

Lagrange blending functions sum to 1, making the description an affine combina-

tion of the given points. This ensures that transformations of Lagrange curves end up

being Lagrange curves.

Recalling that an affine transformation has the form T(P) = MP + Q⃗, where M is

a matrix and Q⃗ is a vector, we have

T(P(t)) = M(𝛼0(t)P0 + 𝛼1(t)P1 + 𝛼2(t)P2) + Q⃗

= 𝛼0(t)(MP0 + Q⃗) + 𝛼1(t)(MP1 + Q⃗) + 𝛼2(MP2 + Q⃗)

= 𝛼0(t)T(P0) + 𝛼1(t)T(P1) + 𝛼2T(P2)

The result shows that the transformed curve is the same as we get by applying the

Lagrange interpolation method to the transformed points (T(P0), T(P1), T(P2)). We

say the curve description has affine invariance.

7.1.2 Matrix Form for Curves

Expressing curves in terms of points and blending functions gives us an opportu-

nity to write the description using matrices. Then we can often use the algebra of

matrices when manipulating descriptions in various ways. If the blending functions

are polynomials in t, then we can describe them as a product of two matrices where

the second is formed from the elementary polynomials 1, t, t2, … , tn. For example,

to describe the Lagrange blending functions for three points (see Example 7.4), we

have the following matrix expression:

⎡⎢⎢⎣
𝛼0(t)
𝛼1(t)
𝛼2(t)

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎣
1 − 3

2

1

2

0 2 −1

0 − 1

2

1

2

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
1

t
t2

⎤⎥⎥⎦ (7.5)

Supposewe are using the pointsP0,P1, andP2. If the coordinates ofPi are (xi, yi), then
we can form a matrix with the coordinates of each point in a separate column. This

matrix can be multiplied by the matrix of blending functions to give us the parametric

coordinate functions:

[
x(t)
y(t)

]
=

[
x0 x1 x2
y0 y1 y2

] ⎡⎢⎢⎢⎣
1 − 3

2

1

2

0 2 −1

0 − 1

2

1

2

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
1

t
t2

⎤⎥⎥⎦ (7.6)

In general, if we think of P(t) as a column matrix of coordinate functions and M
as the matrix of coefficients for the blending functions, then we can write the curve
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description as

P(t) =
[
P0 P1 · · · Pn

]
M

⎡⎢⎢⎢⎣
1

t
⋮
tn

⎤⎥⎥⎥⎦ (7.7)

The elementary polynomials 1, t, t2, … , tn form a basis for all polynomials of degree

n or less. This means that any other polynomial can be written as a combination of

elementary polynomials. If the matrix M has an inverse, then the blending functions

also form a basis for all polynomials of degree n or less. The matrix description of a

curve becomes useful when moving between different sets of blending functions or

different sets of points.

7.2 BÉZIER CURVES

Around 1960, two applied mathematicians working for French car manufacturers

independently developed a flexible technique for designing curves. Paul de Casteljau

working for Citroën and Pierre Bézier working for Renault took different approaches

to fundamentally the same technique and since Bézier published his work, his name

is attached to the methods. Yet, the geometric approach of de Casteljau is more visual

and offers a good starting point.

Given three initial points P0, P1, and P2 (call them control points), imagine the

line segments P0P1 and P1P2. To find a point PB(t) on the Bézier curve, we proceed

with the following steps.

Algorithm (de Casteljau):

1. Calculate P3 on the first line segment: P3 = (1 − t)P0 + tP1

2. Calculate P4 on the second line segment: P4 = (1 − t)P1 + tP2

3. Calculate PB(t) on the line segment P3P4: PB(t) = (1 − t)P3 + tP4.

By stepping through values of t, we generate enough points to approximate the curve.

With t = 0, the first pass through the steps produces PB(0) = P0, so the first control

point is on the curve. Similarly, t = 1 produces PB(1) = P2 and the third control point

is on the curve. Unless all three control points lie in a line, 0 < t < 1 means the line

segment P3P4 never includes P1 and the result is that the second control point is not

on the curve (Figure 7.6).

To get a more analytic description of the curve we generated, we can algebraically

unfold the algorithm steps.

PB(t) = (1 − t)P3 + tP4

= (1 − t)((1 − t)P0 + tP1) + t((1 − t)P1 + tP2)

= (1 − t)2P0 + 2t(1 − t)P1 + t2P2 (7.8)
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P0

P1

P2

P3

P4

PB

Figure 7.6 Bézier curve with three control points

This form reveals three blending functionsB(0,2)(t) = (1 − t)2,B(1,2)(t) = 2t(1 − t),
and B(2,2)(t) = t2, which in mathematical lore are called Bernstein polynomials after
the Russian mathematician who studied them in 1912. An ordered pair serves as

the subscript on the blending functions indicating which point they multiply and the

degree of the polynomial (one less than the number of control points). The paramet-

ric description of the curve has quadratic functions of t for each of the coordinates

indicating a parabola which interpolates the first and third point.

The parabola is not all that flexible when it comes to shape, so we can boost the

technique up to four control points and try again. We will have to add one more step

to the procedure because we have one more level of line segments to calculate before

we reach the point PB(t) on the curve. The same algebraic manipulation unfolds the

geometry to give the parametric description of the curve:

PB(t) = (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3

The blending functions are now cubic Bernstein polynomials and the curve still

interpolates the first (P0) and last (P3) control points. The intermediate points P1 and

P2 are not generally on the curve. Describing the curve in matrix form, we have

P(t) =
[
P0 P1 P2 P3

] ⎡⎢⎢⎢⎣
1 −3 3 1

0 3 −6 3

0 0 3 −3
0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1

t
t2

t3

⎤⎥⎥⎥⎦ (7.9)

The middle matrix on the right (which we called M) is the matrix of coefficients

for the Bernstein polynomials of degree 3.

All the control points influence the curve in the sense that, if any of them is moved,

the curve changes shape. Clearly, the first and last points alter the curve because the

latter passes through these points. The other two influence the curve by drawing it to

them as they move further away. The blending functions are all nonzero for 0 < t < 1,

so if one control point is moved, it affects all other points on the curve except the two
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P0

P1
P2

P3

PB

P0

P1
P2

P3

Figure 7.7 Bézier curves with four control points

endpoints. Some are affected more than others, but all of them move. The designer,

then, has four points to move in various ways in order to achieve curves that look

widely different, from those that are close to a straight line to those that include a

loop. The cubic curve here has enough flexibility to be useful, but not quite so much

that it is hard to work with (Figure 7.7).

The Bézier curve method is clearly generalizable to any number of control points.

The resulting blending functions are polynomials of higher and higher degree, but

their pattern stays recognizable. If we let a = (1 − t) and b = t, then the terms in

the expansion of (a + b)n give the blending functions for n + 1 control points. When

n = 3, we have four control points.

(a + b)3 = a3 + 3a2b + 3ab2 + b3

B(0,3)(t) = a3 = (1 − t)3

B(1,3)(t) = 3a2b = 3(1 − t)2t

B(2,3)(t) = 3ab2 = 3(1 − t)t2

B(3,3)(t) = a3 = t3

For an arbitrary n, we have B(i,n)(t) = (ni)(1 − t)n−iti, where 0 ≤ i ≤ n. Here, (ni) is the
binomial coefficient which is most easily remembered from Pascal’s triangle (par-

tially given below) where a row is calculated from the row above. (Note that 6 in the

fourth row is the sum of 3 plus 3 just above and left in the third row.)

1 1

1 2 1

1 3 3 1

1 4 6 4 1

There is actually a formula for (ni) which derives from basic counting arguments:(
n
i

)
= n!

i!(n − i)!
=⇒

(
n
i

)
=

(
n − 1

i

)
+

(
n − 1

i − 1

)
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The recursive formula on the right leads to a recursive relation among the Bernstein

polynomials.

B(i,n)(t) = (1 − t)B(i,n−1)(t) + tB(i−1,n−1)(t) (7.10)

Finally, when we add up the blending functions, we get 1 because the sum is actually

(a + b)n.

n∑
i=0

B(i,n)(t) =
n∑

i=0

(
n
i

)
(1 − t)n−iti = ((1 − t) + t)n = 1

This means that the general Bézier parametric description is an affine combination of

the control points.

PB(t) =
n∑

i=0
B(i,n)(t)Pi (7.11)

7.2.1 Properties for Two-Dimensional Bézier Curves

A set of useful properties makes Bézier curves relatively easy to use for design. We

already saw that they interpolate the first and last control points because the only

blending function that is nonzero when t = 0 is the first and the only nonzero one

when t = 1 is the last. Otherwise, the blending functions are all nonzero for other

values of t, and all points are combined for interior points on the curve segment.

(This can be a little awkward if we desire to only change a small portion of the curve.

This needs to be addressed later.) We should also note that, if we take the control

points in reverse order, making the first the last and the last the first, we get exactly

the same curve; the parametric description just traverses the curve in reverse order.

This symmetry is a direct result of the symmetry in the blending functions between

(1 − t) and t.
Bézier curves are well controlled because we know approximately how they are

positioned relative to the control points. The de Casteljau geometric construction con-

tinually takes points that are on line segments between previously calculated points.

This implies that, if we form a polygon surrounding all the control points (in two

dimensions), then the curve must stay inside the polygon. The smallest such poly-

gon is the convex hull of the control points, so the curve stays inside the convex hull

(Figure 7.8).

As we have noted above, the blending functions for Bézier curves sum to 1. The

parametric description is an affine combination and consequently we have affine

invariance. If we transform the control points and apply the parametric description,

we get a curve that is the transform of the original curve. When designing, if we want

the curve rotated, it suffices to rotate the control points.

T(PB(t)) =
n∑

i=0
B(i,n)(t)T(Pi)
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P0

P1

P2

P3

P4

Figure 7.8 Convex hull for Bézier curve

To further control our curves, it would be helpful to know the tangent vectors at

the endpoints of the curve segment. To do this, we need to take derivatives. Consider

again the cubic Bézier curve

PB(t) = (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3

This expression encapsulates equations for both x and y coordinates, so we can

take the derivative directly.

P′
B(t) = −3(1 − t)2P0 + (3(1 − t)2 − 6t(1 − t))P1

+ (6t(1 − t) − 3t2)P2 + 3t2P3

Substituting in t = 0 and t = 1 gives us the derivative at the first and last control

points.

P′
B(0) = −3P0 + 3P1 = 3(P1 − P0)

P′
B(1) = −3P2 + 3P3 = 3(P3 − P2) (7.12)

The derivatives are vectors because each is a difference of points. Their slope gives

us dy∕dx, but geometrically they are vectors from P0 to P1 and from P2 to P3

(Figure 7.7). We can immediately see the tangents because they are line segments

between two control points. (The length of the tangent is also meaningful, but here

we are only interested in the shape of the curve and hence the direction of the

tangents at the endpoints.) By moving the control points, we know exactly how the

tangents will change.

We were concerned earlier about how wiggly a curve can be, and with Bézier

curves we have eased the concern somewhat. Since the curve interpolates only the

first and last points, we may not see the number of maxima and minima that make

a wiggly curve. Actually, there is another property that further ensures some reason-

able behavior for Bézier curves. If we connect the control points in order with line

segments, we form what is called the control polygon. A straight line may cross this

control polygon at a number of points. However, a straight line cannot cross the Bézier

curve more times that it crosses the control polygon; this property is called variation
diminishing. This gives some assurance that the curve is not too wiggly and it offers a
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P0

P1

P2

P3

P4

Figure 7.9 Bézier variation diminishing

way to reduce any wiggliness by moving the control points to smooth out the control

polygon (Figure 7.9).

Result 7.4 (Properties of Bézier Curves). The two-dimensional curve with control
points P0,P1, … ,Pn given by PB(t) =

∑n
i=0 B(i,n)(t)Pi has the following properties:

1. The curve interpolates P0 and Pn.

2. The curve is contained in the convex hull of the control points.

3. The tangent vector at P0 is parallel to (P1 − P0) and the tangent vector at Pn is
parallel to (Pn − Pn−1).

4. The curve is affinely invariant.

5. A straight line does not cross the curve more times than it crosses the control
polygon.

7.2.2 Joining Bézier Curve Segments

To improve the flexibility of Bézier curves, there are two key adjustments we could

make. First, we could add another control point, giving a little finer control over the

curve. Optimally, we would want to add a new control point without disturbing the

current curve, and then be able to move it to obtain some careful change in shape.

(This addition procedure is covered in Section 7.6.)

The second way to improve flexibility is to concatenate two segments. If the last

control point of one curve is the first control point of the next, then we are guar-

anteed the two segments will form a continuous curve; the curve is C0 continuous

(Figure 7.10).

If our curve has control points Pi, we know that the tangents at the first and last

control point are parallel to the vectors P1 − P0 and Pn − Pn−1. We can easily adjust

the joint between two segments so that the tangents match. If the control points of the

second segment are Ri, then R0 = Pn and R1 should be placed on the line through Pn−1
and Pn. With matching tangent directions, the curve containing both segments is C1
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Figure 7.10 Joining two Bézier segments

continuous. Matching the length of the tangents is not strictly necessary because the

length determines how fast the curve is being traversed with respect to the change in t.
A change in speed will not be visually noticeable unless the increments in t used to

approximate the curve are particularly large. Yet, if the curve is a path for animation,

the speed is important and we should match speeds at the join.

In some cases, higher levels of smoothness are necessary, and to achieve this we

need tomatch second derivatives at the joining points between segments. Aswemight

guess, C2 continuity and above depends on positioning more control points in the

second segment correctly and this can be difficult. This is a bit of a drawback to

Bézier curves and one that is addressed with the use of spline curves.

7.2.3 Three-Dimensional Bézier Curves

If the control points for a Bézier curve are actually points in three-dimensional space,

then we have a three-dimensional curve. The de Casteljau algorithm for constructing

the curve still works because the linear interpolation of two points (P(t) = (1 − t)P0 +
tP1) works just fine in space. The algebra for describing the curve is still the same,

and the matrix form of the curve differs only in that the matrix of points now has a

third row corresponding to the third coordinate. Moving the control points shapes the

curve similar to the two-dimensional case, although practically it is a little trickier to

design curves with the extra degree of freedom in three dimensions.

If the control points happen to be all in the same plane (coplanar), then the curve, of

course, satisfies all the properties we discovered earlier for two-dimensional curves.

Actually, the properties still hold for nonplanar three-dimensional curves. The Bézier

curve interpolates the first and last points and it stays within the convex hull of the

control points. In three dimensions, however, the convex hull is generally a poly-

hedron rather than a polygon. Yet, following de Casteljau’s algorithm, we note that

construction of the curve stays within line segments that are always within the con-

vex hull.

We are still taking affine combinations of the control points, so the curve dis-

plays affine invariance. However, three-dimensional curves have to be projected into

two dimensions for display on the screen. Since this projective transformation is

not an affine transformation, the three-dimensional Bézier curve is not necessarily
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projectively invariant. If we project the control points and construct the associated

two-dimensional Bézier curve, we do not get the same curve as we would by pro-

jecting the three-dimensional one. This is a minor annoyance that can be avoided by

using rational Bézier curves which we examine in the next section.

Finally, to patch two three-dimensional Bézier curves together, we take the same

approach as before and match the tangent vector directions. Now, however, they are

three-dimensional directions. As before, it is not necessary to match the length of the

vectors unless we need continuity in the speed with which the curve is traversed.

7.2.4 Rational Bézier Curves

The parametric coordinate functions for Bézier curves are polynomials in t, and this

means that we cannot represent an ellipse (including a circle) or a hyperbola, for

example, as Bézier curves; their parametric descriptions are not polynomials. Despite

its flexibility, the Bézier is just not able to cover all curves. With all curve schemes,

there is a desire to increase flexibility, at the same time keeping the complexity in

check, so a logical next step for Bézier curves is to use rational functions (i.e., quo-

tients of polynomials) for the blending functions. In particular, we introduce weights

𝑤i to help control the shape of the curve.

P(t) =
n∑

i=0

𝑤iB(i,n)(t)∑n
j=0 𝑤jB(j,n)(t)

Pi (7.13)

The blending functions are weighted and normalized versions of the standard Bézier

blending functions. While useful, the weights sometimes lead to awkward situations,

so we usually require both that the values are nonnegative and that they are not all

zero. If 𝑤i = 1 for all i, the rational curve becomes the regular Bézier curve.

Example 7.7 (Circles as Rational Bézier Curves). Just to verify that we actually get

a little more out of these new rational curves than we do out of the standard Bézier

curves, we can pick control points andweights to form a circle in the case where n = 2

and we have three control points. Let P0 = (1, 0),P1 = (1, 1), and P2 = (0, 1). These
are the points at the corners of a unit square. Now set the weights so𝑤0 = 1, 𝑤1 = 1,

and 𝑤2 = 2.

2∑
j=0

𝑤jB(j,2)(t) = 1 ⋅ (1 − t)2 + 1 ⋅ 2t(1 − t) + 2 ⋅ t2 = 1 + t2

This gives the curve

P(t) = 1

(1 + t2)
[(1 − t)2P0 + 2t(1 − t)P1 + 2t2P2]
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The coordinate functions are now

x(t) = (1 − t)2 + 2t(1 − t)
1 + t2

= 1 − t2

1 + t2

y(t) = 2t(1 − t) + 2t2

1 + t2
= 2t

1 + t2

For 0 ≤ t ≤ 1, this is a parameterization for a quarter circle (see Example 7.1).

With three control points, the coordinate functions are quadratic rational func-

tions. Conics can be parameterized by quadratic rational functions and any such
parameterization is a conic. It follows that the quadratic rational Bézier curves are all

conics. ◽

With rational Bézier curves, homogeneous coordinates simplify the description

because the weights play the role of the last homogeneous coordinate. The control
point Pi becomes the homogeneous point Ph

i with coordinates (𝑤ixi, 𝑤iyi, 𝑤i) for two
dimensional curves and (𝑤ixi, 𝑤iyi, 𝑤izi, 𝑤i) for three-dimensional curves. The point

P(t) on the rational curve corresponds to the homogeneous point Ph(t) which has the
following simpler form:

Ph(t) =
n∑

i=0
B(i,n)(t)Ph

i (7.14)

This expression makes it clear that we have the same form as a standard Bézier curve

where we use homogeneous coordinates for the control points. Then it is also clear

that the de Casteljau algorithm proceeds as before interpolating homogeneous coor-
dinates this time. This implies that the convex hull property still holds for the rational

Bézier curves. In fact, all the Bézier properties still hold. It takes a little more com-

putation to find the tangents to the first and last points, but they are still parallel to
P1 − P0 and Pn − Pn−1.

Affine invariance follows as before, but now we also have a projective invariance.

Recall that a projective transformation (in particular, a perspective transformation)
can be represented by matrix multiplication of homogeneous coordinates.

T(Ph(t)) = MPh(t) = M

(
n∑

i=0
B(i,n)(t)Ph

i

)

=
n∑

i=0
B(i,n)(t)MPh

i

=
n∑

i=0
B(i,n)(t)TPh

i

So when we project a three-dimensional rational Bézier curve into two dimen-
sions, the resulting curve is the same as if we constructed a two-dimensional rational

Bézier curve using the control points T(Ph
i ) that are projected from the original control
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points. Projecting the homogeneous points has the effect of adjusting both weights

and points.

7.3 B-SPLINES

Designing a curve is not simple. The Bézier approach helps significantly, and the key

idea is that the curve is not forced to go through all the control points. Still, moving a

control point affects the shape of the entire curve and often we need to adjust only a

small portion. The optimal balance between global and local control is hard to achieve

in all situations. One good technique is to build curves in pieces hoping that the pieces

can be put together in a reasonably smooth way.

Before the widespread use of computer techniques in design, those doing drafting

for architectural drawings often used thin strips of wood or metal to shape a curve

and then trace it onto paper. These splines have a natural smoothness and a minimum

amount of fluctuations. It is not entirely easy to adjust only small regions of the spline,

but if they are thin enough, the perturbations can be isolated to smaller lengths of the

whole strip.

Attempts to mathematically model the flexibility of the spline by incorporating

the relevant physics become complicated, and, instead, several approximations have

been proposed emphasizing some aspects of the physical spline over others. Use-

ful directions usually describe the curve as an affine combination of control points

with polynomial or rational blending functions plus some extra constraints (like spec-

ified tangents). Curve segments are then put together piecewise to form a larger

easy-to-alter curve. Several mathematicians in the past have studied curves using this

general approach, but it appears that Isaac Schoenberg in 1946 was the first to call

the curves “splines” and set the stage for modern development.

While there are many possible approaches here, one that has endured and incorpo-

rates several desirable properties involves curves called B-splines. The B stands for

basis and refers to the fundamental nature of the blending functions which serve as

building blocks for a very wide range of curves. B-splines approximate rather than

interpolate points, and they use blending functions to form combinations of control

points.

To be more specific, the B-spline is a curve determined by n + 1 control points

denoted P0,P1, … ,Pn and n + 1 blending functions conventionally denoted

N(0,k)(t),N(1,k)(t), … ,N(n,k)(t), where k is the degree of the polynomials used in a

piecewise construction of the blending functions. (The subscripts used here actually

vary slightly from one treatment to the next.) For reasons that will be clearer soon,

the order of this B-spline is k + 1; an order k + 1 curve has blending functions of

degree k.
As the parameter t runs through its range, the following expression traces the com-

plete B-spline:

P(t) =
n∑

i=0
N(i,k)(t)Pi (7.15)
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Defining the blending functions is really the key issue, and there are two main

criteria:

1. Local Control. As the parameter t moves through its values, the jth blending
function should reach its maximum at some parameter value t∗j and therefore

allow its associated control point to exert maximum influence over the devel-

oping curve. However, if t is far from t∗j , the blending function should be zero,

guaranteeing that the control point has no influence over distant parts of the

curve. This is the essence of local control.

2. Smoothness. B-splines are piecewise curves built from a series of segments that

fit together smoothly. If we use polynomials of degree k to form the blending

functions, then we need k + 1 points to determine a segment. (This is one reason
why the order of the curve is k + 1.) The first segment depends on the points

P0,P1, … ,Pk, and the second segment depends on the overlapping set of points

P1,P2, … ,Pk+1. The rest of the segments are defined similarly, allowing an
arbitrary number of control points to define the B-spline. Adjacent segments

should meet smoothly, in fact forming a curve with Ck−1 continuity.

Even given these criteria, there is still some flexibility in defining the blending

functions. They are defined in a piecewise manner using polynomials of degree k
which fit together appropriately to guarantee the smoothness of the entire spline

curve. The designer can delineate the blending function pieces by specifying key

values of the parameter t called knots. These will be used to determine the beginning

and ending points for each piece. While arbitrary knot choices are allowed, we start
by using the knots ti = i where i is an integer with 0 ≤ i ≤ n + k. (The range here is
chosen only because of the way we will be defining blending functions; the notation

for B-splines can become confusing, so starting with knot values that are integers
considerably simplifies some expressions.) Using integer knot values means there is

uniform spacing between knots and therefore we have an example of what are called

uniform B-splines.
Unlike Bézier curves where the number of control points determined the degree

of the polynomial curve, we can set the degree for B-splines regardless of how many

control points there are. So to build our experience with B-splines, we start with

degree 1 (linear polynomials) and work up to any arbitrary degree.

7.3.1 Linear Uniform B-Splines

For linear uniform B-splines, the degree is 1 (the order is 2) because we are using

linear polynomials to form the blending functions. Imagine we have n + 1 control
points, P0,P1, … ,Pn. The B-spline with blending functions that are piecewise linear

polynomials simply interpolates between each pair of control points in a linear way.

So points P0 and P1 determine the first straight segment, and in general Pi−1 and Pi
determine the ith segment. The endpoint of one segment is the beginning point of

the next, so we have C0 continuity. We cannot ask for higher levels of smoothness

because linear segments are not very flexible. Now, constructing such a piecewise
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Figure 7.11 Linear B-Spline blending functions

linear curve is straightforward; the ith segment is given by P(t) = (1 − t)Pi−1 + tPi
for 0 ≤ t < 1.

To view the construction of this linear B-spline in a more general light, we would

like to put it in the form of Equation 7.15 where we have designated the blend-

ing functions and let t range from 1 to n + 1. (Either the notation 1 ≤ t < n + 1 or

t ∈ [1, n + 1) will work to describe this range.) We use the uniform knot sequence

described above, so that the first pieces of the blending function are defined between

knots. Then, the first segment of the B-spline corresponds to the parameter values

1 ≤ t < 2, and the ith segment corresponds to i ≤ t < i + 1.

Each blending function shown in Figure 7.11 has a tent shape made from two

linear pieces which we refer to as basis pieces. The first function, N(0,1)(t), starts at
zero when t = 0, rises to the maximum value 1 when t = 1, and falls back to zero

when t = 2. Everywhere else, the function is zero. Since our B-spline will start with

t = 1, we will not actually use the first piece of this blending function, but notice that

every other blending function is a translate of the full function N(0,1)(t). In particular,
N(1,1)(t) = N(0,1)(t − 1). The blending function N(0,1)(t) is only nonzero in the interval
0 ≤ t ≤ 2, so the point P0 alone has influence over the curve when t is in that interval.
Starting at t = 1, N(0,1)(1) = 1 and N(1,1)(1) = 0, hence our B-spline has P(1) = P0.

The first control point is on the curve. Similarly, P(2) = P1, and the second control

point is also on the curve. For any arbitrary spline, the control points may not be on

the curve, but in the linear case they are.

In any interval between two successive knots, at most two blending functions are

nonzero. This is a result of local control and implies that, on any knot interval, the

global description of the linear B-spline reduces to a sum over just two terms. When

k ≤ t < k + 1, we trace out one segment of the curve.

P(t) =
n∑

i=1
N(i,1)(t)Pi = N(k,1)(t)Pk + N(k+1,1)(t)Pk+1

= (1 − (t − k))Pk + (t − k)Pk+1 (7.16)
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Since the blending functions are built from two basis pieces, Equation 7.16 is only

correct when k ≤ t < k + 1; it is only on that interval that the blending functions equal

the pieces given in the equation.

Any particular control point Pi appears in only two of the spline segments, which

agrees with the observation that each blending function is nonzero on only two suc-

cessive knot intervals. It should also be clear that the end of each spline segment is

the beginning of the next segment. As we let t go from 1 to n + 1, we trace out n
segments of this linear uniform B-spline.

Finally, we can carefully define the first blending function N(0,1)(t).

N(0,1)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if t < 0;

t if t ∈ [0, 1);

(2 − t) if t ∈ [1, 2);

0 if 2 ≥ t;

(7.17)

All other blending functions are translates of this one, N(i,1)(t) = N(0,1)(t − i). In the

interval 1 ≤ t < 2, we haveN(0,1)(t) = (2 − t) andN(1,1)(t) = N(0,1)(t − 1) = t − 1. The

sum of the two blending functions is 1 and this is true for any value of t in the range

1 ≤ t ≤ n + 1.

The matrix form of a B-spline segment emphasizes the local description in

Equation 7.16. Since the blending functions are all translates of each other, we can

effectively translate any interval k ≤ t < k + 1 to the interval 0 ≤ t < 1. If we want

the ith B-spline segment, we let 0 ≤ t < 1 and use the following matrix expression:

P(t) =
[
Pi Pi+1

] [1 −1
0 1

] [
1

t

]
(7.18)

When i = 0, we getP(t) = (1 − t)P0 + tP1, and when i = 1, we get P(t) = (1 − t)P1 +
tP2. The shape of this last segment is correct, but the t values have been translated

from 1 ≤ t < 2 to 0 < let < 1. This inconvenience is balanced by the simplicity of

the matrix description.

The linear B-spline is rather simple, but it does incorporate local control because

moving any control point affects only two adjacent linear segments of the curve.

Although it is continuous, we do not really see smoothness beyond continuity in the

curve. Also, the definition of the blending functions came rather intuitively in this

linear case; we will really need a more systematic way of finding blending functions

for higher degree splines.

7.3.2 Quadratic Uniform B-Splines

For quadratic uniform B-splines, the degree is 2 (order is 3) and the blending func-

tions now contain three pieces. Consequently, any single blending function is nonzero
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Figure 7.12 Quadratic B-Spline blending functions

on only three successive knot intervals. With quadratic polynomials, we can require

C1 continuity, which means that the spline segments have matching tangents at the

joining points. Requiring local control together with more smoothness means that the

resulting spline will not necessarily pass through the control points and this time we

do not have a lot of intuition about the definition of the blending functions. We need

to take a more measured approach to find their shape.

The quadratic B-spline is again a series of segments fitting together nicely. The

blending functions are shown in Figure 7.12 and the first curve segment is traced as

2 ≤ t < 3.

P(t) = N(0,2)(t)P0 + N(1,2)(t)P1 + N(2,2)(t)P2 (7.19)

In the interval from 2 to 3,N(0,2) is waning (decreasing to zero), N(1,2) reaches its peak,
and N(2,2) is rising. The influence of P0 is therefore dropping off, while the influence

of P1 is at its peak and that of P2 is increasing. Figure 7.13 shows the three pieces q1,
q2, q3 of a single blending function.

The shape of these three pieces is determined by several criteria.

1. The endpoint of one piece must match the beginning point of another piece.

For example, the endpoint of piece q1 must match the beginning point of

piece q2.

2. The derivative at the endpoint of one piece must match the derivative at the

beginning of another piece. For example, the derivative at the endpoint of q2
must match that of the beginning point of piece q3.

3. The sum of the three pieces at any point t in the interval must be 1 to ensure an

affine combination of the control points.

Assuming that the blending functions are quadratic, these criteria generate several

algebraic equations that can be solved to specify the functions exactly (see Section 7.6
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Figure 7.13 Pieces of quadratic B-spline blending function

for details). The end result is the following definition of N(0,2)(t):

N(0,2)(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if t < 0;
1

2
t2 if t ∈ [0, 1);

1

2
+ (t − 1) − (t − 1)2 if t ∈ [1, 2);

1

2
− (t − 2) + 1

2
(t − 2)2 if t ∈ [2, 3);

0 if 3 ≥ t;

(7.20)

The other blending functions are all translates of this one.

N(i,2)(t) = N(0,2)(t − i)

With i = 1 and t = 2,

N(0,2)(2) = 1∕2

N(1,2)(2) = N(0, 2)(2 − 1) = 1∕2

N(2,2)(2) = N(0, 2)(2 − 2) = 0

The first point on the spline is then

P(0) = 1

2
P0 +

1

2
P1 + 0 ⋅ P2
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The spline begins midway between the first two control points. Similarly, at t = 3,
the spline segment ends at the midpoint of P1 and P2.

With the definition of the blending functions, we can write down a global descrip-
tion of the quadratic B-spline by substituting into Equation 7.15. If we have n + 1
control points, then 2 ≤ t < n + 2.

The matrix description of one segment of the quadratic B-spline (using the interval
0 ≤ t < 1) is

P(t) =
[
Pi−1 Pi Pi+1

] 1
2

⎡⎢⎢⎣
1 −2 1

1 2 −2
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1

t
t2

⎤⎥⎥⎦ (7.21)

Example 7.8 (Uniform Quadratic Spline with Two Segments). With the control
points P0 = (0, 2), P1 = (2, 5), P2 = (3, 4), and P3 = (4, 1), we can build a quadratic
B-spline with two segments. The curve is

P(t) = N(0,2)(t)
[
0

2

]
+ N(1,2)(t)

[
2

5

]
+ N(2,2)(t)

[
3

4

]
+ N(3,2)(t)

[
4

1

]
Since N(1,2) is a translate of N(0,2), its definition is

N(1,2)(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if t < 1;
1

2
(t − 1)2 if t ∈ [1, 2);

1

2
+ (t − 2) − (t − 2)2 if t ∈ [2, 3);

1

2
− (t − 3) + 1

2
(t − 3)2 if t ∈ [3, 4);

0 if 4 ≥ t;

The blending functions N(2,2)(t) and N(3,2)(t) are similar translates. Carefully keeping
track of the basis pieces of the blending functions, we have for 2 ≤ t < 3

P(t) =
(
1

2
− (t − 2) + 1

2
(t − 2)2

)[
0

2

]
+

(
1

2
+ (t − 2) − (t − 2)2

)[
2

5

]
+ 1

2
(t − 2)2

[
3

4

]
+ 0 ⋅

[
4

1

]
The first segment of the B-spline begins at the point (1, 3.5) and ends at (2.5, 4.5).
The second segment is traced as 3 ≤ t < 4 and

P(t) = 0 ⋅
[
0

2

]
+

(
1

2
− (t − 3) + 1

2
(t − 3)2

)[
2

5

]
+

(
1

2
+ (t − 3) − (t − 3)2

)[
3

4

]
+ 1

2
(t − 3)2

[
4

1

]
The second segment goes from (2.5, 4.5) to (3.5, 2.5) (Figure 7.14).
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Figure 7.14 Quadratic B-spline

To find the value of the spline when t = 2.5, we first identify the knot interval

containing the value and then notice that this is the first segment of the spline. Using

the expression above for the first segment, we calculate with t = 2.5.

P(2.5) = 1

8

[
0

2

]
+ 3

4

[
2

5

]
+ 1

8

[
3

4

]
+ 0 ⋅

[
4

1

]
=

[
1.875

4.5

]
Notice that for each segment, the blending functions sum to 1 for all values of t in

the appropriate interval. For the first segment on 2 ≤ t < 3,(
1

2
− (t − 2) + 1

2
(t − 2)2

)
+

(
1

2
+ (t − 2) − (t − 2)2

)
+ 1

2
(t − 2)2 = 1

Since the sum is 1, we have an affine combination of the control points, which

ensures affine invariance of the spline. An affine transformation of the spline is the

same as transforming the control points and then constructing a new spline.

The transition between the two segments in the spline isC1 continuous. To see this,

we can calculate and compare the derivatives of each segment. For the first segment

on 2 ≤ t < 3, we get

P′(t) = (−3 + t)
[
0

2

]
+ (5 − 2t)

[
2

5

]
+ (t − 2)

[
3

4

]
+ 0 ⋅

[
4

1

]
Therefore, P′(3) = −(2, 5) + (3, 4) = (1,−1). (Technically, we are taking the limit of

P′(t) as t goes to 3.) The tangent vector is in the direction of the vector P2 − P1. A

similar calculation for the second spline segment gives

P′(t) = 0 ⋅
[
0

2

]
+ (−4 + t)

[
2

5

]
+ (−2t + 7)

[
3

4

]
+ (t − 3)

[
4

1

]
At t = 3, we again get P′(3) = −(2, 5) + (3, 4) = (1,−1). The two tangents match. ◽



240 CURVES AND SURFACES

7.3.3 Cubic Uniform B-Splines

Linear B-splines are not very smooth, and although quadratic B-splines are smoother,

they are still a little constrained when it comes to design. The higher the degree of

the polynomials used to build the blending functions, the more the flexibility and the

more the smoothness we can guarantee. B-splines with polynomials of degree k (the

order is k + 1) haveC(k−1) continuity. Yet, large degree splines start to be cumbersome

in their computation and control; practice suggests that cubic B-splines are a good

compromise and offer both a satisfactorily smooth curve and plenty of design control.

Cubic B-splines have blending functions with four basis pieces and each piece is

a cubic polynomial (degree 3). The constraints of C0, C1, and C2 continuity along

with the requirement that the blending functions sum to 1 give enough equations to

completely specify the pieces. A single blending function is nonzero on four consec-

utive knot intervals and, again because of the uniform knot sequence, the functions

are symmetric around their middle. The complete spline is traced over the parameter

interval 3 ≤ t < n + 3.

The blending functions are shown in Figure 7.15; in particular, the definition of

N(0,3)(t) is

N(0,3)(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if t < 0;
1

6
t3 if t ∈ [0, 1);

1

6
(−3(t − 1)3 + 3(t − 1)2 + 3(t − 1) + 1 if t ∈ [1, 2);

1

6
(3(t − 2)3 − 6(t − 2)2 + 4) if t ∈ [2, 3);

1

6
(−(t − 3)3 + 3(t − 3)2 − 3(t − 3) + 1) if t ∈ [3, 4);

0 if 4 ≤ t;

(7.22)
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N(3,3)N(0,3)

Figure 7.15 Cubic blending functions
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The first segment of the cubic B-spline is traced as 3 ≤ t < 4.

P(t) = 1

6
(−(t − 3)3 + 3(t − 3)2 − 3(t − 3) + 1)P0

+ 1

6
(3(t − 3)3 − 6(t − 3)2 + 4)P1

+ 1

6
(−3(t − 3)3 + 3(t − 3)2 + 3(t − 3) + 1)P2

+ 1

6
(t − 3)3P3 (7.23)

Notice that the spline begins at the point 1

6
P0 +

4

6
P1 +

1

6
P2, which is not on the

control polygon. The spline only approximates the control points (Figure 7.16).

To check theC2 continuity between two segments of the spline, we need the second

derivatives. Consider the first segment (traced on 3 ≤ t < 4) and the second segment

(traced on 4 ≤ t < 5). The second segment looks like this:

P(t) = 1

6
(−(t − 4)3 + 3(t − 4)2 − 3(t − 4) + 1)P1

+ 1

6
(3(t − 4)3 − 6(t − 4)2 + 4)P2

+ 1

6
(−3(t − 4)3 + 3(t − 4)2 + 3(t − 4) + 1)P3

+ 1

6
(t − 4)3P4

Note how this expression for the second segment can be derived from the expression

for the first segment by translation.

Taking the first and second derivatives of the first segment at t = 4 gives

P′(4) = 1

2
P1 +

1

2
P3 and P′′(4) = P1 − 2P2 + P3

P0

P1

P2

P3

P4

Figure 7.16 Cubic B-spline
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There is enough similarity between the first and second segment expressions that cal-

culating the second derivative comes quickly. The first and second derivatives match

between the two segments, establishing the C2 continuity.

Finally, the compact matrix description of a single segment (over the interval 0 ≤
t < 1) clearly displays the coefficients for the cubic polynomial pieces.

P(t) =
[
Pi−1 Pi Pi+1 Pi+2

] 1
6

⎡⎢⎢⎢⎣
1 −3 3 −1
4 0 −6 3

1 3 3 −3
0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1

t
t2

t3

⎤⎥⎥⎥⎦ (7.24)

7.3.4 B-Spline Properties

It is not immediately clear from the B-splines we have seen so far that there is a pattern

emerging among the blending functions. If we stick with a uniform knot sequence

where the knots are integers ti = i, the following recursive formula will generate the

blending functions starting from functions of degree zero, N(i,0)(t).

N(i,0)(t) =

{
1 if t ∈ [i, i + 1)
0 otherwise

N(i,k)(t) =
t − i

k
N(i,k−1)(t) +

i + k + 1 − t
k

N(i+1,k−1)(t) (7.25)

Example 7.9 (Calculating N(0,2)(t)). Just to get a feeling for how this recursive for-

mula works, we calculate N(0,2)(t) step by step.

N(0,1) =
(t − 0)

1
N(0,0)(t) +

(2 − t)
1

N(1,0)(t)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if t < 0

t if t ∈ [0, 1)

(2 − t) if t ∈ [1, 2)

0 if 2 < t

N(1,1) =
(t − 1)

1
N(0,0)(t) +

(3 − t)
1

N(1,0)(t)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if t < 1

(t − 1) if t ∈ [1, 2)

(3 − t) if t ∈ [2, 3)

0 if 3 ≤ t
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N(0,2) =
(t − 0)

2
N(0,1)(t) +

(3 − t)
2

N(1,1)(t)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if t < 0

1

2
t2 if t ∈ [0, 1)

1

2
t(2 − t) + 1

2
(3 − t)(t − 1) if t ∈ [1, 2)

1

2
(3 − t)2 if t ∈ [2, 3)

0 if 3 ≤ t

A little algebraic simplification and a quick check of the graphs show that these results

match our previous descriptions of the blending functions. ◽

Since the global description of a B-spline, P(t) =
∑n

i=0 N(i,k)(t)Pi, includes the

blending functions, we can apply the recursive formula for blending functions to get

a recursive formula for calculating any value P(t). This leads to the de Boor algorithm
which is reminiscent of the de Casteljau algorithm for Bézier curves. A point on the

spline of degree k is represented as a linear combination of the points on splines of

degree k − 1. Degree zero points are the original control points. Let Pj
i(t) be a point

from a degree j spline. (The subscript i will keep the points in order.)

Result 7.5 (The de Boor Algorithm). Let P0
i (t) = Pi for i = 0, 1, … , n be the n + 1

control points for a B-spline of degree k. To calculate P(t) where t ∈ [a, a + 1), define
points with the following recursion:

P(j)
i (t) =

(
1 − t − i

k − j + 1

)
P(j−1)

i−1 + t − i
k − j + 1

P(j−1)
i

Then P(t) = P(k)
a .

The algorithm allows us to start with the control points and build up intermediate

points until we have the desired P(t).

Example 7.10 (Calculating Points using the de Boor Algorithm). In Example 7.8,

we calculated P(2.5) for a uniform quadratic B-spline with four control points. The

procedure was to actually find all the blending functions, construct the global descrip-

tion of the spline, plug in t, and finally calculate the affine combination of the control

points. Now we try to reach the same result by using the de Boor algorithm.
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The control points are

P(0)
0

= P0 =
[
0

2

]
P(0)
1

= P1 =
[
2

5

]

P(0)
2

= P2 =
[
3

4

]
P(0)
3

= P3 =
[
4

1

]
Since t = 2.5 is in the interval 2 ≤ t < 3, only the first three control points are

relevant, so we start with these. The intermediate points that we calculate are best
given in the following array:

P(0)
0

P(0)
1

P(0)
2

P(1)
1

P(1)
2

P(2)
2

Applying the de Boor algorithm gives the formula for P(1)
1
.

P(1)
1
(t) =

(
1 − t − 1

2 − 1 + 1

)
P(0)
0

+ t − 1

2 − 1 + 1
P(0)
1

= 1

4

[
0

2

]
+ 3

4

[
2

5

]
=

[
1.5

4.25

]
The rest of the intermediate points are calculated similarly.

P(1)
2
(t) = 3

4

[
2

5

]
+ 1

4

[
3

4

]
=

[
2.25

4.75

]
P(2)
2
(t) = 1

2

[
1.5

4.25

]
+ 1

2

[
2.25

4.75

]
=

[
1.875

4.5

]
The result agrees with the answer in Example 7.8. ◽

Example 7.11 (Multiple Control Points). The B-spline certainly depends on the
control points, and moving one control point does indeed change the curve locally.

In the definition of the B-spline, there is no constraint on where the control points
are placed and, in fact, we could place several adjacent control points at the same

location.
Suppose we have control points P0,P1, … ,Pn, where P2 = P3 = P4. Then the

third segment of a uniform quadratic spline will depend only on P2, P3, and P4, and
since they are all equal, if 4 ≤ t < 5, we have

P(t) = N(2,2)P2 + N(3,2)P3 + N(4,2)P4 = P2

The point P2 is on the spline (for 4 ≤ t < 5). Actually, at the endpoints of the interval,

one of the blending functions is zero, which means we only need two adjacent control
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P0

P1

P2

P3

Figure 7.17 Closed B-spline

points to be equal to guarantee that it is on the B-spline. This gives an easy way to

ensure that the spline begins and ends at specified points. If the first two control points

are equal to, say P, and the last two are equal to Q, then the quadratic B-spline starts at

P and ends at Q. In general, repeating a control point k times (we say the multiplicity
is k) makes a degree k spline go through the point (Figure 7.17).

In a similar vein, repeating control points periodically can give us a closed curve.

For example, take the control points Pn,P0,P1, … ,Pn−1,Pn,P0. Both P0 and Pn are

repeated in a periodic (or cyclic) manner. If we put a quadratic B-spline through these

points, the first segment depends on Pn, P0, and P1, and the last segment depends on

Pn−1,Pn, and P0. Looking back at the properties of the quadratic B-spline, we notice

that the first point is midway between the first two control points and ends midway

between the last two control points. So in the current case, it begins at
1

2
Pn +

1

2
P0 and

ends at 1

2
Pn +

1

2
P0. Therefore, the spline is a closed curve.

For the cubic B-spline, adding Pn to the beginning of the control points and P0

and P1 to the end will do the trick. The spline begins at a combination of the first

three points and ends at the same combination of the last three points. Here, the cubic

spline begins at 1

6
Pn +

4

6
P0 +

1

6
P1 and ends at the same combination of points. ◽

The following result summarizes the key properties of B-splines. (Remember that

the splines developed so far were designed using a uniform knot sequence, ensuring

that the blending functions were symmetric.)

Result 7.6 (B-Spline Properties). A B-spline curve of degree k (order k + 1), given
by n + 1 control points, the knot vector (0, 1, 2, … , n + k), and the expression P(t) =∑n

i=0 N(i,k)(t)Pi where k ≤ t < n + k, satisfies the following properties:

1. The blending functions N(i,k)(t) are positive in the interval i < t < i + k and zero
elsewhere. This gives the spline local control.
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2. For j ≤ t < j + 1, the spline is contained in the convex hull of the control points
P(j−k), … ,Pj. Hence, the entire spline is contained in the union of these convex
hulls.

3. The spline has C(k−1) continuity.

4. The blending functions sum to 1, giving the spline affine invariance. That is, if
T is an affine transformation, then T(P(t)) =

∑n
i=0 N(i,k)(t)T(Pi).

5. A straight line cannot intersect the spline at more points than it intersects the
control polygon.

The convex hull property is again a result of the blending functions summing to 1.
Constructing the spline by using the de Boor algorithm shows that the spline points
are the result of a sequence of affine combinations. This means that no point is outside
the convex hull of an initial subset of control points. For the designer, this property
simply gives a visual boundary for where the spline will go.

7.4 NURBS

In an almost never-ending search for more flexibility in curve design, graphics
researchers realized that the uniform B-splines with their polynomial blending
functions were not quite good enough to do everything a designer might want. Actu-
ally, just as with Bézier curves, there is one serious gap. B-splines cannot represent
some of the basic conic curves (e.g., ellipses and hyperbolas). The transition to
rational B-splines solves that problem and introduces more flexibility by allowing
the specification of various weights. Moving beyond uniform knot sequences to
arbitrary sequences, the designer now could specify control points, knot vectors, and
weights in an effort to fully control the resulting curve. These nonuniform rational
B-splines (or NURBS) possessed enough flexibility to be seriously considered for
modeling systems, and the first such commercial system was introduced in 1983.
Most current modeling systems now incorporate NURBS for curve design.

To develop some intuition about the advantage of NURBS over uniform B-splines,
recall the recursive formulation of the blending functions given in Equation 7.25.
There we assumed that we specified a uniform knot sequence (0, 1, … , n + k).
Allowing an arbitrary knot sequence generalizes the recursion formulas and
changes the shape of the blending functions. Assume that the knot sequence is now
(t0, t1, … , tn+k).

N(i,0)(t) =

{
1 if t ∈ [ti, ti+1)
0 otherwise

N(i,k)(t) =
t − ti

ti+k − ti
N(i,k−1)(t) +

ti+k+1 − t

ti+k+1 − ti+1
N(i+1,k−1)(t) (7.26)

Though not immediately clear here, the sum of the blending functions over an interval
is still 1.
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Example 7.12 (Nonuniform Knot Sequence). As an example of how nonuniform

knot sequences effect the shape of the blending functions, consider the knot sequence

(0, 1, 3, 4, 6, 7). Recall that this means t0 = 0, t1 = 1, t2 = 3, and so on. Using the

recursion formulas in Equation 7.26, we begin with the first three N(i,0)(t) functions.
(The functions are zero outside the indicated range.)

N(0,0)(t) = 1 if t ∈ [0, 1)

N(1,0)(t) = 1 if t ∈ [1, 3)

N(2,0)(t) = 1 if t ∈ [3, 4)

Now the recursion gives the first two N(i,1)(t) functions.

N(0,1)(t) =
t − 0

1 − 0
N(0,0)(t) +

3 − t
3 − 1

N(1,0)(t) =
⎧⎪⎨⎪⎩

t if t ∈ [0, 1)

3 − t
2

if t ∈ [1, 3)

N(1,1)(t) =
t − 1

2 − 1
N(1,0)(t) +

4 − t
4 − 3

N(1,1)(t) =
⎧⎪⎨⎪⎩

t − 1

2
if t ∈ [1, 3)

4 − t if t ∈ [3, 4)

Finally, we calculate N(0,2)(t) to see what the first quadratic blending function looks

like.

N(0,2)(t) =
t − 0

3 − 0
N(0,1)(t) +

4 − t
4 − 1

N(1,1)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

t2

3
if t ∈ [0, 1)

3t − t2

6
+ (4 − t)(t − 1)

6
if t ∈ [1, 3)

(4 − t)2

3
if t ∈ [3, 4)

Figure 7.18 shows that the first-degree blending functions are not symmetric,

unlike when we chose the uniform knot sequence (0, 1, … , n + k). Although the

second-degree functions are symmetric, adjacent functions are not translates of

each other. It takes some experience to guess which knot sequences to try when

designing a curve and, in fact, the better approach is to insert or delete a knot

watching the incremental changes in the spline. There are algorithms for both these

procedures. ◽

Example 7.13 (Multiple Knots). Repeated knots (or knots with multiplicity >1)

also have interesting effects on a spline. One particularly interesting sequence is

(0, 0, 0, 1, 1, 1). With this sequence, look carefully at the definitions to see that

N(2,0)(t) = 1 in the interval 0 ≤ t < 1, but all other N(i,0)(t) functions are zero
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Figure 7.18 Blending functions (linear and quadratic) for a nonuniform knot sequence

everywhere. Then N(1,1)(t) and N(2,1)(t) are the only first-degree blending functions
that are nonzero. (To apply the recursion formula, we need to adjust the terms, so
division by zero is replaced by a zero coefficient.)

N(1,1)(t) =
t − 0

0 − 0
N(1,0)(t) +

1 − t
1 − 0

N(2,0)(t) = (1 − t) for t ∈ [0, 1)

N(2,1)(t) =
t − 0

1 − 0
N(2,0)(t) +

1 − t
1 − 0

N(3,0)(t) = t for t ∈ [0, 1)

It should be clear that all the nonzero blending functions are nonzero only in the
interval 0 ≤ t < 1. In particular, all the second-degree blending functions are nonzero
only in 0 ≤ t < 1.

N(0,2)(t) =
t − 0

0 − 0
N(0,1)(t) +

1 − t
1 − 0

N(1,1)(t) = (1 − t)2

N(1,2)(t) =
t − 0

1 − 0
N(1,1)(t) +

1 − t
1 − 0

N(2,1)(t) = 2t(1 − t)

N(2,2)(t) =
t − 0

1 − 0
N(2,1)(t) +

1 − t
1 − 1

N(3,1)(t) = t2

Surprisingly, these are exactly the blending functions for a Bézier curve of degree 2. It
turns out that all knot sequence with zeroes followed by an equal number of 1’s gives
a Bézier curve. In the current case, we need three control points P0, P1, and P2, and
we trace only one segment of the spline as t goes from 0 to 1. The blending functions
also ensure that P0 and P1 are on the curve. Although this example is a special case
(since the Bézier curve shows up), the use of repeating knots at the beginning and end
of a sequence can (depending on the rest of the sequence) guarantee that the spline
interpolates the first and last control points. This is similar, but not precisely the same,
as repeating the control points for the same effect. ◽

To move from B-splines to rational B-splines, the blending functions become the
quotient of two polynomials. Adding a weight coefficient (𝑤i) gives more flexibility.
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Definition 7.2 (NURBS). A nonuniform rational B-spline of degree k (order k + 1)
is a spline with control points P0,P1, … ,Pn, a knot vector (t0, t2, … , tn+k), and a
set of nonnegative weights (𝑤0, 𝑤1, … , 𝑤n). Points on the curve are given by

P(t) =
∑n

i=0𝑤iN(i,k)(t)Pi∑n
i=0𝑤iN(i,k)(t)

One way to understand the definition of a NURBS is to jump up to homogeneous

coordinates just as we did for rational Bézier curves. The three-dimensional point

Pi = (xi, yi, zi) is the four-dimensional homogeneous pointPh
i = (𝑤ixi, 𝑤iyi, 𝑤izi, 𝑤i).

The definition of the NURBS becomes

Ph(t) =
n∑

i=0
N(i,k)(t)Ph

i (7.27)

Converting the pointPh(t) to Cartesian coordinates involves dividing by the same sum

of blending functions as in Definition 7.2. The homogeneous form of the NURBS also

implies that the curve is invariant under projective transformations.

It is a little unclear how to select the weights for a NURBS, but certainly if 𝑤i =
0, then the point Pi has no effect on the spline. If all the weights are 1, then the

spline reduces to the standard B-spline because the denominator in the definition is

1. Suppose now that we start increasing one of the weights, say 𝑤j. By dividing the

numerator and denominator of P(t) by𝑤j, the denominator in Definition 7.2 becomes

Denominator =
n∑

i=0,i≠j

𝑤i

𝑤j
N(i,k)(t) + N(j,k)

As 𝑤j increases, the denominator gets closer to N(j,k). For the numerator, the jth term
is again singled out from the rest.

Numerator =
n∑

i=0,i≠j

𝑤i

𝑤j
N(i,k)(t)Pi + N(j,k)Pj

Here, as𝑤j increases, the coefficient in front of Pi approaches zero except when i = j.
The conclusion is that any segment of the spline that depends on Pj will get closer to

Pj as 𝑤j grows. The B-spline will be drawn to the point Pj. This is a different type of

control than moving the point Pj and thereby pulling the spline in that direction.

Example 7.14 (Producing a Circle with a NURBS). Example 7.7 showed that ratio-

nal Bézier curves can be used to produce circles and this suggests a plan for using

NURBS. Take the control points P0 = (1, 0),P1 = (1, 1),P2 = (0, 1) as three corners
of a square. Use the knot sequence (0, 0, 0, 1, 1, 1) and the weights (𝑤0, 𝑤1, 𝑤2). We

know from Example 7.13 that this particular knot sequence produces the quadratic
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Figure 7.19 NURBS circle

Bézier blending functions, so our NURBS is defined in the interval 0 ≤ t ≤ 1 and has

the form

P(t) =
𝑤0(1 − t)2P0 +𝑤12t(1 − t)P1 +𝑤2t2P2

𝑤0(1 − t)2 +𝑤12t(1 − t) +𝑤2t2

If we set 𝑤0 = 1 and 𝑤2 = 1, then we are certain that the spline interpolates P0 and

P2. Now, if we can pull the curve toward P1 appropriately, it may become the arc of

a circle. Plugging in the values of the control points and looking at the parametric

expressions for the coordinates x and y, we can determine when x2 + y2 = 1. Taking

𝑤1 =
√
2

2
works.

Actually, as long as the weights satisfy c =
𝑤2
1

𝑤0𝑤2
< 1, the NURBS in this example

is the arc of an ellipse. If c = 1

2
, then the conic is a circle. So the weights𝑤0 = 1, 𝑤1 =

1, and𝑤2 = 2 also produce the arc of a circle.

To draw the complete circle using a NURBS, we can piece together arcs using the

technique we just developed, or we can try the seven control points on the right in

Figure 7.19 along with the knot sequence
(
0, 0, 0, 1

4
, 1
2
, 1
2
, 3
4
, 1, 1, 1

)
and the weights(

1, 1
2
,
1

2
, 1,

1

2
,
1

2
, 1

)
. This is a common representation for the circle, but notice that the

storage requirements are considerably larger than when simply storing a center and

radius. ◽

There is a large theory behind NURBS design, and several references ([5] and [6])

give much of the detail.

7.5 SURFACES

The serious study of curves in computer graphics probably has many roots, but cer-

tainly Bézier curves began in automotive design where they served as silhouettes

of the real goal, an aesthetically pleasing and aerodynamically efficient car body.

Surfaces were the end result. Curves play several roles in computer graphics, and the
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two key uses are as paths for cameras and objects in animated sequences and as the

skeletal elements in surface design. We can think of surfaces as some kind of mesh

of curves.

Perhaps the most common surfaces expressed mathematically are the plane (ax +
by + cz + d = 0) and the sphere (x2 + y2 + z2 = r2). These implicit descriptions hide

almost all hints of a curve, but intuition can prompt us to view the plane as a straight

line swept in a constant direction and similarly the sphere as a circle rotated around

a diameter.

One of the advantages of this viewpoint is that it can make it easier to design a

surface and to find an array of points on the surface. Ultimately, in order to present a

surface on the computer screen, we need an array of points. If the points are vertices

in a triangular mesh, then rendering the surface is a matter of drawing many triangles,

suitably shaded, on the screen. Finding the appropriate points is not a trivial task, but

if we can visualize a collection of curves on the surface, then incremental points on

those curves or even the intersections of many curves may form an array of surface

points that can be partitioned into triangles.

Implicit descriptions (F(x, y, z) = 0) and explicit descriptions (z = f (x, y)) are suf-
ficient for standard surfaces like the plane, sphere, and paraboloid (z = x2 + y2). One
way to draw these in Figure 7.20 is to resort to some behind-the-scene algorithm for

finding an appropriate array of curves. For example, with the paraboloid, setting z to
the value 4 results in x2 + y2 = 4, which is a circle of radius 2. Hence, the paraboloid

is made up of a system of circles. The radius of the circles at height z is
√

z. Con-
necting points on the circles forms an array of points which then approximates the

surface.

Analogous to the conic curves which are represented by quadratic expressions, a

class of surfaces called quadrics is represented implicitly by the quadratic form

Q(x, y, z) = ax2 + by2 + cz2 + 2dxy + 2exz

+ 2fyz + 2px + 2qy + 2rz +𝑤 = 0 (7.28)

This expression can be written a little more succinctly with matrices:

Q(x, y, z) =
[
x y z 1

] ⎡⎢⎢⎢⎣
a d e p
d b f q
e f c r
p q r 𝑤

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x
y
z
1

⎤⎥⎥⎥⎦ (7.29)

Figure 7.20 Sphere, plane, and paraboloid



252 CURVES AND SURFACES

If the determinant of the 4 × 4 matrix is not zero, then the surface is said to be
nonsingular and the determinant of the 3 × 3 submatrix in the upper left corner
determines the type of surface. If the determinant is less than zero, the surface is
an ellipsoid, greater than zero indicates a hyperboloid, and equal to zero denotes a
paraboloid.

We can identify other classes of surfaces using explicit and implicit descriptions,
but just as with conics, a more flexible way to describe surfaces is parametrically.
Of the many different parametric schemes, we choose to focus on the Cartesian
coordinate system and view each of the coordinates as functions of two parameters,
s and t.

x = x(s, t)

y = y(s, t)

z = z(s, t)

Definition 7.3 (Surface). A parametric surface S(s, t) is a function from a set of
parameters (s, t) in the plane to a set of points (x, y, z) in space. Each of the coordinates
is a function of the parameters

S(s, t) = (x(s, t), y(s, t), z(s, t))

If s = s∗ is a fixed value, then S(s∗, t) is a curve on the surface. Similarly, S(s, t∗) is a
curve on the surface.

Example 7.15 (Parametric Description of a Plane). Consider the plane x + y + z −
1 = 0. The point (1, 0, 0) is on the plane and the vector n⃗ = (1, 1, 1) is a normal.
Vectors 𝑣 = (1,−1, 0) and �⃗� = (1, 1,−2) are both perpendicular to the normal and
therefore parallel to the plane. The perpendicular lines (1, 0, 0) + t𝑣 and (1, 0, 0) + s�⃗�
are both on the plane.

One parametric description works like this. The two vectors along with the point
(1, 0, 0) effectively form a coordinate system on the plane. This means that (1, 0, 0) +
t𝑣 + s�⃗� is a general point on the surface. Pulling apart the x, y, and z coordinates
gives the plane.

S(s, t) = (1 + t + s,−t + s,−2s)

If we set t = t∗, then

S(s, t∗) = (1 + t∗ + s,−t∗ + s,−2s) = (1 + t∗,−t∗, 0) + s(1, 1,−2)

which is a curve on the surface (a line in this case) traced as s varies. Similarly, setting
s = s∗ gives the curve

S(s∗, t) = (1 + s∗, s∗,−2s∗) + t(1,−1, 0)
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We get a system of intersecting lines by setting each parameter in turn to various fixed

values. ◽

In general, the curves S(s, t∗) and S(s∗, t) are on the surface, and their intersections
S(s∗, t∗) are also on the surface. This array of intersection points can be used for

the vertices of triangles that approximate the surface. Assigning the vertices to the

triangles is not a trivial task, and, often, when the surface has a sharp bend, we may

want smaller triangles to better approximate the surface.

Tangents to the surface are found by taking derivatives, and since the surface is a

function of two parameters, we have two partial derivatives. Ss(s, t) is the derivative
with respect to s, and St(s, t) is the derivative with respect to t. These are both vectors
and their cross product gives a normal to the surface; of course, the order in which we

take the cross product determines whether the normal is pointing “out” or “in” and

we have to keep track of what we want. The unit normal N(s, t) is

N(s, t) =
Ss(s, t) × St(s, t)|Ss(s, t) × St(s, t)| (7.30)

Example 7.16 (Surface Normal). Suppose we have the following surface:

S(s, t) = (s + t, 3s2, s − t)

If we constrain the parameters to the ranges 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1, we actually

have only a piece of a surface which is often called a patch. With t = 0, the curve

S(s, 0) = (s, 3s2, s) forms one boundary of our patch. Similarly, setting each parameter

in turn to one of its extreme values gives the other three boundary curves for the

surface.

The partial derivatives are Ss(s, t) = (1, 6s, 1) and St(s, t) = (1, 0,−1). The unit nor-
mal to the surface at S(s, t) is

N(s, t) = (1, 6s, 1) × (1, 0,−1)|(1, 6s, 1) × (1, 0,−1)| = 1√
19

(−3s, 1,−3s)

The four corners of the patch are S(0, 0) = (0, 0, 0), S(0, 1) = (1, 0,−1),
S(1, 0) = (1, 3, 1), and S(1, 1) = (2, 3, 0). The normal at each of the first two corners

is (0, 1√
19
, 0), and the normal at the each of the last two corners is

1√
19
(−3, 1,−3)

(Figure 7.21). ◽

One effective way to design a surface is to build on the development of Bézier

curves. Thinking of a surface as a net of curves in two different directions, the aim is

to make the curves S(s∗, t) and S(s, t∗) Bézier curves, and to do this we combine two

sets of Bézier curves using a Cartesian product.
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Figure 7.21 Surface patch

Definition 7.4 (Cartesian Product Bézier Surface). A Cartesian product Bézier sur-
face S(s, t) is formed from two sets of Bézier curves.

S(s, t) =
n∑

i=0

m∑
j=0

B(i,n)(s)B(j,m)(t)P(i,j)

The P(i,j) form an array of control points. B(i,n) and B(j,m) are the Bernstein polynomi-
als of degrees n and m. The parameters s and t both range from 0 to 1.

In the definition, the two blending functions represent two different sets of Bézier

curves that are effectively weaved together to form the surface. A different view of

this structure is shown by the equivalent matrix formulation.

S(s, t) =
[
1 s s2 · · · sn

]
B(n)

⎡⎢⎢⎢⎢⎢⎢⎣

P(0,0) · · · P(0,m)

P(1,0) · · · P(1,m)

P(2,0) · · · P(2,m)

⋮ ⋮ ⋮

P(n,0) · · · P(n,m)

⎤⎥⎥⎥⎥⎥⎥⎦
B(m)

⎡⎢⎢⎢⎢⎢⎢⎣

1

t

t2

⋮

tn

⎤⎥⎥⎥⎥⎥⎥⎦
The matrices B(n) and B(m) are the matrices of coefficients for the Bernstein polyno-

mials of degrees n and m, respectively. (These matrices are symmetric around their

main diagonal.)

Example 7.17 (Bicubic Bézier Patch). It takes four control points to determine a

cubic Bézier curve and therefore n = m = 4, leading to 4 × 4 = 16 control points to

determine a Bézier patch. Curves in either direction are cubic curves. This is a bicubic

patch.

S(s, t) =
3∑

i=0

3∑
j=0

B(i,3)(s)B(j,3)(t)P(i,j)
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Figure 7.22 Bicubic Bézier patch

When s = 0, B(0,3)(0) = 1 and B(i,3)(0) = 0 otherwise. Similar equalities hold when

t = 0. Therefore, when both s and t are zero, only one term in the double sum is

positive, andQ(0, 0) = P(0,0). The same reasoning shows that the surface goes through

the four corner points on the patch. The eight other boundary points control the shape

of the boundary curves and the four interior points determine the interior curvature

of the surface. An example of a bicubic patch is shown in Figure 7.22.

The matrix description of the bicubic patch depends on the coefficient matrix B(3).

B(3) =
⎡⎢⎢⎢⎣

1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1

⎤⎥⎥⎥⎦
Letting P be the matrix of 16 control points, we have the full matrix description:

S(s, t) =
[
1 s s2 s3

]
B(3)PB(3)

⎡⎢⎢⎢⎢⎣
1

t

t2

t3

⎤⎥⎥⎥⎥⎦
(7.31)

The four boundary curves for the patch are S(0, t), S(1, t), S(s, 0), and S(s, 1). The
control points for the first boundary curve are in the first row of the control point

matrix and the other boundary curves correspond to the last row, first column, and

last column. Actually, all curves of the form S(s∗, t) or S(s, t∗) are Bézier curves;

however, it is not immediately apparent what the control points are.

Both parameters s and t range from 0 to 1. Dividing this range up into equal incre-

ments will give a mesh of points on the surface and delineate an array of quadrilater-

als. The quadrilaterals are not necessarily flat (all vertices coplanar), but a diagonal

divides each quadrilateral into two flat triangles.
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In order to fit two bicubic Bézier patches together, the two adjacent boundary

curves must match. This simply involves matching the four control points on the

edge. However, to get C1 continuity, the surface normals on the edges must match,

and this can be achieved by adjusting the control points adjacent to the joining edge

so that the control polygon line segments that cross the boundary are collinear. This

is the way we matched two Bézier curves for C1 continuity.

The iconic Utah teapot, a model used in the earlier days of computer graphics

to test rendering algorithms, was originally designed as a series of bicubic Bézier

patches each with 16 control points. ◽

The idea of constructing a surface as a Cartesian product of two sets of curves

can be extended from Bézier curves to rational Bézier curves to B-splines to rational

B-splines and finally to NURBS.

Definition 7.5 (NURBS Surface). A Cartesian product NURBS surface, S(s, t), is
formed from two sets of NURBS curves.

S(s, t) =
∑n

i=0
∑m

j=0𝑤(i,j)N(i,k)(s)N(j,h)(t)P(i,j)∑n
i=0

∑m
j=0𝑤(i,j)N(i,k)(s)N(j,h)(t)

The P(i,j)’s form an array of control points and 𝑤(i,j)’s are the weights. N(i,k) and N(j,h)
are the blending functions of degrees k and h based on knot vectors for the two sets
of curves.

Notice that the two blending functions in the definition correspond to two sets

of NURBS. They may have different degrees along with different knot sequences.

However, their control points and weights are tied together to construct a surface. It

is not surprising that the NURBS surface (and the Bézier surfaces) inherits properties

from its (their) constituent curves. In particular, we have the following result:

Result 7.7 (NURBS Surface Properties). Surfaces constructed using the Cartesian
product of NURBS satisfy the following properties:

1. Local Control. Each of the blending functions is nonzero only in an interval
leading to only local changes when a control point is moved.

2. Convex Hull. Assuming positive weights, then as in Result 7.6, the curves and
hence the surface locally stay within the convex hull of a subset of control points
and therefore within the union of all these convex hulls.

3. Affine Invariance. With affine combinations of control points, affine transforma-
tions of the surface gives the same result as transforming the control points and
constructing the surface from the transformed points.

4. Projective Invariance. Transforming a surface using homogeneous coordinates
and a projective transformation is equivalent to transforming the homogeneous
points first and then constructing the surface.
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NURBS surfaces offer plenty of flexibility when designing complex objects. By
choosing the control points, knot sequences, and weights, the designer has many
degrees of freedom in crafting custom patches. However, building entire objects (or
characters) by combiningmany patches is often nontrivial. There are a variety of tech-
niques for constructing additional surfaces to join two patches together, and many
details still can go wrong. Gaps between surfaces as well as awkward curvatures
especially when objects are transformed can frustrate designers and offer new math-
ematical problems for researchers.

NURBS surfaces are fairly general, and in order to develop design techniques, it
helps to categorize the surfaces. One useful category includes surfaces that can be
constructed by continuously transforming a particular curve. Just as a plane can be
thought of as a linear curve translated in a fixed direction, more complicated surfaces
can be thought of as a NURBS curve transformed by rotations, translations, or scal-
ings. Such surfaces are usually called swept surfaces because a curve sweeps in a
particular way to form the surface.

Tomore carefully describe a swept surface, start with a particular curve parameter-
ized by t, say C(t) = (Cx(t),Cy(t),Cz(t)). Then apply a transformation T(s) to it. The
transformation is parameterized by s, meaning that it possibly changes with s. If we
use homogeneous coordinates for the points on the curve, then the affine transform
T(s) can be a 4 × 4 matrix. The swept surface is S(s, t) = T(s)C(t).

Example 7.18 (Extruded Surfaces). Take a three-dimensional curve C(t) and a vec-
tor 𝑣 = (𝑣1, 𝑣2, 𝑣3). Assuming we are using homogeneous coordinates, let transfor-
mation T(s) be a translation represented by the following matrix:

T(s) =

⎡⎢⎢⎢⎢⎣
1 0 0 s𝑣1
0 1 0 s𝑣2
0 0 1 s𝑣3
0 0 0 1

⎤⎥⎥⎥⎥⎦
As s ranges from 0 to 1, the surface S(s, t) = T(s)C(t) translates the curve C(t) in the
direction 𝑣. The result is an extruded surface. To avoid singularities in the surface, we
pick 𝑣 so that the curve does not intersect itself as it is translated (Figure 7.23).

We can describe this extruded surface as a NURBS surface by considering two
curves: the curve C(t) as above, and the curve D(t) which is simply a line segment

v1

Figure 7.23 Extruded surface
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in the direction of 𝑣. The curve C(t) is a NURBS of degree k with control points

C0,C1, … ,Cn, with some knot vector and with weights 𝑤i. Curve D(t) is a degree
1 curve with knot vector (0, 0, 1, 1) (ensuring that it interpolates its control points),

and the weights all equal to 1. The control points depend on C(t) and so are C0 and

C0 + 𝑣.

Define the surface control points byP(i,0) = Ci andP(i,1) = Ci + 𝑣. Set newweights

u(i,j) = ui. Now the surface is

S(s, t) =
∑n

i=0
∑1

j=0 u(i,j)N(i,k)(s)N(j,1)(t)P(i,j)∑n
i=0

∑1
j=0 u(i,j)N(i,k)(s)N(j,1)(t)

The blending functions are those (N(i,k)) for degree k corresponding to the curve C(t)
and those (Nj,1) for degree 1 corresponding to the line segment we traverse as s goes
from 0 to 1. The result is the same extruded surface as before. ◽

Example 7.19 (Surface of Revolution). Another subcategory of swept surfaces

includes those surfaces constructed by rotating a profile curve around an axis. These

are surfaces of revolution. The affine transform T(s) is now a rotation. Usually, we

take a curve C(t) lying in a plane, perhaps the xy plane. Pick an axis in the same

plane (take the x-axis). Since our transformation does not include a translation, we

can stick with regular Cartesian coordinates instead of homogeneous coordinates

and use the following matrix:

T(s) =
⎡⎢⎢⎣
1 0 0

0 cos(2𝜋s) sin(2𝜋s)
0 − sin(2𝜋s) cos(2𝜋s)

⎤⎥⎥⎦
The surface S(s, t) = T(s)C(t) is a surface of revolution (Figure 7.24).

Again, this type of surface can be expressed as a NURBS surface. The basic idea

is straightforward, although the details require a little attention. The surface is formed

using the Cartesian product of two curves. The first is a profile curve and the second

is a circle.

Recall that one way to form a NURBS circle is to use control points (total of

seven) forming a square. We construct an array of these squares corresponding to

each control point from the profile curve. The squares have different sizes because

the cross-sectional circles have different radii. The knot sequences are just those

for the profile curve and the circle. The weights used in the definition of the surface

are the products of the weights for the individual curves. ◽

Example 7.20 (Ruled Surfaces). For some surfaces, line segments lie entirely on

the surface. A plane is one example, but so is a cylinder, where the line segments

run along the length of the cylinder, and so is any extruded surface. Such surfaces

can be generated by applying affine transformations to a line segment and are there-

fore called ruled surfaces. Another way to construct a ruled surface is to draw line
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Figure 7.24 Surface of revolution

Figure 7.25 Ruled surface

segments between two boundary curves. If two curves, C1(s) and C2(s), both depend
on the same parameter, then the following parametric description produces a ruled

surface (Figure 7.25):

S(s, t) = (1 − t)C1(s) + tC2(s) (7.32)

If the two boundary curves are both NURBS of the same degree with the same knot

sequence, then using the these curves along a line segment produces the Cartesian

product NURBS surface.

S(s, t) =
∑n

i=0
∑1

j=0 u(i,j)N(i,k)(s)N(j,1)(t)P(i,j)∑n
i=0

∑1
j=0 u(i,j)N(i,k)(s)N(j,1)(t)
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This expression is the same as for the extruded surface, but this time the con-

trol points are defined a little differently. If the control points for the first boundary

curve are Q0,Q1, … ,Qn and those for the second are R0,R1, … ,Rn, then the sur-

face points are P(i,0) = Qi and P(i,1) = Ri. We use the common knot sequence for the

boundary curves along with the sequence (0, 0, 1, 1) for the interpolating line seg-

ment. If the first boundary curve has weights qi and the second has weights ri, then

the surface weights are 𝑤(i,0) = qi and 𝑤(i,1) = ri. ◽

From these examples of swept surfaces, it appears that we could generalize even

further and sweep an arbitrary curve along another curve. The idea here is that we are

translating one curve by an amount specified by the second curve: S(s, t) = C1(s) +
C2(t). If the two curves are NURBS, we can form a NURBS surface where the control

points are P(i,j) = Qi + Rj, the sum of the control points from each curve, and the

weights are the products, 𝑤(i,j) = qirj. It takes practice to design with such curves

because it is easy to generate singularities including self-intersections.

7.6 COMPLEMENTS AND DETAILS

7.6.1 Adding Control Points to Bézier Curves

When designing with Bézier curves, there may be the need for even more control

over the curve. It would be convenient to add a control point without disturbing the

curve as it currently stands; in effect, we are raising the degree of the curve. Then,

with one more control point, there is just a little more flexibility in tweaking the

shape of the curve. To analyze the situation, let P0,P1, … ,Pn be the original n + 1

control points leading to the curve P(t) =
∑n

i=0 B(i,n)(t)Pi. We want n + 2 control

points Q0,Q1, … ,Qn+1 with the resulting curve Q(t) =
∑n+1

i=0 B(i,n+1)(t)Qi. The two

curves should be identical, so Q(t) = P(t) for 0 ≤ t ≤ 1.

Substituting the correct blending functions into the equation gives

n+1∑
i=0

(
n + 1

i

)
(1 − t)(n+1−i)tiQi =

n∑
i=0

(
n
i

)
(1 − t)(n−i)tiPi (7.33)

At this stage of the game, it looks as though we need a completely new set of con-

trol points Qi, but since we know the curves interpolate the first and last points, we

know Q0 = P0 and Qn+1 = Pn. Although some cleverly chosen algebraic manipu-

lations can lead us directly to expressions for the other Qi, it perhaps gives a little

better picture of the situation to work backwards from the solution. Since we have

the first and last points, there are n more points to find. There are also n line segments

P0P1,P1P2, … ,Pn−1Pn, so we might guess that each segment contains a new point

Qi. It turns out that the correct guess is the following:

Qi =
i

n + 1
Pi−1 +

(
1 − i

n + 1

)
Pi for 1 ≤ i ≤ n (7.34)
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Substitute this expression for the points Qi into Equation 7.33. To verify that we
indeed have the correct points, we need to show that the coefficient for Pi on the right
in Equation 7.33 is the same as that for Pi on the left. Focusing on 1 ≤ i < n, notice
that onlyQi andQi+1 will havePi in their expressions. On the left of Equation 7.33, let
Ci designate the coefficient of Pi in the Qi term, and let Ci+1 designate the coefficient
of Pi in the Qi+1 term.

Ci =
(
1 − i

n + 1

)(
n + 1

i

)
(1 − t)(n+1−i)ti

= n + 1 − i
n + 1

(n + 1)!
(n + 1 − i)!i!

(1 − t)(n+1−i)ti =
(

n + 1

i

)
(1 − t)(n+1−i)ti

Ci+1 =
i + 1

n + 1

(
n + 1

i + 1

)
(1 − t)(n+1−(i+1))t(i+1)

= i + 1

n + 1

(n + 1)!
(n − i)!(i + 1)!

(1 − t)(n−i)t(i+1) =
(

n + 1

i

)
(1 − t)(n−i)t(i+1)

Ci + Ci+1 =
(

n + 1

i

)
((1 − t)(n+1−i)ti + (1 − t)(n−i)t(i+1))

=
(

n + 1

i

)
(1 − t)(n−i)ti((1 − t) + t) =

(
n + 1

i

)
(1 − t)(n−i)ti

The coefficient Ci + Ci=1 is exactly the same as that for Pi on the right in
Equation 7.33.

The points P0 and Pn have to be treated just a little differently from the other points
but the result is the same, and the verification is left as an exercise. For 1 ≤ i ≤ n, the
Qi’s are successive combinations of the Pi’s, and together with the first and last points
(Q0 andQ1) we have n + 2 control points. The resulting Bézier curve has degree n + 1
and matches the original curve of degree n. Now there is added flexibility because
theere is one more control point to adjust if necessary.

Example 7.21 (Adding a Point to a Quadratic Bézier Curve). Let the control points
for a Bézier curve beP0 = (1, 1),P1 = (3, 6), andP2 = (4, 2). The curve is thenP(t) =
(1 − t)2P0 + 2t(1 − t)P1 + t2P2, and the two coordinate functions are

x(t) = (1 − t)2 + 6t(1 − t) + 4t2 = 1 + 4t − t2

y(t) = (1 − t)2 + 12t(1 − t) + 2t2 = 1 + 10t − 9t2

Suppose we need more flexibility, so we wish to add a control point; the new set of
control points is Q0,Q1,Q2,Q3. These points have to produce exactly the curve we
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currently have. Since we are using Bézier curves, we know Q0 = P0 and Q3 = P2.
Otherwise, we have

Q1 =
1

3
P0 +

(
1 − 1

3

)
P1 =

(
7

3
,
13

3

)
Q2 =

2

3
P1 +

(
1 − 2

3

)
P2 =

(
10

3
,
14

3

)
The new curve is Q(t) = (1 − t)3Q0 + 3(1 − t)2tQ1 + 3(1 − t)t2Q2 + t3Q3. The cor-
responding coordinate functions are

x(t) = (1 − t)3(1) + 3(1 − t)2t
(
7

3

)
+ 3(1 − t)t2

(
10

3

)
+ t3(4)

= 1 + 4t − t2

y(t) = (1 − t)3(1) + 3(1 − t)2t
(
13

3

)
+ 3(1 − t)t2

(
14

3

)
+ t3(2)

= 1 + 10t − 9t2

The coordinate functions are exactly equal to those for the original curve. These
four new points define the original curve and give us one more control point to
work with. ◽

7.6.2 Quadratic B-Spline Blending Functions

In Section 7.3.2, a blending function for the quadratic B-spline was divided into three
sections, namely q1, q2, and q3. When put together in the order given, the pieces
form one complete blending function which is then translated to form all the other
blending functions. For convenience, we look at the three pieces in the interval 0 ≤
t < 1 (Figure 7.13). Each piece is a quadratic function that satisfies the criteria given
in the section. To specify each piece, start with the following descriptions:

q1(t) = a1 + b1t + c1t2

q2(t) = a2 + b2t + c2t2

q3(t) = a3 + b3t + c3t2

There are nine unknown coefficients in these descriptions that we need to find. Call
the first and second segments of the quadratic B-spline S1(t) and S2(t).

S1(t) = q3(t)P0 + q2(t)P1 + q1(t)P2(t)

S2(t) = q3(t)P1 + q2(t)P2 + q1(t)P3(t)

For both segments, we have translated the blending functions to the interval 0 ≤ t < 1
to make the algebraic manipulations a little simpler and transparent. (For the actual
spline, we use the interval 2 ≤ t ≤ n + 2 when we have n + 1 control points.) Now
we recall the criteria that govern how the segments should fit together.
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1. Since the first spline segment ends (at t = 1) where the second segment begins

(t = 0), we have S1(1) = S2(0).

(a3 + b3 + c3)P0 + (a2 + b2 + c2)P1 + (a1 + b1 + c1)P2

= a3P1 + a2P2 + a1P3

This equation must remain true for any choice of P0, so it follows that a3 + b3 +
c3 = 0. Moreover, since the equation holds for all choices of P3, it must also be

true that a1 = 0. Points P1 and P2 are also arbitrary, so similar arguments can

be made about their coefficients. In summary, we have

a3 + b3 + c3 = 0

a2 + b2 + c2 = a3

a1 + b1 + c1 = a2

a1 = 0

2. For C1 continuity, the derivatives where the segments meet must be equal, so

S′
1
(1) = S′

2
(0).

(b3 + 2c3)P0 + (b2 + 2c2)P1 + (b1 + 2c1)P2 = b3P1 + b2P2 + b1P3

Again, since all points can be arbitrary, we conclude that

b3 + 2c3 = 0

b2 + 2c2 = b3

b1 + 2c1 = b2

b1 = 0

3. We have eight equations so far, but since we must have an affine combination,

the blending functions sum to 1, giving

(a3 + b3t + c3t2) + (a2 + b2t + c2t2) + (a1 + b1t + c1t2) = 1

This equation has a polynomial on both sides and is true for all t. This means

we have three equations:

a3 + a2 + a1 = 1

b3 + b2 + b1 = 0

c3 + c2 + c1 = 0
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4. We now have 11 equations for the nine unknowns, but not all of the equations

are independent. Solving algebraically gives the unique nine values.

q1(t) = 0 + (0)t + 1

2
t2

q2(t) =
1

2
+ (1)t + (−1)t2

q3(t) =
1

2
+ (−1)t + 1

2
t2

To describe N(0,2)(t), the piece q2(t) needs to be translated one interval to the left

by replacing t with t − 1. The third piece q3(t) must be translated by replacing t with
t − 2.

N(0,2)(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if t < 0;

1

2
t2 if t ∈ [0, 1);

1

2
+ (t − 1) − (t − 1)2 if t ∈ [1, 2);

1

2
− (t − 2) + 1

2
(t − 2)2 if t ∈ [2, 3);

0 if 3 ≥ t;

The rest of the blending functions are translates of this one.

7.7 EXERCISES

1. Example 7.1 shows the general form of a conic. Suppose we translate the curve

by making the substitution x∗ = x − h and y∗ = y − k. Show that we can pick

h and k appropriately so the general form of the new curve has D∗ = E∗ = 0.

Also show that A∗ = A, B∗ = B, and C∗ = C.

2. Assuming that the conic is not a pair of lines, the quantity 𝛿 = B2 − 4AC deter-

mines whether it is a parabola (𝛿 = 0), ellipse (𝛿 < 0), or hyperbola (𝛿 > 0).

Show that if the conic is a parabola, then Ax2 + Bxy + Cy2 is a perfect square.

3. Consider the ellipse 4x2 + y2 = 1. Using the technique shown in Example 7.3,

rotate the axes 𝜋∕6 radians counterclockwise and give the new description of

the ellipse.

4. Given a conic description Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, show that an

axis rotation of 𝜃 where cot(A−C
B

) will make B = 0.

5. The circle of radius a can be parameterized as x = a cos(t) and y = a sin(t). Find
r(t) and r′(t). Determine the unit tangent T(t) and find its value at various points
on the circle including t = 0, t = 𝜋∕4, and t = 𝜋∕2.
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6. Verify that the curve in Example 7.6 is a parabola by finding the implicit expres-

sion of the curve and then calculating B2 − 4AC (see Exercise 2).

7. Let P0 = (4, 2) and P1 = (8,−16). Consider the curve P(t) = (1 − t)P0 + t2P1.

This is not an affine combination, but it does interpolate the two points. By

translating the points and curve two units to the right, show that this curve is

not affine-invariant.

8. Using the Lagrange interpolation method, find a curve through the points (0, 1),
(3,−1, (4, 3), and (6, 5). Verify that the blending functions sum to 1.

9. The construction of Bézier curves uses the Bernstein polynomials B(i,n)(t).
Determine where these polynomials reach their maximum value.

10. Find the quadratic Bézier curve for the control points (−2, 4), (1, 3), and (2,−1).
Find the point on the curve when t = 0.25 and verify that the de Casteljau algo-

rithm gives the same point.

11. Find the cubic Bézier curve for the control points (−3, 0), (−1, 4), (2, 3), and
(4, 1). Find the slope of the tangents at the first and last control points by finding
the derivative of the blending functions. Verify that the slopes match the slopes

of the line segments P0P1 and P2P3.

12. The quadratic Bézier curve has control points (−2, 4), (1, 3), and (2,−1). Con-
sider this curve as the first segment in a combination curve and find two more

control points so that the second segment is formed by a quadratic Bézier curve

that joins the first one with C1 continuity.

13. Give the complete description of the blending function N(n,1)(t).

14. Construct a uniform quadratic B-spline using the control points (−1, 0), (1, 4),
(3,−2), and (4, 3). Find the point on the curve at t = 3.5.

15. Use the de Boor algorithm to verify the point on the curve at t = 3.5 in

Exercise 14.

16. Construct a uniform cubic B-spline using the control points (−1, 0), (1, 4),
(3,−2), (4, 3), and (6, 1). Find the parametric expressions for the coordinates

x and y. Verify by finding the derivatives that, at the joining point between the

first and second segment, the first and second derivatives match.

17. Verify that the blending functions for the uniform cubic B-spline sum to 1.

18. In Example 7.14, a NURBS was used to produce one-quarter of a circle. Show

that selecting the weights 𝑤0 = 1, 𝑤1 =
√
2∕2, and 𝑤2 = 1 does produce an

arc of a circle.

19. In Example 7.15, use the vectors 𝑣 = (1, 0,−1) and �⃗� = (3,−2,−1) to param-

eterize the plane. Show that both parameter descriptions do give all the points

on the plane. Do any two vectors parallel to the plane work to parameterize the

plane?
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20. From the definition of a Cartesian product Bézier surface, show that the bicubic

Bézier patch does interpolate the four corner control points. Also show that each

of the four boundary curves is a (spatial) Bézier curve.

21. In the derivation for adding a control point to a Bézier curve, it was shown that

the coefficients for Pi (1 ≤ i < 1) match on both side of Equation 7.33. Now

verify that the coefficients for both P0 and Pn also match on both sides of the

equation.

22. After finding the quadratic Bézier curve for the control points (−2, 4), (1, 3),
and (2,−1), add a fourth control point keeping the same curve. Verify that it is

the same curve.

23. Solve the coefficient equations for the quadratic B-spline to verify the formulas

for q1(t), q2(t), and q3(t).

7.7.1 Programming Exercises

1. Write a program to plot two-dimensional parametric curves. Use the program

to verify the parametric descriptions of ellipses and hyperbolas given in

Example 7.1.

2. Use the program from Exercise 1 to investigate curves generated by the follow-

ing parametric description:

x = A1 sin(mt + d) y = A2 sin(nt)

The quantities A1, A2, m, n, and d are all constants. In particular, determine

the curve’s behavior as the ratio m∕n changes. These figures arise in various

harmonic motions (both mechanical and electrical) and are named after Jules

Lissajous who studied them in 1857.

3. Write a program for designing standard Bézier curves. The program inputs the

control points, draws the curve, and then updates the curve as the control points

are moved.
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VISIBILITY

Without light, we see nothing, and without turning our heads, we only see what is in

a cone in front of us. Even if we have sufficient light, a scene with objects suitably

arranged, lists of vertices for every triangle on every surface, and a camera peering

from some interesting angle, there is still work to be done before we can have an

image on the computer screen. Objects either outside the field of view or obscured

by another object need to be temporarily culled from the scene, and objects partially

in the field of view need to be trimmed (clipped) so that only the visible parts are

considered. Then everything needs to be projected onto a two-dimensional window

in preparation for transferring it to the actual display screen.

We start this work by mathematically determining what it is we can actually see

so that we do not inadvertently draw triangles or edges hidden by other objects. Since

there may well be thousands or millions of triangles in the scene, we always have to

be attuned to the efficiency of our calculations; designing good, speedy algorithms is

also key.

8.1 VIEWING

In an earlier chapter, we examined the camera position and determined how to trans-

form coordinates for object vertices into the camera coordinate system. Recall that, in

this system, the camera is sitting at the origin looking down the vector coming from

a point in the scene toward the camera. Often the axis determined by this direction

Mathematical Structures for Computer Graphics, First Edition. Steven J. Janke.
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vector is called z, so the camera is looking down the z-axis toward the negative por-
tion. The up-vector determines the y-axis and the third perpendicular axis forming a
right-handed system is x. The camera analogy is slightly misleading inasmuch as we
imagine looking through a window placed somewhere in front of the camera. (It is as
though we have put the camera’s film plane or digital sensors in front of the camera.)
The plane holding the window where the scene image will be projected is called the
view plane and it is perpendicular to the z-axis. The window is usually rectangular
and centered on the z-axis.

The parts of the scene we actually see depend, of course, on the direction the
camera is pointing, but also on the size of the window and the distance between
the camera and the view plane. In keeping with the camera analogy, we might say
the view depends on the type of lens we have; it is, for example, a wide-angle lens
or a telephoto lens. For anything in front of the view plane, we assume it cannot be
seen, and for anything beyond a specified far plane we also assume it cannot be seen.
With the rectangular window plus a near plane (which here coincides with the view
plane) and a far plane (which limits distant objects), the visible segment of the scene
falls within a region shaped like a truncated pyramid. This is called the view frustum.

It is not strictly necessary that the view plane and the near plane coincide, but it is
both convenient and commonly implemented in graphics systems. Each vertex in the
scene that can be seen is projected onto the window in the view plane. The far plane
limits the vertices we have to project, and the general idea is that any object beyond the
far plane projects into a very small object on the screen and perhaps does not have to
be rendered. If this is unacceptable, the far plane can bemoved to infinity. The frustum
displayed in Figure 8.1 is a symmetric one because the z-axis goes through the center
of the window. Again, this symmetry is not necessary. In fact, to introduce just a little
more flexibility, the window in the view plane is occasionally off center, which allows
for a little more adjustment of the view. Deviation from the symmetric frustum can
often be accommodated by transforming the scene or the camera coordinate system.

To carefully describe the shape of the frustum, notice that six planes form the
boundary. We label the planes left, right, top, bottom, near, and far. The camera is
at the origin, and the near plane crosses the z-axis at coordinate zn. Because of the
orientation of the z-axis, zn is a negative number. The equation of the near plane is
z = zn, and if we select normal vectors pointing into the frustum, the unit normal
vector for the near plane is (0, 0,−1). Similarly, the far plane is positioned at zf and
has equation z = zf with unit normal vector (0, 0, 1). The four side planes depend on
whether we have a wide or narrow field of view. If the window on the view plane

Camera

Near

Far

View plane

−z

(0,0,0)

Figure 8.1 View frustum
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(hence, on the near plane) has width 𝑤 and height h, then the angle (𝛼) formed at the
camera position by the left and right planes satisfies

tan
(
𝛼

2

)
= 𝑤

2zn
=⇒ 𝛼 = 2 tan−1

(
𝑤

2zn

)
This is the horizontal field of view angle. For the analogous vertical angle (𝛽), we
have

tan

(
𝛽

2

)
= h

2zn
=⇒ 𝛽 = 2 tan−1

(
h
2zn

)
The ratio of window width to height is called the aspect ratio which we denote by ar.
If we wish, we can express angle 𝛽 in terms of the window width:

𝛽 = 2 tan−1
(

𝑤

2arzn

)
To calculate the normal vector for the left plane, take the vector (−𝑤

2
, 0, zn) which

lies in the left plane and rotate it clockwise around the y-axis by 𝜋∕2. The result is
(−zn, 0,−

𝑤

2
), and when normalized it becomes

n⃗l =
1√

z2n +
𝑤2

4

(
−zn, 0,−

𝑤

2

)
The normals for the other planes can be calculated similarly.

8.2 PERSPECTIVE TRANSFORMATION

The next step in the graphics pipeline applies the perspective transformation to every
vertex inside the view frustum. Vertices inside will be projected onto the view plane
window and vertices in any object outside the frustum can be disregarded because the
object is not visible. Objects that are only partially inside will have to be broken up
into visible and nonvisible parts in a process called clipping. Thinking ahead, once we
have applied the perspective transformation, we will still need to determine whether
one object obscures or partially obscures another. To do this requires knowing how
far the object is from the camera, and since the camera looks down the z-axis, we
need to keep track of the z coordinates.

The perspective transformation we developed earlier required homogeneous coor-
dinates, used the xy plane as the view plane, and placed the camera at position e on
the z-axis. We formed a 4 × 4 matrix to represent the transformation.

Mper =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 0

0 0 − 1

e
1

⎤⎥⎥⎥⎥⎦
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The matrix sends the point (x, y, z, 1) with homogeneous coordinates to the point
(x, y, 0, (e − 1)∕e) with the z coordinate equal to zero, reminding us that we are in
the xy plane for the final image. Although this transformation captures the idea of
perspective, we can customize it for the view frustum. We can also be a little more
careful in our treatment of the z coordinate to make subsequent operations on the
graphics pipeline more efficient. There are various ways we can proceed with a cus-
tomized transformation, but as graphics systems have developed, one or two forms
for the perspective transformation have emerged as particularly useful, so we will use
one of these.

If we apply the generic perspective transformation, all vertices in the view frustum
will end up on the view plane window. If we also preserve the original z coordi-
nate, we will end up with a rectangular box instead of a truncated pyramid. Then,
if we normalize all the coordinates to fit in the range −1 to 1, we will turn the box
into a cube centered at the origin. Points in the cube are called normalized device
coordinates and they can be transformed in various ways to appropriately fit other
display screens. Notice, however, that we will have to recall the original aspect ratio
of the view window if we wish to display the image with its original proportions.
Normalized device coordinates are just a convenient state for the projected image in
preparation for display (Figure 8.2).

Our current orientation of the view frustum respects the camera coordinate sys-
tem, placing the camera at the origin and setting the view plane to coincide with the
near plane (z = zn). Consequently, the perspective transformation should send a point
(x, y, z) to a point (xp, yp, zp) on the view plane. We know zp = zn and we construct

similar triangles to find
|x||xp| = |z||zn| . The geometry gives ratios of distances, but note in

the current orientation of the z-axis, |z| = −z and |zn| = −zn. Since the sign of x and
xp should match, we get the following perspective equations for points in the view
frustum (Figure 8.3):

xp =
x ⋅ (−zn)

−z
yp =

y ⋅ (−zn)
−z

zp = zn

To construct a matrix for the perspective transformation, we use homogeneous
coordinates for our points. For any vertex with Cartesian coordinates (x, y, z), we
can take the homogeneous coordinates to be (x, y, z, 1). After the perspective trans-
formation is applied, the fourth homogeneous coordinate may no longer be 1. The
point becomes (uxp, uyp, uzp, u), and since both formulas for xp and yp divide by −z,
we will construct the transformation matrix so that u = −z. For an arbitrary point

Frustum NDC cube

(−1,−1,−1)

(1,1,1)

Figure 8.2 View frustum transformation



PERSPECTIVE TRANSFORMATION 271

Camera

Near(view) plane

xp

x

zn z

(x,y,z)

(0,0,0)

Figure 8.3 Perspective similar triangles

P = (x, y, z, 1), we have a first draft of the transformation matrix.

Tper(P) = MperP =

⎡⎢⎢⎢⎢⎣
−zn 0 0 0

0 −zn 0 0

0 0 1 0

0 0 −1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x
y
z
1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
znxp
znyp

z
−z

⎤⎥⎥⎥⎦
In this first draft, we are simply preserving the z coordinate. It is still unclear how

we should normalize it. The xp coordinate of any point in the view window satisfies

−𝑤

2
≤ xp ≤ 𝑤

2
. To scale it so that it falls between −1 and 1, we multiply by

2

𝑤
. Sim-

ilarly, to scale the yp coordinate, we multiply by
2

h
. The z coordinate also needs to

be scaled and translated, but for the second draft of the matrix we include a scale
factor S and a translation amount Tz. This draft of the perspective matrix looks like
the following:

Mper =

⎡⎢⎢⎢⎢⎢⎢⎣

−
2zn

𝑤
0 0 0

0 −
2zn

h
0 0

0 0 S Tz

0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎦
To settle on the S and Tz, we recall that the normalized coordinates we seek fall
between −1 and 1. It is also conventional to arrange the transformed z coordinates
so that larger values represent points farther from the camera than those with smaller
values. This essentially flips the direction of the z-axis. When z = zn, we want the
transformed three-dimensional coordinate, designated z∗, to be −1, and when z =
zf we want z∗ = 1. Following the matrix multiplication gives us the transformed
homogeneous coordinate, and division by −z gives z∗.

z∗ =
Sz + Tz

−z
=⇒ −1 = −S −

Tz

zn
, 1 = −S −

Tz

zf
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Solving for S and Tz gives the customized perspective matrix:

Mper =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
2zn

𝑤
0 0 0

0 −
2zn

h
0 0

0 0
zn + zf

zn − zf
−

2znzf

zn − zf

0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.1)

Remember that the zn and zf coordinates are negative; we could have decided to use

their absolute value, but then some of the signs in the matrix would change. Applying

this transformation turns a symmetric view frustum into a cube of side two cen-

tered at the origin. It is noteworthy that, since we essentially flipped the z-axis, the
coordinate system of the cube is left-handed while the camera coordinate system is

right-handed.

There is one more step we can take to make our transformation a little more flexi-

ble. Instead of insisting that the window in the view plane is centered on the z-axis, we
can position it off center. If the window is defined by 𝑤l ≤ x ≤ 𝑤r and 𝑤b ≤ y ≤ 𝑤t,

then to center the window we need a translation of − 1

2
(𝑤r +𝑤l) in the x direction

and − 1

2
(𝑤t +𝑤b) in the y direction. These translation amounts must be multiplied

by the scale factors for x and y (2∕(𝑤r −𝑤l)) and they need to be multiplied by −z,
because conversion from homogeneous to Cartesian coordinates will divide by −z.
Positioning the translations in the third column guarantees that they will be multi-

plied by z, so we finish with the −1 multiple. The resulting more general perspective

transformation matrix becomes

Mper =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2zn

𝑤r −𝑤l
0

𝑤r +𝑤l

𝑤r −𝑤l
0

0
−2zn

𝑤t −𝑤b

𝑤t +𝑤b

𝑤t −𝑤b
0

0 0
zn + zf

zn − zf
−

2znzf

zn − zf

0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.2)

Notice that, if the view window is centered, then 𝑤r = −𝑤l and 𝑤b = −𝑤t, turning

the general matrix into the matrix for the symmetric case. We can also let the far plane
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move to infinity by letting zf go to −∞. The resulting matrix is

Mper =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2zn

𝑤r −𝑤l
0

𝑤r +𝑤l

𝑤r −𝑤l
0

0
−2zn

𝑤t −𝑤b

𝑤t +𝑤b

𝑤t −𝑤b
0

0 0 −1 2zn

0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.3)

8.2.1 Clipping

Processing the whole scene is usually computationally expensive, so we try to apply

the perspective transformation only to the vertices of objects that have a chance of

being seen. Earlier, we may be able to tell that a group of vertices is obviously outside

the view frustum by noting perhaps that they are on the wrong side of one of the

bounding planes. However, it is also possible that one of the two vertices bounding

some edge is inside the viewing volume and one is outside. Thenwe need to determine

the intersection of the edge with a bounding plane and add that intersection as a vertex

to the object.

Example 8.1 (Clipping a Line Segment). Consider a symmetric view frustum with

near plane z = −4 and far plane z = −10. The window on the view plane is centered

on the z-axis with width 5 and height 3. The two vertices P1 = (−1, 8,−5) and P2 =
(1, 1,−7) are endpoints for an edge in some object.

Substituting the appropriate values into the matrix given in Equation 8.1 results in

the following perspective matrix:

Mper =

⎡⎢⎢⎢⎢⎢⎣

8

5
0 0 0

0
8

3
0 0

0 0 − 7

3
− 40

3

0 0 −1 0

⎤⎥⎥⎥⎥⎥⎦
Multiplying this matrix by each of the vertices (represented in homogeneous coor-

dinates) gives the transformed vertices. (We place the points as columns in a single

matrix to consolidate the computations.)

Mper

⎡⎢⎢⎢⎢⎣
−1 1

8 1

−5 −7
1 1

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
−1.6 1.6

21.33 2.67

−1.67 3

5 7

⎤⎥⎥⎥⎥⎦
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Dividing by the fourth homogeneous coordinate converts the transformed

vertices back into Cartesian coordinates, giving P∗
1
= (−0.32, 4.27,−0.33) and

P∗
2
= (0.23, 0.38, 0.43). If the original vertices were in the view frustum, these final

points should be inside the cube representing normalized device coordinates. Yet,

the y coordinate of P∗
1
is not in the range −1 to 1; it is too large. We conclude that P1

is above the top plane of the frustum and therefore the line segment from P1 to P2

intersects this plane. (The six planes of the frustum or the cube divide space into 27

sections, and deciding where a point is requires an algorithm. However, in this case,

only one coordinate is out of bounds, so the decision is easy.)

Before continuing the calculations to find the intersection between the line

segment and the top plane of the frustum, we go back to the homogeneous

coordinates. The transformed points became Ph∗
1

= (−1.6, 21.33,−1.67, 5) and

Ph∗
2

= (1.6, 2.67, 3, 7). At this stage of the game, without dividing by the fourth

coordinate, we can tell that Ph∗
1

is outside the cube for normalized coordinates

because 21.33 > 5. Moreover, we can also determine the point of intersection.

The points Ph∗
1

and Ph∗
2

can be thought of as vectors on lines through the origin

in four-dimensional space. Any linear combination of these vectors is on a plane and

corresponds to a three-dimensional line through P∗
1
and P∗

2
. Since any multiple of a

homogeneous point is the same point, we can take Ph∗
1

+ kPh∗
2
as an arbitrary point on

the line. The top plane of the cube for normalized device coordinates has y coordinate
equal to 1, so we find k to give a y coordinate of 1.

21.33 + k(2.67)
5 + k(7)

= 1 =⇒ k = 3.77

The intersection point R with the top plane is

Ph∗
1

+ (3.77)Ph∗
2

= (4.43, 31.39, 9.64, 31.39) =⇒ R = (0.14, 1, 0.31)

The line segment P2R is the clipped segment, and we found it using homogeneous

coordinates alone.

We can verify the result by using the original two points P1 and P2. To deter-

mine where the segment P1P2 intersects the top face, we know that (1 − t)P1 + tP2

describes the segment and the unit normal to the top plane (pointing inside the frus-

tum) is
2√
73
(0,−4,−1.5)

Letting 𝑣 = P2 − P1, n⃗ = (0,−4,−1.5) (no need for the unit normal), and Q0 =
(0, 1.5,−4) as a point on the top plane, we can utilize the formula developed earlier

for the intersection of a line and a plane.

t =
−n⃗ ⋅ (P1 − Q0)

n⃗ ⋅ 𝑣

= (0,−4,−1.5) ⋅ ((−1, 8,−5) − (0, 1.5,−4))
(0,−4,−1.5) ⋅ (2,−7,−2)

= 0.79
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This gives the intersection point as (0.58, 2.47,−6.58), and after the perspective

transformation we get the homogeneous coordinates (0.93, 6.58, 2.02, 6.58) which
convert to the normalized device coordinates (0.14, 1.0, 0.31). ◽

The key steps in this last example began with writing the vertices in the homoge-

neous form. Then we applied the perspective transform. Staying with homogeneous

coordinates, we can determine if any point is outside the frustum, and if so, we can

clip the appropriate line segment. Of course, we could convert to Cartesian coordi-

nates immediately and proceed with calculations, but saving any computation steps

always helps. The clipping step is extended when we need to clip polygons instead

of just line segments; then a more complete algorithm is needed.

8.2.2 Interpolating the z Coordinate

It may not be immediately obvious why the transformed z coordinate is particularly
useful. After performing the homogeneous divide to reach normalized coordinates,

the z coordinate can certainly be used to determine which of the two vertices is further

from the camera, but there is more we can do. First, we need to review the effect of

the z coordinate on the projected image.

Example 8.2 (Effect of Depth on the Perspective Image). Refer to the setup

in Example 8.1. This time, take three vertices on a line: P1 = (−1, 0,−4),
P2 = (0, 0,−7), and P3 = (1, 0,−10). The points P1 and P3 form a line segment in

the xz plane, P1 is on the near plane, and P3 is on the far plane. P2 is the midpoint

of this segment. We can transform each of the points with the perspective matrix.

(All three points are arranged as columns in a 4 × 3 matrix and matrix multiplication

transforms all three.)

⎡⎢⎢⎢⎢⎢⎣

8

5
0 0 0

0 8

3
0 0

0 0 − 7

3
− 40

3

0 0 −1 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
−1 0 1

0 0 0

−4 −7 −10
1 1 1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
−1.6 0 1.6

0 0 0

−4 3 10

4 7 10

⎤⎥⎥⎥⎦
We can check that all three points are in the view frustum by comparing the

first three coordinates to the fourth. For P1, the first three are in the range −4 to 4

so the point is in view. After dividing by the fourth homogeneous coordinate, we

have P∗
1
= (−0.4, 0,−1), P∗

2
= (0, 0, 0.43), and P∗

3
= (0.16, 0, 1). These are normal-

ized coordinates, and when displaying on a screen we drop the z coordinate and plot
the (x, y) points (possibly scaled): (−0.4, 0), (0, 0), (0.16, 0). It is clear that the pro-
jected image of P2 is not the midpoint of the line segment. The ratio of the interval

between the projected images of P1 and P2 to the interval between the images of P2

and P3 is
0.4

0.16
= 2.5. Larger z coordinates project to smaller intervals on the screen.

The ratio 2.5 is not the same as the ratio of the intervals between the original

z coordinates. That ratio is 1.0 because P2 is the midpoint. However, the ratio of
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intervals between the normalized z coordinates is 0.43−(−1)
1−0.43 ≈ 2.5. Although this seems

like a surprise, it does follow because the normalized coordinates are linear functions

of the reciprocals of the original z coordinates. The ratio of the intervals between the

reciprocals
[

(1∕4)−(1∕7)
(1∕7)−(1∕10)

]
is 2.5. ◽

The goal currently is to understand how the ratios of intervals between coordinates

change when we project onto the display screen. Each of the edges of a triangle in

space projects to a line segment on the screen and one common problem is to decide

how to color pixels on the segments correctly. We often know the color of the tri-

angle’s vertices and consequently the color of line segment endpoints on the screen.

However, the colors of points in between the endpoints are unknown. Even if the

midpoint of a triangle edge has a color shade that is the average of the colors of the

endpoint, the point does not necessarily project to the midpoint on the screen. Simple

linear interpolation of colors on the screen will not be correct. By using information

about the z coordinates, we can more correctly determine how to interpolate colors.

After multiplying by the perspective transformation matrix, a transformed point

holds −z as the fourth coordinate. The third coordinate is the transformed z coordi-
nate, denoted as z∗.

z∗ = 1

−z

( zn + zf

zn − zf
z −

2znzf

zn − zf

)
= −S + Tz ⋅

1

z

Since S and Tz are just constants, we have a linear function of the reciprocal of z.
The first and second coordinates of the transformed point are x∗ and y∗. By con-

sidering how the perspective matrix acts, we have

x∗ =
2znx

𝑤(−z)
= kx

x
z

and y∗ =
2zny

h(−z)
= ky

y

z
(8.4)

Let the two points P1 and P3 form a line segment. An arbitrary point on that

segment is P2 = (1 − t)P1 + tP3 = P1 + t(P3 − P1). Following both the x and z coor-
dinates of P2, we have

x2 − x1
x3 − x1

= t =
z2 − z1
z3 − z1

=⇒ x2 = az2 + b (8.5)

where a and b depend on the coordinates of P1 and P3, but are otherwise constant.

This is a rather intuitive result because it says that, on a line, the coordinates are linear

functions of each other.

When P1, P2, and P3 are projected onto the view window via the perspective

transformation, we get the points P∗
1
, P∗

2
, and P∗

3
. The x coordinate of P∗

2
satisfies

x∗
2
= (1 − s)x∗

1
+ sx∗

3
and the y coordinate satisfies a similar relation. The problem is

that the s parameter here does not necessarily have the same value as the t parameter

above. The perspective projection changes the ratios on the line segment.
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Since x∗
2
= (1 − s)x∗

1
+ sx∗

3
, we can use Equation 8.4 and substitute for each x∗i .

k
x2
z2

= (1 − s)k
x1
z1

+ sk
x3
z3

=⇒
x2
z2

= (1 − s)
x1
z1

+ s
x3
z3

(8.6)

This says that the quantities
xi

zi
are interpolated linearly across a line segment on

the screen. In other words, at the midpoint, the ratio of the x to the z coordinate is the
average of the ratios at the two endpoints.

According to Equation 8.5 , the x coordinate of any point on a line is a linear

function of the z coordinate. Making this substitution gives the following:

x∗ = k
x
z
= k

az + b
z

= k

(
a + b

1

z

)
(8.7)

Now, if we use this result to replace x∗i in the relation x∗
2
= (1 − s)x∗

1
+ sx∗

3
, we have

k

(
a + b

1

z2

)
= (1 − s)k

(
a + b

1

z 1

)
+ sk

(
a + b

1

z3

)
=⇒ 1

z2
= (1 − s) 1

z1
+ s

1

z3
(8.8)

Both Equations 8.6 and 8.8 show that, on the screen, the ratio of x to z and the recip-
rocals of z interpolate linearly. Actually, we can generalize to any quantity, like color,
that interpolates linearly across a line segment before the perspective transformation

is applied.

Suppose that the previous points P1 and P3 are vertices with colors c1 and c3,
respectively. If colors change linearly across the segment, the color c2 of point P2

satisfies

c2 − c1
c3 − c1

=
z2 − z1
z3 − z1

This mimics Equation 8.5, and we can follow the previous derivation to get

c2
z2

= (1 − s)
c1
z1

+ s
c3
z3

(8.9)

Example 8.3 Continuing with Example 8.2, the projected images of the point P1

and P3 are P∗
1
= (−0.4, 0,−1) and P∗

3
= (0.16, 0, 1). The point P2 was the midpoint of

the original segment, but it did not project to the midpoint of the line on the screen.

Using two-dimensional coordinates, that line has endpoints (−0.4, 0) and (0.16, 0).
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To determine what point, call it Q, does project to the midpoint, we first interpolate

the reciprocals of the z coordinates:

1

zQ
= 1

2
⋅
1

z1
+ 1

2
⋅
1

z3
= 1

2(−4)
+ 1

2(−10)
= −0.175

Taking the reciprocal gives zQ = −5.71; the point with this z coordinate projects to
the midpoint of the screen segment. Now, Q = (1 − t)P1 + tP3, so the z coordinates
satisfy

−5.71 = (1 − t)(−4) + t(−10)

Solving for t gives t = 0.285, and using this value to find the other coordinates

we get Q = (−0.43, 0,−5.71). The projected value is Q = (−0.12, 0,−0.01), which
coincides with the midpoint on the screen.

Imagine that P1 is colored red with intensity 0.5 (on a scale 0–1.0), and let P3 be

colored with intensity 0.75. Then to find the color of the midpoint on the screen, we

interpolate the ratios of intensity to the z coordinate. (Recall that the value of −z is
saved as the fourth homogeneous coordinate for both P1 and P2.)

cQ

zQ
= 1

2
⋅

c1
z1

+ 1

2
⋅

c3
z3

= 0.5

−8
+ 0.75

−20
= −0.1

Using the value of zQ found earlier, we get cQ ≈ 0.57. ◽

8.3 HIDDEN SURFACES

Displaying a scene on the screen requires projecting vertices, drawing edges, and

filling in triangles with appropriate shades of color. Aswe have already noted, the only

triangles we are really interested in are those that fall completely or partially inside

the view frustum, but there is an additional problem. Some triangles may occlude

others because they are closer to the camera and the resulting occluded triangles may

be totally hidden or just partially hidden.

Theoretically, we can begin to sort all of this out by first checking every triangle

in the scene to see if it is partially in the frustum. Then we could check every tri-

angle to see if it is partially or fully hidden by any other triangle, although it is not

immediately clear how we would do this. Yet, this theoretical solution is not practi-

cally feasible. There are often on the order of a hundred thousand triangles or more

in a complex scene and the computation time starts to get out of hand particularly if

we need real-time images. So the solution to the problem hinges on finding efficient

ways of structuring the data and efficient mathematical methods for analyzing the

geometry.

In determining visibility, the key mathematical question is to decide whether

a vertex is on one side of a plane or the other. Recall the equation of a plane,
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n⃗ ⋅ (P − P0) = 0, where n⃗ is a normal to the plane, P0 is a given point on the plane,

and P is an arbitrary point on the plane. The direction of the normal vector n⃗
distinguishes one side of the plane from the other. If we have n⃗ ⋅ (P − P0) > 0, then

the angle between the normal n⃗ and 𝑣 = (P − P0) is less than 𝜋∕2, and P is on the

“positive” side of the plane. Conversely, n⃗ ⋅ (P − P0) < 0 implies that P is on the

“negative” side of the plane. If all three vertices of a triangle are on the same side of

a plane, then we know the triangle does not intersect the plane.

Earlier we noted how to calculate the inward-pointing normal for each of the six

bounding planes of the view frustum. Using the equation of each plane, we can deter-

mine on which side of the plane each vertex of a triangle lies. Putting the results

together tells us whether the triangle intersects the frustum. We did see earlier that, if

we apply the perspective transform, then to determine whether a vertex is inside the

frustum we simply determine whether the projected vertex is in the normalized coor-

dinate cube. This is a little easier because the planes are all positioned ±1 from the

origin. The computational cost of the perspective transform, however, complicates

this second approach.

If we could determine that a cluster of triangles is not in the frustum before doing

much work on the vertices, then we could save the cost of the perspective transform

and any incidental calculations that follow. This is the idea behind a bounding volume.
For example, if we can find a sphere that completely contains some object in our

scene, then we could check to see whether the sphere intersects the view frustum. If

not, then all the triangles in the object can be disregarded in rendering the scene on

the display screen. Finding a bounding sphere is perhaps a little tricky, but once we

have it we can determine whether the center of the sphere is closer to the frustum than

the radius of the sphere.

Example 8.4 (Triangle Visiblity). We continue with the view frustum described

earlier in Example 8.1. Let triangle T have the following vertices:

V0 = (−2,−1,−6)

V1 = (−1, 4,−8)

V2 = (−4, 1,−5)

First, we list the inward-pointing normals for the view frustum. (For simplicity of

calculation, the normals are not unit normals.)

Near: (0, 0,−1) Far: (0, 0, 1)

Top: (0,−4,−1.5) Bottom: (0, 4,−1.5)

Left: (4, 0,−2.5) Right: (−4, 0,−2.5)

To calculate n⃗ ⋅ (P − P0) for each vertex and each plane, we need a P0 on each

bounding plane. The points (0, 0,−4) and (0, 0,−10) will work for the near and far

planes, the corner vertex of the view window (−2.5, 1.5,−4)will work for the top and
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TABLE 8.1 Values of n⃗ ⋅ 𝒗

Near Far Top Bottom Left Right

V0 +2 +4 +13 +5 +7 +23
V1 +4 +2 −4 +28 +16 +24
V2 +1 +5 +3.5 +11.5 −3.5 +28.5

left planes, and the corner vertex (2.5,−1.5,−4) will work for the right and bottom

planes. So the dot product using V1 and the near plane is (0, 0,−1) ⋅ ((−2,−1,−6) −
(0, 0,−4)) = 2 > 0. V0 is on the positive side of the near plane, which is consistent

with being in the view frustum. Before we know for sure that it is in the frustum,

we have to check the other planes. The results for all three vertices are presented in

Table 8.1.

Reading the table, all positive values for V0 means it is inside the view frustum. V1

is outside by being on the negative side of the top plane, and V2 is outside by being

on the negative side of the left plane. At this stage, we need to clip the triangle down

to a smaller triangle just fitting in the frustum.

Suppose we have a bounding sphere containing a cluster of triangles from some

set of objects in our scene. The sphere has radius 4 and center C = (9, 0,−6). Finding
the dot product of the normal to the right plane with the center of the sphere gives

(−4, 0,−2.5) ⋅ (9, 0,−6) = −21 < 0

The center of the sphere is on the negative side of the right plane and therefore

not in the view frustum. Calculating the distance from the center of the sphere to the

right plane gives

d = |((9, 0,−6) − (2.5,−1.5,−4)) ⋅ (−4, 0,−2.5)||(−4, 0,−2.5)| ≈ 4.45

The distance is larger than the radius, implying the sphere is entirely on the neg-

ative side of the right plane. We conclude that the sphere does not intersect the view

frustum and consequently none of the triangles inside the sphere needs to be pro-

cessed for viewing. The sphere’s center is on the positive side of the bottom plane,

but all we need is for it to be completely on the negative side of some bounding plane

before we disregard any triangles inside it. ◽

In this last example, the visibility tests were conducted before we applied the per-

spective transform; we were still in what we call camera space. In previous examples,

we checked vertices after the perspective transform to see whether they fell in the

view frustum. Which of these two approaches is the most efficient really depends

on the design of the particular application. In general, it is desirable to eliminate as

many triangles as possible before expending computation time on the perspective

transformation.
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It may be convenient to cull large sections of the scene based only on the bounding

planes of the view frustum, or it may be possible to determine bounding volumes that

can be easily checked for intersection with the frustum. Bounding spheres are not

the only canonical geometric object that can work here. Bounding boxes, bounding

ellipsoids, and bounding cylinders are appropriate and useful. When we consider ray

tracing, we will look closer at the details of using these bounding volumes to speed

up the rendering process.

8.3.1 Back Face Culling

Once we have determined which triangles intersect the view frustum, we may need

to clip those that are only partially inside. When that is done, we have a collection of

triangles (or polygons) completely in view. Yet, one might be occluding another com-

pletely or partially. The image on the screen should not display any part of a triangle

that is blocked by a triangle closer to the camera. There are many situations here that

have to be addressed, but if we have opaque polyhedral objects with triangular faces,

any of those triangles facing away from the camera, back faces, are hidden. We can

cull the back faces and avoid displaying them on the screen.

To distinguish front faces from back faces, we need a normal for each face. If

the normal points toward the camera, we have a front face; otherwise it is a back

face. More specifically, the angle between the normal vector and a vector from the

face to the camera is greater than 𝜋∕2 for back faces; the dot product is negative.

It is important in this test that the normal points out of the object, and to guarantee

this we orient the vertices in counterclockwise order. If, when looking at a face from

outside the object, the vertices V0, V1, V2 are in counterclockwise order, then the

normal formed by the cross product, n⃗ = (V1 − V0) × (V2 − V0), is pointing out of

the face. Constructing the object where face vertices are ordered consistently in the

counterclockwise direction guarantees that we can easily calculate normals pointing

out of the face. (Clearly, we could order vertices in the clockwise order as long as we

are consistent, and then select −n⃗.)
It is important to note that while we cannot see a back face of an opaque object,

we may also not see a front face. If the object is convex, then front faces are visi-

ble, but if it is not, then other faces can partially or completely obscure a front face

(Figure 8.4).

Example 8.5 (Determining a Back Face). Once again, consider the view frustum

orientation in Example 8.1. A tetrahedral shape has the following vertices:

V0 = (0, 2,−7)

V1 = (2,−1,−8)

V2 = (−1,−2,−9)

V3 = (0,−1,−5)
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Camera

Back face
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v

Figure 8.4 Back face

There are four triangular faces (A,B,C,D) in this shape and we can list the vertices

for each face in counterclockwise order.

A∶ V0 V1 V2

B∶ V0 V3 V1

C∶ V0 V2 V3

D∶ V1 V3 V2

Normals for each face are calculated using the vertex order. For face A, the normal

is n⃗ = (V1 − V0) × (V2 − V0), and for face B it is n⃗ = (V3 − V0) × (V1 − V0). After
calculating all four normals, we also find vectors 𝑣 from the faces to the camera posi-

tion (the origin). Since this vector starts from any point on the face (the face is flat),

the vertices are convenient to use; we use vertex V0 for faces A, B, C, and vertex V1

for D. Finally, we calculate the dot products.

Only the signs of the dot product matter in this test. Since faces B and C have

positive dot products, they are visible; faces A and D are not visible (Table 8.2).

The calculations we have done so far have taken place in camera space, but we

could see what happens in screen space by transforming each vertex with the per-

spective transformation. The four vertices transform as follows:

V∗
0
= (0, 0.76, 0.43)

V∗
1
= (0.4,−0.33, 0.67)

V∗
2
= (−0.18,−0.59, 0.85)

V∗
3
= (0,−0.53,−0.33)

These are normalized device coordinates, and by looking at the z coordinate we can
tell the relative position of the vertices. Vertex V3 and V0 are closest to the camera.

(Remember that the more positive z coordinates are farther from the camera.) It is not

definitive, but from this positioning alone we might guess that faces B and C hide the

other two.



HIDDEN SURFACES 283

TABLE 8.2 Determining Back Faces in a Tetrahedron

Face n⃗ 𝑣 n⃗ ⋅ 𝑣

A (2, 5,−11) (0,−2, 7) −87
B (9, 4, 6) (0,−2, 7) +34
C (−14, 2, 3) (0,−2, 7) +17
D (3,−11, 2) (−2, 1, 8) −1

Considering only face A, we get actual screen coordinates by scaling (0, 0, 76),
(0.4,−0.33), and (−0.18,−0.59) to fit a particular display screen. If we consider these
points as all having the same z coordinates (they are all on the screen) and then calcu-
late a normal to the triangle respecting the order of the vertices, we get (0, 0,−0.74).
This normal points away from the camera, indicating that face A is hidden. For screen

coordinates, we always get a normal of the form (0, 0, a), and the visibility test reduces
to determining whether a is positive or negative. ◽

8.3.2 Painter’s Algorithm

After eliminating as many triangles as possible, those that are left may still overlap in

various ways when projected onto the view plane. If two triangles overlap, then one

will hide part of the other and the hidden section should not be visible on the screen.

One way to ensure that the triangles are displayed correctly is to use the painter’s
algorithm which simply draws the partially hidden triangles first. Then, when the

triangle in front is drawn, it will hide the section of the first where they overlap. If

we can order the triangles according to decreasing distance from the camera, drawing

them in that order will display visible portions of the triangles correctly. (One way to

find an order is to use the average z coordinate of the three vertices.)
This sounds straightforward until we realize that there can be some awkward

arrangements of triangles like the one shown in Figure 8.5. The triangles are shown

Figure 8.5 Overlapping triangles
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projected onto the display screen, but the original spatial orientation should be clear.

Each triangle overlaps one of the others, so there is no order among the triangles that

will make the painter’s algorithm work. Instead, splitting one of the triangles into

smaller triangles is the only choice.

To phrase the problem more geometrically, consider just two triangles T1 and T2,

along with the plane containing T1 (called𝒫1). If the three vertices of triangle T2 are

all on one side of plane 𝒫1, then we can decide how to draw the two triangles by

determining where the camera is in relation to the plane. Assuming the triangles are

actually in the view frustum, there are two cases:

1. If the camera is looking at the triangles from the opposite side of the plane from

triangle T2, then draw T2 first, followed by T1. In this positioning, triangle T2

cannot hide any part of T1.

2. If the camera is looking at the triangles from the same side of the plane as T2,

then draw T1 first, followed by T2. Triangle T1 cannot hide any part of T2.

The details of determining on which side of a plane the camera or a vertex lies

follow the same procedure we used before. Find the normal to the plane by taking the

cross product of vectors formed by the vertices of T1. The dot product between the

normal and a vector from the plane to the camera (or vertex) determines which side

of the plane the camera is on, and a similar dot product with vectors to the vertices

of T2 establishes which side the vertices are on (Figure 8.6).

This method for ordering the two triangles assumes that the vertices of T2 are all

on one side of the plane containing T1. If this is not true, we could reverse the role of

the two triangles to see if it then works. If neither triangle is completely on one side

of the plane containing the other, then a plane splits a triangle so that one vertex is on

one side and the other two vertices are on the other side.

The plane divides the triangle into a triangle and a quadrilateral. Using the meth-

ods for finding the intersection of a line and a plane, we can find the vertices of the

triangular and quadrilateral pieces; the quadrilateral is easily divided two triangles.

Replacing the original triangle with the three smaller triangles changes the situation

so that the plane cleanly divides the triangles. They are completely on one side or the

Camera

Plane

T1 T2

Figure 8.6 Triangles and camera
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other, but we have increased the number of triangles and hence extended computation
time. The smart thing to do is to minimize the number of triangles we have to split in

a quest for planes that completely separate groups of triangles.
Consider now all the triangles in our scene, and imagine that we do have a plane

that separates them cleanly into two groups. Position the camera somewhere and ori-
ent the view frustum so that it crosses the plane. Then we argue just as before. The

group of triangles on the opposite side of the plane from the camera should all be
drawn before any on the same side as the camera. None of those on the opposite side
can occlude any on the same side. We have taken the first step in finding an appropri-

ate order for drawing the triangles. Of course, we still have to order all the triangles
on one side of the plane, but we do so by proceeding recursively.

We are about to build a data structure called a BSP tree where the acronym stands

for “binary space partition.” The tree starts with the root node holding the plane 𝒫1

and its triangle T1. There are two branches out of this node, one leading to triangles
on one side of𝒫1, and the other leading to those on the other side. Focusing on those
triangles on one side, we can search for another plane containing one of the triangles

in hope of dividing this group into two smaller groups. If we are unlucky, more tri-
angles will have to be split; searching for a plane that minimizes the splitting makes
sense. This procedure is continued again and again until we have single triangles in

every group. These triangles are stored in the leaves of the tree data structure. All
of this processing can occur before we consider the camera and its associated view
frustum.

Once we have built the BSP tree, then we position the camera and check the plane

in the root node of the tree. All those triangles on the opposite side of the plane from
the camera will be drawn first, but we now check the plane that divides these into
two groups. Those again on the opposite side of this second plane from the camera

are drawn before those on the same side. Following the tree in this manner (called a
depth-first search) ascribes an order to the triangles that we can use when drawing
on the screen. Figure 8.7 shows the tree, a small example of triangles, and a camera
position. The triangles (and planes) are drawn edge on to improve the clarity of the

diagram.
In the figure, plane 𝒫1 containing T1 divides the triangles into two groups

{T2,T4,T5} and {T3,T6,T7}. The second group is drawn first. Plane 𝒫3 containing

Camera
T1

T2

T3
T4

T5

T6

T7

P1

P3

P5

T1

T2

T3

T4

T5

T6 T7

Figure 8.7 Example ordering and tree
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T3 divides this second group further into the two groups {T7} and {T6}. These are

singleton groups and hence are leaves in the BSP tree. At this stage, we can order

some of the triangles: T6, T3, T7, T1. Now we order those on the same side of 𝒫1 as

the camera. The final order becomes T6, T3, T7, T1, T2, T5, T4.

With seven triangles in the small example, there are seven total nodes in the BSP

tree; four of the nodes are leaves. This particular tree is balanced, meaning that the

two branches out of each node hold the same number of triangles. The depth of the

tree is the maximum number of branches on a path from the root node to a leaf

node, and in the example case the depth is 2. In a perfectly balanced tree of depth

d, there are 2d+1 − 1 triangles. If we start with n triangles, we will have a tree of

depth at least ⌊log2 n⌋, where the brackets denote the floor function (greatest integer
less than or equal to log2 n). Finding a balanced tree is desirable because unbalanced
trees can have great depth and require more computation to find the correct triangle

ordering.

8.3.3 Z-Buffer

The painter’s algorithm deals with triangles and works in the camera space. Another

similar approach works on pixels in screen space using a hardware device called

the z-buffer (or depth buffer). To actually draw an opaque triangle on the screen, the

graphics processor breaks the triangle into a series of horizontal scan lines. Each line

is a set of pixels with integer coordinates and one pixel is drawn at a time. If the

triangle is a solid color, then each pixel is set to the same color; otherwise, the color

is chosen to produce shading.

If one triangle overlaps another on the view plane, then any point in the overlap

region is the projection of a point P1 on one triangle and a point P2 on the other tri-

angle. The point closest to the camera should determine the actual color of the screen

pixel. As the triangles are processed, colors are chosen for pixels on the screen. Point

P1 may require one color and P2 may require another. Checking the z coordinates,

the graphics processor can determine which point is closer to the camera.

The z-buffer is used to store z coordinates as a triangle is scan-converted to deter-
mine the colors of relevant pixels and is an additional memory area of the same size

as the screen. The three vertices of a triangle are first transformed with the perspec-

tive transform to normalized device coordinates. The transformed (x, y) pair identifies
a pixel and the z coordinate is compared with the value in the (x, y) location of the

z-buffer. If there is no previously stored value in the buffer, then the current z is stored
and the pixel on the screen takes the color of the corresponding point on the triangle.

If there is a value in the buffer, then the current z is compared with it to determine

which is smaller (i.e., closer to the camera). The smaller z is stored and the pixel

takes the corresponding color. This guarantees that the closest point to the camera

determines the pixel color. In this way, the triangle vertices are turned into pixels

(Figure 8.8).

Once the three vertices are transformed, there are algorithms (see Bresenham’s

algorithm in a later chapter) that find the correct pixels on the edges of the triangle.

Then line by line, individual pixels and their accompanying z coordinates are found
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Scan line

Edge pixels

Figure 8.8 Triangle scan lines

by interpolation. Normalized z coordinates are compared with the current values in

the z-buffer to determine whether the pixel should overlay the current one. Scan line

by scan line the triangle takes shape, and overlapping regions are drawn correctly

without any global geometric calculations.

8.4 RAY TRACING

So far we have treated visibility purely as a problem of positioning. Is a particular

triangle in the view frustum and, if so, is there another triangle in front of it closer

to the camera? We have temporarily left light out of the scene. There are no light

sources and no shadows cast by objects nearer to the source than other objects. An

approach to the whole visibility question that puts light back into the scene is called

ray tracing. It turns out to be computationally intensive, but it has the ability to cope

with some of the complex light interactions in a scene.

Light rays are an abstraction that helps turn the difficult physics of light into a

approachable geometric problem. A light source sends light rays into the scene where

they bounce off objects and, in some cases, end up entering the camera. Only those

rays that are reflected into the camera finally determine the image. The computational

difficulty is that the vast majority of rays do not enter the camera, so keeping track

of them is irrelevant. The counterintuitive approach in ray tracing is to follow the

rays backward, starting at the camera and moving into the scene. It is not physically

realistic, but it keeps us from wasting computation on rays that end up reflected in a

direction that completely misses the camera.

Tracing a ray from the camera to the scenemeans that it passes through the viewing

window on the view plane. Points in the viewing windowwill get scaled appropriately

to end up as pixels on the display screen, so we imagine targeting a pixel and backing

up to find the ray going from the camera through the associated point in the view

window. There will be a ray for each point in the viewing window which corresponds

to the center of a pixel on the display screen.

Continuing into the view frustum, the ray enters the scene and may intersect an

object. With the camera at the origin, the ray has the form t𝑣, where 𝑣 is the vector

from the origin (camera position) to a point in the view plane window. We are then
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looking for the smallest positive value of t such that the point P = (0, 0, 0) + t𝑣 is a

point on some object. Assuming that the point is illuminated by a light source, P is

visible because no other object in the frustum is in front of it (Figure 8.9).

The first object that a ray strikes is potentially visible, but unless it is directly

illuminated by a light source it is in shadow and the corresponding pixel should not

be so bright. So we can take a ray from the intersection point to a light source and

see if it intersects any other object. Once we know whether it is in shadow, we can

use various lighting models (Chapter 9) to determine the intensity of the pixel. From

the visibility perspective, we know that the point is potentially visible as soon as we

know it is the first point of intersection on a ray from the camera. By systematically

finding rays through each pixel, we construct the entire image. This first attempt at

a ray tracing algorithm is often referred to as ray casting and the only advantage

over the previous visibility techniques is that it includes slightly more subtle lighting

effects.

More can be done. From the first intersection point P, we can follow a ray to

the various light sources (shadow rays), or we can follow the reflected ray (where the

angle of incidence equals the angle of reflection), or in the case of a transparent object

we can follow the transmitted ray (taking into account refraction). If the reflected ray

from P hits an object at a point with a particular shading, then we mix this shading

with any other illumination we find for P. The process can continue recursively for

several levels, keeping in mind that the computation time will continue to grow expo-

nentially with the number of levels. The result is an algorithm that captures some of

the complexity of light interactions in a scene.

Ray Tracing Algorithm

For each pixel on the display screen:

1. Determine a point in the viewing window corresponding to the pixel center.

2. Find a ray from the camera to the point on the viewing window.

3. For each object, determine the parameter t for an intersection (if any) with the

ray.

4. Save the minimum t value and the corresponding point P.

Camera

View window

To light source

Reflected ray

v

Figure 8.9 Ray tracing
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5. Find the vector from point P to the light source and determine if its correspond-

ing line intersects any object.

6. Calculate the intensity of the pixel and store it.

The algorithm relies on systematically checking objects for intersection with a

light ray. An efficient way of organizing the objects to reduce the number of tests is

essential.

8.4.1 Bounding Volumes

Ray tracing is computationally expensive because there is one ray (sometimes more)

for each pixel on the screen and for each ray there are tests with various objects to look

for the closest intersection. The goal, then, is to eliminate any objects we do not need

to consider as we trace a ray and to hone our intersection algorithms, making them

as efficient as possible. One way to do this is to find bounding volumes that enclose

several objects. Then a single intersection test determines relatively quickly whether

the ray needs to be tested against any of the enclosed objects. If the ray does not

intersect the bounding volume, then it does not intersect any of the enclosed objects.

8.4.2 Bounding Boxes

Although there are other possibilities, it is convenient to make bounding boxes

rectangular prisms: that is, opposite faces are parallel and adjacent faces are

perpendicular. If the box is aligned so that faces are parallel to the xy, xz, or
yz plane, we say it is an axis-aligned bounding box (AABB). If the box is not

axis-aligned, then it is an oriented bounding box (OBB). One key characteristic

of bounding volumes in general is that they should be as small as possible. For

a large box, a ray may intersect it without intersecting any object inside. An

intersection test in this case is not as definitive as it would be if the box were

smaller.

To find the smallest AABB containing a collection of objects, it is relatively easy

to read through the set of vertices and record the maximum and minimum of each

coordinate. Then x = xmin and x = xmax are the equations of two planes containing

opposite faces of the box. In an analogous manner, the other coordinates describe

planes for the other faces of the box.

For a ray to intersect the box, it must enter one face and exit another. The volume

between two planes containing opposite faces is a slab, and as long as the ray is not

parallel to the slab it intersects it by entering through one plane and exiting through the

other. With a ray of the form P0 + t𝑣, the values of the parameter where it enters and

exits the slab parallel to the yz plane are tx(in) and tx(out), where the first is less than
(or equal to) the second.We can determine which of the two planes is intersected first,

but we really just need to know the interval [tx(in), tx(out)]. The other two intervals,

[ty(in), ty(out)] and [tz(in), tz(out)], are calculated and all three are compared. If the

ray hits the box, there must be some values of t for which the ray is simultaneously

inside all three slabs. If the intersection of all three intervals is non-empty, then the
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ray intersects the box (Figure 8.10). (It is possible that the ray just touches the box

without entering.)

Example 8.6 (Bounding Boxes: AABB). Suppose we have two triangles with the

following vertices:

V0 = (0, 0,−4) V1 = (2,−1,−5) V3 = (1, 4,−7)

W0 = (3,−1,−6) W1 = (−1, 2,−7) W2 = (0,−1,−10)

A quick scan finds the minimum andmaximum for each coordinate, and the planes

bounding the box are

x = −1 y = −1 z = −10

x = 3 y = 4 z = −4

Assume we pick a ray from the camera (0, 0, 0) to the viewing window position

(−1,−2,−4). The technique developed earlier for finding the intersection of a line

with a plane uses the following formula:

t =
−n⃗ ⋅ (PQ0)

n⃗ ⋅ 𝑣

In the current case, P = (0, 0, 0) and 𝑣 = (−1,−2,−4). The values for t on entry

and exit from each slab give the following intervals:

[−1.5, 1] [−2, 0.5] [1, 2.5]

Box(3D)

Ray

tx(in)

ty(out) tx(out)

ty(in) x

y

Figure 8.10 Bounding box intersection
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The intersection of all three intervals is empty, so the ray misses the box and we

can eliminate the two triangles from consideration.

Notice that the values of some interval endpoints are negative. This is fine, but we

are considering a ray that begins at the camera and moves into the scene with positive

t values. In this example, negative values mean that the ray started in the middle of

a slab. ◽

Finding a goodOBB that is not axis-aligned is a little trickier. It depends on finding

a good orthonormal coordinate system and then finding an axis-aligned box in the new

system. A transformation that changes coordinates turns the OBB into an AABB. The

technique for determining whether the ray intersects the box works the same in either

coordinate system. We find intervals when t is inside each slab and then check for a

nonzero intersection. The real problem with an OBB is finding a good set of axes,

and one way is detailed in Section 8.5.

8.4.3 Bounding Spheres

Again, the goal is to find a sphere as small as possible that contains the objects we

are trying to group together. One good algorithm looks at the set of vertices for all the

objects and finds the six vertices with minimum andmaximum x, y, and z coordinates,
respectively. Then determine which pair of the six has the largest distance between

them. Take a sphere centered at the midpoint between the two vertices with radius

equal to half the distance between them. Let C be the center of the sphere and r be

its radius (Figure 8.11).

This sphere may not contain all the vertices. If not, pick a vertex P outside the

sphere. The line through P and C intersects the sphere in two points. Let Q be the

intersection between P and C. Update to a new sphere by finding a new radius r′ and
a new center C′.

D = |P − C| Q = C + r
(P − C)

D

r′ = r + D
2

C′ = C + 1

2
(P − Q) (8.10)

C

PQ
C′

Figure 8.11 Bounding sphere
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The sphere is adjusted slightly by increasing the radius and moving the center, so

the new sphere contains P and the entire original sphere. This procedure is repeated

by selecting vertices outside the updated sphere. Usually, a few passes through the

loop will suffice to include all points.

Example 8.7 (Building Spheres). Suppose that the objects in a region have many

vertices but the two that have maximum or minimum components in their coordinates

and are the greatest distance apart are (1, 0,−4) and (2.3, 0,−5). The midpoint is the

center of the sphere.

C = (1.65, 0,−4.5) r = 0.65

One more point P = (1.5, 1,−4.5) is outside the initial sphere because the distance
D = |P − C| = 1.02 > r. To adjust the sphere, first calculate Q.

Q = (1.65, 0,−4.5) + 0.65

1.02
(−0.15, 1, 0) ≈ (1.55, 0.64,−4.5)

Finally, we can calculate the updated sphere.

r′ = 1

2
(0.65 + 1.02) ≈ 0.84

C′ = (1.65, 0,−4.5) + 1

2
(−0.05, 0.36, 0) ≈ (1.63, 0.18,−4.5)

Assuming this is the final sphere, suppose we use the same ray as in the previous

example, t𝑣, where 𝑣 = (−1,−2,−4). We need to find the distance between the sphere

and the line containing the ray. If the distance is less than the radius r′ = 0.84, then the

ray intersects the sphere. We do not actually have to find the intersection, because it is

sufficient at this stage to discover whether there is an intersection. If the ray intersects

the sphere, then we must check intersections with each object in the sphere.

To find the distance between the line and the sphere, note that (0, 0, 0) is the initial
point of the ray. Vector a⃗ = (C′ − (0, 0, 0)) = (1.63, 0.18,−4.5) is projected onto 𝑣.

The projection is one leg of a right triangle, while a⃗ forms the hypotenuse. We are

looking for the length d of the second leg.

d2 = |a⃗|2 − (
a⃗ ⋅ 𝑣|𝑣|

)2

= 22.94 − 16.01 = 6.93

Hence, d ≈ 2.63, and the distance is greater than the radius of the sphere. We

conclude that we can avoid checking objects in the sphere for ray intersections. ◽

Other bounding volumes can be useful, but clearly the simplicity and symmetry

of spheres and bounding boxes help the calculations. Usually, the bounding volumes

can be precalculated and used throughout ray-tracing procedures.
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8.5 COMPLEMENTS AND DETAILS

8.5.1 Frustum Planes

In Section 8.2.1, we clipped a line segment that was only partially inside the view

frustum. To do that, we can work in homogeneous coordinates, in normalized device

coordinates, or in the original three-dimensional coordinates. In any case, we need the

normals to the bounding planes in order to apply vector techniques to find the inter-

section between a point and a line. Characteristics of the perspective transformation

matrix lead to useful relationships between normals before and after the perspective

transformation is applied.

In normalized coordinates, after the perspective transformation, the view frustum

is a cube centered at the origin with edge length 2. The top bounding plane, for

example, has the equation y = 1, with the normal (0,−1, 0) pointing into the cube.

Remembering that the homogeneous representation of a plane ax + by + cz + d = 0

is (a, b, c, d), the top bounding plane for the cube has homogeneous representation

(0,−1, 0, 1). This vector is normal to any homogeneous point on the plane.

The perspective transform is given by the homogeneous matrix Mper and con-

verts camera coordinates to normalized coordinates. The version of Mper given in

this chapter has nonzero determinant, and so an inverse, M−1
per, exists. The inverse

converts normalized coordinates back to camera coordinates.

From our earlier study of transformations, if matrix M transforms an object, then

(M−1)T transforms the normals. Since M−1
per transforms the cube in normalized coor-

dinates, the transpose, MT
per, will transform the normals correctly. Using the per-

spective transform in Example 8.1, we can transform the top bounding plane for

the cube (which is a normal) to the top bounding plane for the frustum in camera

coordinates.

MT
per

⎡⎢⎢⎢⎣
0

−1
0

1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

8

5
0 0 0

0 8

3
0 0

0 0 − 7

3
−1

0 0 − 40

3
0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0

−1
0

1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣

0

− 8

3

−1
0

⎤⎥⎥⎥⎥⎥⎦
The resulting plane is − 8

3
y − z = 0, and this is the top bounding plane of the view-

ing frustum in camera coordinates.

Since the transpose of a matrix just replaces the columns with rows, we can give

formulas for the various bounding planes by referencing rows in the perspective

matrix Mper. Multiplying the transpose times (0,−1, 0, 1) just takes −1 times the sec-

ond row of Mper and adds the fourth row. All of the bounding planes in normalized

coordinates are represented as vectors with 1’s, −1’s, or 0’s, so we can give sim-

ple formulas for the bounding planes in camera coordinates. Use the notation Mi to

indicate the ith row in Mper where 0 ≤ i ≤ 3 (Table 8.3):
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TABLE 8.3 Bounding Planes (Homogeneous
Coordinates)

Normalized Camera

Near (0, 0, 1, 1) M2 + M3

Far (0, 0,−1, 1) −M2 + M3

Top (0,−1, 0, 1) −M1 + M3

Bottom (0, 1, 0, 1) M1 + M3

Left (1, 0, 0, 1) M0 + M3

Right (−1, 0, 0, 1) −M0 + M3

8.5.2 Axes for Bounding Volumes

The purpose of a bounding volume is to allow a single test to possibly eliminate a

group of objects from further consideration. If the bounding volume does not overlap

the view frustum, nothing inside it can be visible. If a ray does not intersect the vol-

ume, then it cannot strike any object inside and the ray tracer can move on to other

objects. A larger volume potentially contains more objects and is therefore desir-

able, but if it does not “fit” the objects very well, then the larger volume is a liability

because a ray, for example, may well intersect it without intersecting anything inside.

So constructing bounding volumes is an exercise in trying to match the shape of a set

of vertices (from all the objects in a group) as efficiently as possible.

Usually, we are looking for three-dimensional volumes, but the ideas behind find-

ing good orientations for the volumes can more easily be visualized in two dimen-

sions. Figure 8.12 shows a small set of two-dimensional vertices along with an AABB

and an OBB. The difference is that the OBB matches the shape of the vertices a little

better than the AABB. An axis that represents the direction of the vertices looks like

a good choice for a bounding box axis. We might also argue that such an axis could

be used as a diameter in a bounding sphere. In fact, finding an axis that is a good fit

for the data goes a long way in orienting an efficient bounding box.

AABB

OBBx

y

Figure 8.12 Dispersion of vertices
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Actually, the problem of fitting an axis to data comes directly from statistics,

where the resulting techniques are called principal component analysis. The follow-
ing example shows how linear algebra can help find the best axis for the vertex data.

Example 8.8 (Finding the Best Axes). Start with the following set of vertices (the

coordinates are all integers to help with visualization and calculation).

V0 = (1, 2) V5 = (5, 4)

V1 = (2, 1) V6 = (6, 1)

V2 = (3, 3) V7 = (7, 3)

V3 = (4, 2) ◽

The average x coordinate is 4, and the average y coordinate is 2.29. The point

M = (4, 2.29) is marked in Figure 8.13 and serves as the origin of a new coordinate

system (dotted lines). In that new system, the average of the new x coordinates is

zero; similarly, the average of the new y coordinates is zero. There is a trend in the

vertices which can be described as a slope up to the right; larger x coordinates give

larger y coordinates.

To reframe this problem in terms of matrices, first form a (7 × 2) matrix V with all

the vertices in the new coordinates (e.g., (1, 2) becomes (−3,−0.29)).

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 −0.29
−2 −1.29
−1 0.71

0 −0.29
1 1.71

2 −1.29
3 0.71

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M

x

y

Figure 8.13 Example vertices
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Then the 2 × 2 matrix VT V contains diagonal entries
∑6

i=0 x2i and
∑6

i=0 y2i .

VT V =
[
28 4

4 7.43

]
The matrix is symmetric, and the two off diagonal entries are both

∑6
i=0 xiyi = 4.

If we divide this value by one less than the number of vertices, we get 4∕6 ≈ 0.67.

This is what statisticians call the covariance. A positive covariance indicates that, as

one variable increases, so does the other. For an axis that matches the trend in the

vertices, the covariance of the new coordinates (relative to the axis) would be closer

to zero. The key idea now is to find a rotation of the dotted axes in the figure that will

place an axis right along the trend of the vertices.

In the study of linear algebra, matrices can have special vectors called eigenvec-
tors. For a matrix A, the vector x⃗ is an eigenvector if Ax⃗ = 𝜆x⃗ for some constant 𝜆

called an eigenvalue. There are standard routines for finding the eigenvectors, and

it turns out that the eigenvectors for VTV are good axes for a bounding volume, in

particular a bounding box.

𝑣1 = (0.98, 0.18) 𝑣2 = (−0.18, 0.98)

Vector 𝑣1 matches the trend well and is the major axis (or first principal component).

The second vector 𝑣2 is perpendicular to the first and marks the second dimension in

the bounding box.

To rotate the dotted axes into these new positions, use the matrix formed by putting

the eigenvalues in the columns.

P =
[
0.98 −0.18
0.18 0.98

]
Rotating the axis in one direction means that the vertices are rotated in the opposite

direction.P is an orthogonal matrix so its inverse isPT . Because of thewaywe stacked

the vertices in V , the new rotated coordinates are given by PT VT . Call the rotated

coordinate matrix W.

WT = PTVT =⇒ W = VP (8.11)

The new covariance between the two rotated coordinates is

WT W = PT VTVP =
[
28.75 0

0 6.68

]
Now the covariance (off-diagonal value) is zero. This just verifies that the vectors 𝑣1
and 𝑣2 were chosen to minimize the covariance, and this property makes them good

choices for bounding volumes.
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8.6 EXERCISES

1. Position the camera at the origin and place the near and far planes at zn = −5
and zf = −12. With the view window of width 8 and height 5 centered on the

z-axis, find the inward pointing normals for each bounding plane of the view

frustum.

2. Construct the appropriate perspective transformation matrix for the setup in

Exercise 1.

3. The perspective transformation sends camera space coordinates to normalized

device coordinates. Determine where the camera space z coordinates which are
between the near plane and the camera are sent. Also determine where z coor-
dinates beyond the far plane and those behind the camera are sent. Which z
coordinates are sent to the interval [0, 1]?

4. If in the perspective matrix we used the actual distance to the near and far planes

rather than zn and zf , how would the matrix change?

5. Using the setup in Exercise 1, project the points P1 = (−4, 2,−6) and P2 =
(9,−1,−8) onto the view plane. Find the normalized device coordinates. If

clipping of the edge between the points needs to be done, find the point of

intersection with the appropriate bounding plane.

6. In Example 8.1, use the normalized device coordinates to clip the line segment

and verify that the answer is consistent with the other two methods used.

7. In Example 8.4, verify that the normals for the bounding planes are correct.

8. If two endpoints are both outside the view frustum, the line segment may be

totally outside the frustum or it may need to be clipped. Develop an algorithm

for determining the correct case.

9. Show that, if Ph
1

and Ph
2

are homogeneous points representing the

three-dimensional points P1 and P2, the point aPh
1
+ bPh

2
is on the line

determined by P1 and P2. If a = b, is the point at the midpoint of the line

segment P1P2?

10. With the setup in Exercise 1, a line with endpoints (−3, 1,−6) and (1,−1,−9)
is projected onto the view plane. If the first point is blue with intensity 0.8 and

second is blue with intensity 0.1 and if color is interpolated linearly across the

segment, what is the color of the pixel at the midpoint of the segment on the

view plane?

11. A unit cube is centered at the origin with sides parallel to the coordinate planes.

The camera is at position (10,−9, 4). Determine which faces are back faces.

12. What is the least depth of a BSP tree with 1000 triangles? How many planes

have to be tested to see what side the camera is on before ordering the triangles?
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13. In the method presented for determining whether a ray intersects a bounding

box (Section 8.4.2), let tmin be the maximum of tx(in), ty(in), and tz(in). Let tmax

be the minimum of tx(out), ty(out), and tz(out). Show that the ray intersects the

box if and only if tmin ≤ tmax.

14. An AABB is bounded by the xz plane and the planes y = 2, x = 1, x = 3, z = 0,

z = 4. A ray originates at (10, 12, 7) with direction vector (−2,−2,−1). Use the
method in Section 8.4.1 to determine whether the ray intersects the box.

8.6.1 Programming Exercises

1. Write a program that inputs a list of three-dimensional points and use the

method given in Section 8.4.3 to find a bounding sphere. Optionally, display

the projections of the sphere and points on each of the three coordinate planes.
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LIGHTING

Lighting is complex. Physics explains the fundamental properties, but in a scene there
are many reflections, refractions, diffractions, and absorptions taking place every-
where, and it is this complicated set of interactions that gives us the visual experience.

Of course, there are various levels of realism we can aim for in rendering a given
scene. Wireframe images, where we only draw the outlines of triangles, can give a
rudimentary sense of the scene, but coloring the interiors of the triangles at least with
single colors can begin to flesh it out. Simple shadows and elementary shading are
enough to give a three-dimensional cast to a scene, but even animated films demand
much more on the realism front.

To approach the photo-realistic look, we need to add shading from various light
sources, shadows overlapping each other, and the subtleties of reflections from var-
ious surface materials. The details of these interactions remain an area of research,
but more and more sophisticated lighting models can ensure that brushed aluminum
furniture in a scene looks decidedly different from plastic furniture. With some care,
we can approximate the fundamentals of light interactions to develop lighting models
that give satisfyingly good results.

9.1 COLOR COORDINATES

Cartesian coordinates are ideal for locating pixels on the screen, but in addition to
a location, pixels have a color, and unlike location, color really depends on an indi-
vidual’s perception. Light is electromagnetic radiation, and the mix of wavelengths

Mathematical Structures for Computer Graphics, First Edition. Steven J. Janke.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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determines the color we perceive. General waveforms are difficult to characterize,

and although we can define the color red as a light wave with wavelength 700 nm, the

red in a rose petal is the result of a far more complicated waveform. The entire set

of waveforms that humans perceive as various colors is ambiguous and indeed dif-

fers from person to person. Experiments with many people have resulted in a decent

map of all the colors humans can perceive, but the set does not have much obvious

symmetry, so designing a coordinate system to locate colors is difficult. Work by the

Commission Internationale de L’Éclairage (CIE) has established some reasonable

standards to ground coordinate systems in order to ensure that colors can be repro-

duced reliably.

RGB Color Space One obvious way to designate colors is to take a cue from the

computer monitor itself. The technology is based on three primary colors (red, green,

blue), and specifying the intensity of each component gives a color on the screen.

Using a scale from zero to one, a color is then a triple of values (r, g, b) where each
component falls between 0 and 1. This is the RGB color space, and because of the

three components we can visualize it as a cube (Figure 9.1).

The color (0, 0, 0) is black, and the color (1, 1, 1) is white. Interpreting coordinates
as a color is tricky, but at least we know that (1, 0.3, 0) is made up of red with a little

green, and the fact that one component is at the maximum value 1 means the color is

fairly bright. All colors along the cube’s diagonal from (0, 0, 0) to (1, 1, 1), are shades
of gray from black to white.

To store colors, three bytes can be used, with each byte holding a value for a

single component. Since a byte can hold 256 different values, instead of a scale from

0 to 1 for a component, often programming languages allow a scale from 0 to 255.

Consequently, with three bytes (or 24 bits) we can store 256 × 256 × 256 different

colors. This does not cover all possible colors humans can perceive and it is not always

the case that humans can distinguish the difference between two colors produced by

this system.

The minute we set up three coordinates and call our space a cube, we tend to

think of the geometric distance between points. Yet distance between colors is another

Green

Blue

White

Black

Red

Gray

(1,0,1)
(0,1,1)

(1,1,0)

Figure 9.1 RGB color space
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matter entirely. Distance along the diagonal does indicate brightness, but otherwise
it is difficult to tell what we are measuring. Nevertheless, we often set about linearly

interpolating between colors to fill in the shading of an object. The nonlinearities in
our perception and in the display electronics will undoubtedly affect how we see the

final image.

HSV Color Space One awkward problem with the RGB color space is that it does
not often match our intuitive idea of color. How do we change the three components
to make a color brighter or a little more orange? It is more convenient to describe

colors by, for example, attributes like tint and brightness. One set of useful attributes
suggested by Alvy Ray Smith in 1978 includes hue (H), saturation (S), and value

(V) as the key attributes. Hue measures the dominant wavelength of the color (red,
orange, yellow, green, etc.), saturation determines how dominant the hue is, and value
specifies how bright the color is. Again, we have three components now forming the

HSV color space.
With three components, we do have a three-dimensional space of colors, but to

align it with our perception, imagine looking at the RGB cube from the point (1, 1, 1)
down the diagonal toward (0, 0, 0). Some (but not all) cross sections of the cube from
this direction look like hexagons. This suggests arranging colors in what we might

call a hexcone, a cone emanating from (0, 0, 0) with hexagonal cross sections; this is
the HSV color space. The axis down the middle of the cone goes from the origin up

to the hexagonal end and again represents shades of gray from black up to white; it
coincides with the diagonal in the RGB cube. To specify a color in this hexcone, start
with the distance up the axis which is brightness; this is the value component V and

is a number between 0 and 1 (Figure 9.2).
Next take the hexagonal cross section which is perpendicular to the axis. This

cross section is smaller near the origin than it is at the maximum distance along the

Hue
Saturation

Value

(0,0,0)

White

Black

Red

Green

Blue

Figure 9.2 HSV color space
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TABLE 9.1 Examples of RGB and HSV Coordinates

Color RGB HSV

Bright red (1, 0, 0) (0, 1, 1)
Muted red (1, 0, 0) (0, 1, 0.6)
Washed red (1, 0, 0) (0, 0.5, 1)
Yellow (1, 1, 0) (60, 1, 1)
Cyan (0, 1, 1) (180, 1, 1)
Blue (0, 0, 1) (240, 1, 1)
Blue tinted red (0.3, 0, 1) (258, 1, 1)

axis (V = 1). The hue is the angle around the axis in the hexagonal cross section;

its value ranges from 0∘ to 360∘. We agree that 0∘ coincides with a vertex of the

hexagon that corresponds to red. Angles are measured in the counterclockwise direc-

tion and the vertices of the hexagon in counterclockwise order correspond to red,

yellow, green, cyan, blue, and magenta. Finally, saturation is the distance from the

axis and is measured on a scale from 0 to 1. On the axis, saturation is 0 and we have

a shade of gray; at the boundary of the hexagon, saturation is 1 and we have a pure

color. The three components, namely hue, saturation, and value, form the coordinates

(H, S,V) of a color in the HSV coordinate system (Table 9.1).

The HSV hexcone is just another way to organize colors. It is not geometrically

equivalent to the RGB cube; rather it is a distortion of the cube. Since colors are

perceptual concepts, they do not adhere to a strict geometry, and the distance between

colors is most often meaningless. Nevertheless, proportional distances often can

prove useful in shading an object and do offer a way to convert between the RGB

and HSV systems (see Section 9.5 for details).

The HSV color space offers a more intuitive approach to choosing colors, but

it is not perfect. For example, the saturation and value components are not really

independent; changing saturation can affect our perception of the value. Yet, both

the RGB and HSV systems have proved themselves very useful, and there are other

systems tailored for specific purposes (like controlling printers) that also serve to

approximate the human perception of color.

The Alpha Component One more attribute (also introduced by Alvy Ray Smith)

affects the way a pixel’s color is displayed on the screen. Traditionally, a fourth color

component called alpha (𝛼) is included to specify pixel transparency; in the RGB

color space we now have the coordinates (r, g, b, 𝛼). Again, the scale is from 0 to 1 and

now the value determines whether the pixel is entirely transparent (𝛼 = 0), entirely

opaque (𝛼 = 1), or something in between. To render fog, for example, we need to

account for the fog’s color and the colored objects we can see through the fog. If

a pixel has color (r0, g0, b0) and the color of fog is (rf , gf , bf ), then using 𝛼 for fog

allows a combination of the two colors.

(r, g, b) = 𝛼(rf , gf , bf ) + (1 − 𝛼)(r0, g0, b0) (9.1)
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This is an affine combination of the two colors and is just one way the alpha value can

be used to compose two images. When 𝛼 = 1, the underlying image is covered up and

we see only the fog’s color. We can go one step further and compose several images

by either repeating the affine combination approach or trying some other operation

based on combining alpha values (see Chapter 10 for more details).

9.2 ELEMENTARY LIGHTING MODELS

Both the shape and the color of an object are important in properly rendering the

scene. Of course, the shape depends on the geometry, but the color depends on a large

number of factors including the often complicated interaction of light with various

materials. A totally realistic analysis of color requires the deeper results in the physics

of light and materials, but a useful strategy for approximating lighting effects is to try

simple light models first and then to increase their complexity if necessary until the

screen images are satisfactory. There will always be a balance between realism and

the speed of rendering.

A good elementary model starts by considering light traveling in rays. Of course,

this is a simplification, albeit a reasonable one, of the modern understanding of light

as photons that act both like particles and waves. The rays can be thought of as tracing

points on an expanding wavefront. Very early on, Euclid postulated that light traveled

in straight lines and he proceeded to develop the geometry of reflection. He, however,

was skeptical of a prevailing theory that light rays emanated from the eyes and trav-

eled to the object rather than reflecting off of objects and traveling to the eyes. It is

often convenient in graphics to consider light rays as traveling in either direction,

either to or from the eyes.

There can be several light sources in a scene, and the elementary model assumes

that each source is a point emitting light in all directions. If the point source is far

away from the center of the scene, then the light rays from the source are nearly

parallel. During daylight hours, the light in a room comes from all the windows and

can be reflected many times before illuminating a given object. To account for this

more general lighting, the elementary model assumes that there is also ambient light,
which has no source location.

As light strikes a surface, some of it is absorbed, some is reflected, and, if the

surface is transparent, some is transmitted. In elementary models, we concentrate on

the reflected light, disregard secondary reflections, and assume there are two cases.

First, the light could be reflected in all directions equally. This is diffuse reflection and
the argument is that small imperfections in the surface material reflect light in a wide

range of directions. In the second case, the surface is sufficiently smooth and reflective

to cause light from a point source to reflect predominantly in one direction; from

that direction, the object appears to have a bright area called a specular reflection.
Putting the various forms of reflection together, we have the following formula for

the intensity (I) of light at any pixel.

I = Iambient + Idiffuse + Ispecular (9.2)
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Intensity refers to how bright the light is, and in a very elementary model we could
consider only white light. On a display using red, green, and blue light to form colors,
we can also consider the intensity of each primary color in turn. A blue colored sur-
face, for example, would reflect more blue light than red or green light. The intensity
equation is replicated three times, once each for red, green, and blue. Usually, the
intensity scale for each color (often 0–1) is linear in the elementary model, although
we know the eye does not respond equally to all intensities of all colors.

Ambient Light The ambient light in the model is considered constant, say Ia, but
some surfaces are more highly reflective than others, so introducing a coefficient ka
allows the ambient light to be adjusted for individual surfaces. The contribution from
ambient light is then kaIa.

Diffuse Reflection For diffuse reflection, the surface is assumed to reflect light in
all directions equally; such surfaces are often called Lambertian, after the eighteenth
century mathematician and physicist Johann Lambert who studied reflected light.

From a point on the surface, there is a normal vector n⃗ and a vector L⃗ to a point
light source. The light rays hitting the surface close to the point are nearly parallel to

L⃗. Using the angle 𝜃 between n⃗ and L⃗, the cross section E of a beam of light strikes the
surface in an area proportional to the cosine of 𝜃. This argues that the intensity of the

reflected light is reduced according to how far the vector L⃗ is from being perpendicular
to the surface. Light perpendicular to the surface will appear brighter than that at a
low angle. More precisely, the intensity of the reflected light is proportional to cos 𝜃

or, equivalently, proportional to the dot product of n⃗ and L⃗. This is Lambert’s law of
reflection (Figure 9.3).

The diffuse component in the model is kdId(n⃗ ⋅ L⃗), where kd is another coefficient
controlling for the properties of the surface, the vectors are unit vectors, and Id is the
intensity of the point source. However, intensity of the point source decreases as the
source is moved farther away; in fact, it falls off as the square of the distance. We
could replace Id with Id∕D2, where D is the distance to the light. In practice, this is a
slight problem because when D is rather small, the intensity becomes quite large. To
mediate this, D2 is often replaced with a2D2 + a1D + a0, where the ai’s are constants.

Light

Surface

Reflected light

n
L

θ

E

E cos(θ)

Figure 9.3 Diffuse reflection
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Light

Surface

Camera
n

L R

w
V

θ θ

Figure 9.4 Reflected ray

Specular Reflection Specular reflection results when the light source is actu-

ally reflected toward the viewer and not just reflected in all directions equally.
Consequently, two rays are key: the reflected light ray, and the ray to the camera.

The closer these are, the more the specular reflection we see in the object. The ray to

the camera is easy to find, but the reflected ray requires a little geometric analysis.

Since L⃗ points toward the light source, the vector −L⃗ is the incoming ray and the

corresponding reflected ray is R⃗. Both the vectors n⃗ and L⃗ can be taken to be unit

vectors. In Figure 9.4, n⃗ is the normal vector to the surface, and because of the way

light reflects (angle of incidence equals angle of reflection), the angles between n⃗
and each of L⃗ and R⃗ are equal.

Vector �⃗� is the projection of L⃗ onto n⃗, so �⃗� = (n⃗ ⋅ L⃗)n⃗. Because of the symmetry

of the vector positions, R⃗ − �⃗� = �⃗� − L⃗. Rearranging gives a formula for the reflected

ray.

R⃗ = 2�⃗� − L⃗ = 2(n⃗ ⋅ L⃗)n⃗ − L⃗ (9.3)

From the figure, it is also apparent that the lengths of R⃗ and L⃗ are equal, and since L⃗
is a unit vector, so is R⃗.

For the intensity of the specular reflection, we take the cosine of the angle between

the unit vector V⃗ from the surface point to the camera and the reflected vector R⃗. Some

surfaces are shinier than others, and with mirror-like surfaces the specular reflection

can only be seen if the camera’s angle with the reflected ray is small. This is incor-

porated into the expression for the specular intensity by introducing a power (p) of
the cosine. The expression for specular intensity is then ksIs(R⃗ ⋅ V⃗)p. The coefficient
ks regulates the fraction of light the surface reflects, and the exponent p determines

how much is reflected at various viewing angles. For a very shiny surface, p is large,

meaning that (cos 𝜃)p is close to 1 only for angles very close to zero. Only for camera

positions in a small cone is the specular reflection very intense.

The final light intensity formula combines the ambient, diffuse, and specular com-

ponents.

Elementary Model: I = kaIa + kdId(n⃗ ⋅ L⃗) + ksIs(R⃗ ⋅ V⃗)p (9.4)

Example 9.1 (Intensity Calculation). The elementary model applies to objects in

camera space because the relations between camera, light sources, and triangles



306 LIGHTING

are key. As usual, the camera is placed at the origin looking down the z-axis at a
triangle. The triangle’s vertices are

V0 = (1, 1,−6)

V1 = (2,−1,−8)

V2 = (−1, 0.5,−5)

There should be an order to the vertices so that we can determine how to calculate the

normal coming out of the object. In this example, the order is clockwise, so we take
(V2 − V0) × (V1 − V0) and normalize to find the unit normal n⃗ = (0.49,−0.49, 0.73).
(We will round off calculations and expect some error to creep in.)

Next, focus on a point P in the interior of the triangle. Suppose the barycentric
coordinates for P are (0.5, 0.4, 0.1). Then the Cartesian coordinates will be

P = 0.5V0 + 0.4V1 + 0.1V2 = (1.2, 0.15,−6.7)

The camera is positioned at the origin, so the vector from P to the camera is

(−1.2,−0.15, 6.7), and normalizing gives the vector V⃗ = (−0.18,−0.02, 0.98). Since
n⃗ ⋅ V⃗ = 0.64 > 0, the triangle is visible (assuming no other objects are in front of it)

and the normal we found is pointing in the general direction of the camera.

Now position a point light source at Ps = (9, 4, 2), which is behind the camera,
up a little, and to the left. The vector Ps − P will point from P on the triangle to

the light source. Normalizing gives the unit vector L⃗ = (0.63, 0.31, 0.71). Calculating
n⃗ ⋅ L⃗ = 0.68 gives us the main factor in the diffuse reflection. To find the reflected ray,

we use the formula derived above.

R⃗ = 2(n⃗ ⋅ L⃗)n⃗ − L⃗

≈ 2(0.68)(0.49,−0.49, 0.73) − (0.63, 0.31, 0.71)

≈ (0.03,−0.97, 0.28)

The dot product with the vector to the camera gives R⃗ ⋅ V⃗ = 0.29. If the surface is
not very reflective, then the specular reflection is spread out a bit and we might argue

for p = 2 in the illumination equation. Then the specular component is proportional

to (0.29)2. The illumination for the point P is now given by I = kaIa + kdId(0.68) +
ksIs(0.29)2.

At this stage, we need to set the intensities and coefficients. The total intensity I
depends on the scale we are using and probably differs between the wavelengths of

light. In this example, suppose the scene is lit with white light and that all reflections
are shades of gray. Let the color of the light range from 0 (black) to 1.0 (white); in

the RGB color model, we are taking all three components to be equal.

The intensity I should have a maximum value of 1.0 and a minimum value of 0.
It also makes some sense to interpret the coefficients ka, kd, and ks as fractions of the

light that is reflected in each mode. This implies that Ia + Id + Is is at most 1.0 and at



ELEMENTARY LIGHTING MODELS 307

least 0. All three intensities are interrelated because a light source contributes to all

three. However, practically, the ambient light is somewhat independent of the others

and the point source light is divided between the diffuse and specular reflections.

There are several reasonable ways to set these intensities.

Suppose we let Ia = 0.3, Id = 0.4, and Is = 0.3. If the triangle is made of material

that is not very reflective and does have a roughness that encourages diffuse reflec-

tion, then perhaps ka = 0.7, kd = 0.8, and ks = 0.5. The final intensity for P is the

combination of the three reflective components.

I = I = (0.7)(0.3) + (0.8)(0.4)(0.67) + (0.5)(0.5)(0.30)2 = 0.45

The lighting model we applied here is a rough approximation to the actual complex

interaction between light and the scene. Most likely, further adjustment of the inten-

sities and coefficients will be necessary to reach a satisfactory image. ◽

The elementary model we have just outlined came out of Bui Tuong Phong’s Ph.D.

work published in 1975 [7] and is commonly referred to as the Phong lighting model.
Note that, if there are several light sources in the scene, the intensity can be summed

over all sources. If they are widely scattered light sources, then we may include atten-

uation due to distance by dividing by D∗ = a2D2 + a1D + a0, where D is the distance

to the light source.

I = kaIa +
n∑

i=1
(k(d,i)I(d,i)(n⃗ ⋅ L⃗) + k(s,i)I(s,i)(R⃗ ⋅ V⃗)pi )

(
1

D∗
i

)
(9.5)

Since the coefficients and intensities are dependent on the wavelength of the light,

we should repeat the intensity calculation for each primary color (red, green, blue)

and combine the results to determine the shade of each point.

One of the several improvements that can be made to the model is to include dif-

ferent sorts of light sources like spot lights and non-point sources. At some point, the

computational tradeoffs take too great a toll. Clearly, approximations and assump-

tions limit the accuracy of the elementary model, but the results are often quite satis-

factory and the computation time is bearable.

9.2.1 Gouraud and Phong Shading

Drawing on the elementary model to determine the shading of an object made from

flat triangular faces results in what is called flat shading. On a triangle, the normal

vector is constant, and if the light source is relatively distant or the triangle is small,

the vector L⃗ is nearly the same for every point on the triangle. Similarly, V⃗ is also

nearly constant across the triangle (unless the camera is very close). Ambient, diffuse,

and specular intensities are then fairly similar on a single triangular face, and the

resulting flat shading accentuates edges between faces.

Intensities change abruptly from one triangle to an adjacent one because the nor-

mal usually changes abruptly. This might be fine for lighting a cube where each face
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is starkly different under a single light, but it is not fine for lighting a gently curved car
body where it should not appear to be made of individual flat triangles. The problem
is twofold. The flat triangles only approximate the surface, and the elementary model
does not include more complex light interactions that might serve to soften edges in
some cases.

One key idea to resolving this problem is to use interpolation to determine shading
rather than relying on the fixed normal to a triangular face. Rather than using the
normal for the plane containing the triangle, a normal is calculated at each vertex to
better approximate the larger surface made of many triangles. If we actually knew
the equation of the curved surface of an object, we could calculate the true normal
at any point using calculus. Instead, with a large number of triangles approximating
the curved surface, several triangles meet at a vertex. At that vertex, a reasonable
approximation to a normal for the true curved surface is the average (component
by component) of the normals for each triangle meeting the vertex. In this way, an
averaged normal can be assigned to each vertex of a single triangle, and most likely
those three normals will not be equal.

Using the elementary light model, we apply the intensity formula to determine
the appropriate shade for each vertex. Then we interpolate to find the shading for
each interior point of the triangle. For example, if a point on the edge of a triangle
is P(t) = (1 − t)V0 + tV1, then the shade of this point is S(t) = (1 − t)S0 + tS1, where
S0 and S1 are the shades of V0 and V1. In general, barycentric coordinates serve to
interpolate the three vertices in order to shade any interior point. This technique was
first suggested by the French computer scientist Henri Gouraud and is referred to as
Gouraud shading. Instead of shading all points on a triangle nearly the same, it shades
as though the underlying surface was curved. It softens the edges between triangles,
but its simplicity causes other problems. An obvious one is that, because the shading
of points is interpolated, specular reflections cannot be accurately rendered across a
face. Only the values at the vertices are accurate, so the specular reflection tends to
be smeared on the face.

A second approach to this interpolation technique is to interpolate the normals
rather than the shade intensities. In other words, given the three normals at the vertices
of a triangle, we interpolate to find the normal at any arbitrary point in the triangle.
Then we revisit the intensity formula to find the appropriate shade for the point. This
type of interpolation was suggested by B.T. Phong and is called Phong shading. It
requires more computation, but does a better job of approximating specular reflec-

tions. Let N⃗0 and N⃗1 be normals calculated by averaging the normals around each of
the vertices V0 and V1. At the point P(t) = (1 − t)V0 + tV1, the interpolated normal is

(1 − t)N⃗0 + tN⃗1. Yet, this normal is not necessarily a unit normal, so dividing by the
length gives

N⃗(t) =
(1 − t)N⃗0 + tN⃗1|(1 − t)N⃗0 + tN⃗1|

The values N⃗(t) ⋅ L⃗ and N⃗(t) ⋅ V⃗ along with the intensity formula determine the shad-
ing for the interior point.
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Example 9.2 (Shading: Flat, Gouraud, Phong). Consider a triangle with the

following vertices:

V0 = (1,−2, 6)

V1 = (5, 2, 1)

V2 = (−1, 4, 0)

A light source is at position (10, 12, 8) and we are interested in shading the centroid

of the triangle.

P = 1

3
(V0 + V1 + V2) =

1

3
(5, 4, 7)

The unit vector from P to the light source is L⃗ = (0.57, 0.73, 0.39). Assume that the

vertices were given in counterclockwise order (looking from the outside of the object)

and therefore the normal to the triangle is (V1 − V0) × (V2 − V0) = (6, 34, 32). The
unit normal is then n⃗ = (0.13, 0.72, 0.68). For flat shading, the diffuse reflection com-

ponent (which depends on the dot product n⃗ ⋅ L⃗) is

I(F)diffuse = kdId(n⃗ ⋅ L⃗) = kdId(0.86)

The ambient and specular components can be calculated, but we will compare the

diffuse component among the three shading techniques.

Suppose that there are three triangles meeting at vertex V2 and the three normals

are

n⃗20 = n⃗ = (0.13, 0.72, 0.68)

n⃗21 = (0, 0.71, 0.71)

n⃗22 = (−0.70, 0.66, 0.27)

The average of the three normals is (−0.19, 0.70, 0.55). However, this vector does not
have unit length; the length of the average is always less than or equal to 1. Normal-

izing gives a unit normal n⃗2 = (−0.21, 0.77, 0.60). Suppose similar calculations are

done for the other two vertices in the triangle giving three unit normals. In addition,

the vectors L⃗i are vectors from the vertices to the light source.

n⃗0 = (−0.16,−0.31, 0.94) L⃗0 = (0.54, 0.84, 0.12)

n⃗1 = (0.89, 0.09,−0.45) L⃗1 = (0.38, 0.76, 0.53)

n⃗2 = (−0.21, 0.77, 0.60) L⃗2 = (0.70, 0.51, 0.51)
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The dot product of each normal with the vector to the light source gives the inten-
sity of the diffuse component at each vertex.

n⃗0 ⋅ L⃗0 = −0.23

n⃗1 ⋅ L⃗1 = 0.17

n⃗2 ⋅ L⃗2 = 0.55

For point P, the average of these three intensities gives the diffuse component, but
notice that the intensity at V0 is negative. Technically, this means that the vertex
should be colored (0, 0, 0), which is black. If we take it as intensity 0 and average, we
get the Gouraud shade.

I(G)diffuse = kdId(0.24)

For Phong shading, interpolating the normals at P and renormalizing gives the unit
normal n⃗P.

1

3
(n⃗0 + n⃗1 + n⃗2) = (0.17, 0.18, 0.36) =⇒ n⃗P = (0.39, 0.41, 0.82)

The dot product with L⃗ gives the diffuse component for the Phong model.

I(P)diffuse = kdId(0.84)

Keep in mind that both the Gouraud and Phong shading techniques are approxima-
tions to the actual light shading. To find normals at the vertices, we averaged face
normals component by component and, this may not be the best way to find a ver-
tex normal. It should approximate the ideal surface of the object, so it may be that a
weighted normal, for example, would be a better choice. ◽

To theoretically compare Gouraud and Phong interpolation techniques, focus on
the diffuse component of the lighting model and consider interpolation along an edge
between two vertices. For Gouraud shading, we interpolate shades Si.

SG(t) = (1 − t)S0 + tS1

= k((1 − t)(N⃗0 ⋅ L⃗) + t(N⃗1 ⋅ L⃗)) (9.6)

For Phong shading, the interpolation of the normals is followed by the dot product,
giving the following formula.

SP(t) = kN⃗(t) ⋅ L⃗ = k
((1 − t)N⃗0 + tN⃗1)|((1 − t)N⃗0 + tN⃗1)| ⋅ L

= k
((1 − t)(N⃗0 ⋅ L⃗) + t(N⃗1 ⋅ L⃗))|((1 − t)N⃗0 + tN⃗1)| (9.7)
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The denominator in the Phong case is less than 1. To see this, form a triangle with

vectors (1 − t)N⃗0 and tN⃗1. The normals are unit normal, so the sum of the lengths of

these two sides is 1. The length of the third side of the triangle is the Phong denomi-

nator; it must be less than or equal to 1.

SG

SP
= |((1 − t)N⃗0 + tN⃗1| ≤ 1 (9.8)

The Phong diffuse component will be brighter than the Gouraud component. The

ratio of the specular components does not simplify as nicely, but we can still tell that

the Phong shading is brighter in some areas.

Both these shading techniques can be applied before a perspective transformation

projects the object onto the screen. However, to possibly avoid unnecessary compu-

tations, we can wait until after the transformation. Referring to the object in camera

space helps us to find all the normals, and then we use the perspective-correct inter-

polation to get appropriate shades for pixels on the screen.

9.2.2 Shadows

Shadows are a little difficult. The central idea is simple: the rays from a light source

are obstructed, preventing them from illuminating some points in the scene. If the

line segment from point P in the scene back to the point light source L intersects an

object in between, then P is in the shadow and the intensity of light at P is diminished.

With several light sources in the scene and not all of them point sources, the problem

remains conceptually reasonable but practically a lot messier. If we further compli-

cate the situation by requiring fast calculations for real-time shadows, the problem

becomes very demanding (Figure 9.5).

Planar Shadows For some scenes, the shadow problem is tractable. Take the situa-

tion where a cube is positioned above a ground plane and a light source somewhere

Light

P
Shadow

Figure 9.5 Casting shadows
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higher than the cube casts a shadow of the cube on the ground. This is a straightfor-

ward case of projecting the vertices of the cube onto the ground plane; a perspective

transformation using the light source as the center of projection does the trick. Actu-

ally, the shadow is the convex hull of the projections of the eight vertices; we do not

need any vertices inside this silhouette. To this end, notice that basically we only need

to project vertices from faces (triangles) that are visible to the light source. By plac-

ing the camera at the light source position and using the visibility test we developed

before (dot product of normals with the vector to the camera), hidden triangles can be

ignored. Since the projected vertices we want are on the edge of the shadow, we only

need to project vertices from visible triangles that are adjacent to hidden triangles.

(Nonconvex objects become a little complicated.)

Example 9.3 (A Shadow on the Ground). Suppose we have a cube centered at the

origin in a local coordinate system. The vertices are (±1,±1,±1). Translate the local
coordinate system 4 units up (y direction), so the cube’s center has world coordi-

nates (0, 4, 0) and the ground plane is the xz plane from the world coordinate system.

Position a point light source in the world system at (−10, 8, 2).
A vector 𝑣 from the light course to the cube vertex (1, 5, 1) determines the direction

of the light ray, 𝑣 = (11,−3,−1). The ray is given by (−10, 8, 2) + t𝑣, and it hits the

ground plane when the y coordinate is zero to give the projected vertex V∗.

8 + t(−3) = 0 =⇒ t = 8

3
=⇒ V∗ ≈ (19.33, 0,−0.67)

More generally, with a light source at (Lx,Ly,Lz) and a vertex at (Vx,Vy,Vz), the
expression for V∗

x , the x coordinate for the projection, is easy to calculate because

the ground plane in this example has a simple description (y = 0).

t =
−Ly

Vy − Ly
=⇒ V∗

x = Lx + t(Vx − Lx) =
LxVy − LyVx

Vy − Ly

Using homogeneous coordinates gives a matrix Ms for the shadow projection:

Ms =

⎡⎢⎢⎢⎢⎢⎣

−Ly Lx 0 0

0 0 0 0

0 Lz −Ly 0

0 1 0 −Ly

⎤⎥⎥⎥⎥⎥⎦
=⇒ Ms =

⎡⎢⎢⎢⎢⎢⎣

−8 −10 0 0

0 0 0 0

0 2 −8 0

0 1 0 −8

⎤⎥⎥⎥⎥⎥⎦
The matrix sends the vertex (1, 5, 1, 1) in homogeneous coordinates to the point

(−58, 0, 2,−3), which verifies the original calculation.

We can test to see which faces are visible from the light source by checking the

dot product between normals to the faces and a vector to the light source. The vector

to the light source from vertex (−1, 5, 1) is �⃗� = (−9, 3, 1), and the dot products with

the face normals (0, 1, 0), (0, 0, 1), and (−1, 0, 0) are all positive, indicating visibility.
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The faces are naturally squares for the cube instead of triangles, but triangulating the

faces does not add vertices, so we can deal just with the square faces. Since vertex

(−1, 5, 1) is not adjacent to a hidden face and vertex (1, 3,−1) is itself hidden, these
two are not vertices of the shadow; all other vertices are.

Vertex Projection

(1, 5,−1) (19.33, 0,−6)
(1, 5, 1) (19.33, 0,−0.67)
(1, 3, 1) (7.6, 0, 0.4)
(−1, 5,−1) (14, 0,−6)
(−1, 3,−1) (4.4, 0,−2.8)
(−1, 3, 1) (4.4, 0, 0.4)

If we move the light source farther away from the cube, the rays are close to being

parallel. If we position the light at k(Lx,Ly,Lz), where k is a larger and larger positive
number, it moves away along the vector (Lx,Ly,Lz). The formula for Vx changes as

follows:

V∗
x =

(kLx)Vy − (kLy)Vx

Vy − kLy
=

(Lx)Vy − (Ly)Vx(Vy

k

)
− Ly

As k goes to infinity, the Vy term in the denominator goes to zero and the 1 in the

last row of the matrix Ms becomes zero. This is a parallel projection, where the light

source is infinitely far away and the rays are parallel. It is easy to check that the vertex

(1, 5, 1) is projected to (7.25, 0,−0.25) under this projection. ◽

The algorithm in this example shifted the camera to the light source, determined

visible faces, and then projected the appropriate vertices to the ground plane. The

ground plane was the xz plane in the example, but it could easily be an arbitrary

plane. We are using a projection, and the derivation in Chapter 8 using homogeneous

coordinates will work here as well (see Section 9.5 for details of projection on an

arbitrary plane).

Of course, there are complications. The object itself might obscure some of the

shadow as, for example, when the cube rests on the ground rather than hovering above.

It also happens that the shadow could be cast partially on the ground but continues

by wrapping up a side of a nearby building. Again, these are conceptually tractable

from the geometric point of view but practically are more involved.

Soft Shadows Notice that the simple shadow on a plane has a sharp edge. The

shadow edge is the edge of a polygon, and there is a sharp division between the
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Light

Object

Umbra

Penumbra Penumbra

Figure 9.6 Soft shadows

brighter illumination outside the polygon and the darker interior. This is unrealistic

and results from assuming that the light soueces are point sources. If the light has

an area, then rays of light emanate from several points rather than a single point.

Figure 9.6 shows that some of these rays may be obscured by an object while others

are not. This gives rise to two regions in the shadow, the penumbra and the umbra.

By picking several points on the light source and projecting vertices from these points,

it becomes clear that the umbra is dark and the penumbra has varying intensity. This

means the shadow edges will appear soft rather than hard and we call the result a soft
shadow.

Once again, all the reflections (and some diffraction) of the light are not incorpo-

rated in this approximation of how soft shadows are formed. We can calculate hard

shadows from a sampling of points in the light source and then superimpose them. The

resulting approximation gives a soft shadow, but the result is not always satisfactory,

so there needs to be various enhancements to this basic algorithm.

Shadow Maps Our approach to shadows has been geometric, seeking to find poly-

gons that approximate the shadow. Another, more often successful, approach sys-

tematically moves from point to point in the scene asking whether it is in the shadow

or not. One way to do this is to move the camera to the light source (as we did in

the geometric approach) and proceed to render the scene using something like the

painter’s algorithm. From the point of view of the light source, points in the scene

project onto the view plane, but the closest point (to the light source) is visible from

the light source and is therefore not in shadow. By saving the z coordinates of these
closest points, we build what is called a shadow map.

Once the camera is returned to its original position andwe start rendering the scene

on the display, we can check each point to see if it is visible in the shadow map. To do

this, transform the point’s z coordinate to the coordinate system used by the shadow

map and compare to the z coordinate of the map. If the current point is further from

the light source, then it is in the shadow and needs a diminished intensity. Otherwise,

it is rendered normally.
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Shadow Volumes Another technique starts with the observation that each triangle,

for example, when positioned in the path of a light source forms a volume behind

it in the shape of a truncated pyramid before it casts the shadow on the ground

plane. Any point in this volume is shaded by the triangle so the volume is a shadow
volume.

To determine the triangle’s shadow in the scene, points are checked to see if they

fall in the shadow volume. Relative to each light source in a scene, there are a series

of shadow volumes. To determine if a particular point is in one of them, we follow a

ray from the camera to the point in the scene, recording along the way whether we

entered or exited a shadow volume. If the ray both enters and exits a volume, then

the point is not in that particular shadow. There is a lot of computation here, but the

algorithm identifies overlapping shadows and can set the light intensity at points more

appropriately. This technique is well suited for the ray tracing algorithm which we

consider below.

9.2.3 BRDFs in Lighting Models

In the elementary lighting model, ambient light is an approximation for all the extra-

neous light that results from secondary reflections in the scene. It is an example of

what we will call global illumination. Diffuse reflection and specular reflections from
discrete light sources determine the local illumination. The assumption in the ele-

mentary model is that diffuse reflection is independent of direction; it is equal in

all directions. On the other hand, specular reflection is concentrated around a single

direction.

For a more general description of how surfaces might reflect light, we need to

explain how much light coming from some arbitrary direction reflects in any other

arbitrary direction. To say, as is done in the elementary model, that some light reflects

equally in all directions and some reflects close to a single direction is just one possi-

bility of how a surface might behave. Plastic surfaces behave differently from brushed

nickel which behaves differently from polished marble. Lighting models one step up

from the elementary model introduce a function first defined in 1977 [8] called the

bidirectional reflectance distribution function (or BRDF for short) which gives amore

detailed account of reflected light from a particular type of surface.

Let 𝑣i be the direction to the light source. This light strikes the surface and some

of it reflects in direction 𝑣o. (This is not necessarily a mirror reflection; 𝑣o can be

any direction.) The BRDF is a function denoted 𝜌r(𝑣i, 𝑣o), which gives the ratio of

the change in reflected light in direction 𝑣o to the change in incoming light from the

direction 𝑣i. If we know how intense the incoming light is from some direction, the

BRDF allows us to calculate the reflected light in any outgoing direction. Before

we can make complete sense of this, we need to be more careful about measuring

quantities of light.

Measuring Light As light is emitted from a source, it transfers energy, and measur-

ing this energy transfer is the key to measuring light. If we switch to the quantum

view of light, energy transfer is the number of photons passing through a particular
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volume of space in a particular unit of time. Since light travels in all directions from a

source much like the surface of an expanding sphere, a light beam in a given direction

expands from the source into a cone. Conversely, a detector gathers light arriving at

a surface from a particular direction by measuring energy transfer through the wide

end of a cone. To measure light in a given direction, we need to quantify the energy

transfer per unit time, adjust for the area of the source, and adjust for the solid angle

of the cone. Energy transfer per time is measured in watts, and solid angles are mea-

sured in steradians (Appendix A).Wemeasure light from a direction as radiance with
units of watts per square meter per steradian.

In the science of radiometry, there are several carefully defined quantities that

characterize light falling on a surface or reflected from it, but to focus on the aspects

important for graphics we will consider radiance either incoming from a light source

or outgoing from surface reflectance. As the incoming radiance changes, the outgoing

reflectance changes. The BRDF details the ratio of the changes for the directions 𝑣i
(incoming) and 𝑣o (reflected).

To analyze the light at a particular point P on a surface, place a hemisphere of

radius 1 over the surface centered at P. Then, any vector direction from which the

light strikes P or leaves P can be described by giving the spherical coordinates of the

intersection of the ray with the hemisphere. The spherical coordinates (1, 𝜃, 𝜙) are
sufficient to determine a direction by giving the angle around the normal and the angle

from the normal to the intersection. With this coordinate system, the BRDF becomes

a function of four angles, 𝜌r(𝜃i, 𝜙i, 𝜃o, 𝜙o), where the unit vector 𝑣i is determined by

the angles 𝜃i, 𝜙i and 𝑣o is determined by 𝜃o, 𝜙o.

Let Li(𝑣i) be the radiance of the incoming light from direction 𝑣i and let Lo(𝑣o) be
the radiance of light reflected from the surface in direction 𝑣o. The quantity Lo(𝑣o)
is the result of reflecting light coming from all possible directions, so Li(𝑣i) only
determines a change ΔLo(𝑣o) in the reflected light.

The radiance Li(𝑣i) of the incoming light passes through a small patch on the sur-

face of the imagined hemisphere before striking the surface (Figure 9.7). The patch

determines a solid angle emanating from P, and the measure of the solid angle is the

area of the patch (since the radius of the hemisphere is 1). We call the area of the

patch Δ𝜔 and adjust the total light coming in as Li(𝑣i)Δ𝜔i. Since this light arrives

at an angle 𝜙 with the normal, Lambert’s law claims that the light is spread out at P
and reduced by the cosine. Hence, the radiance falling at P from the direction 𝑣i is

Li(𝑣i) cos𝜙iΔ𝜔i.

n

ϕi

vi

P

Δw

Figure 9.7 Incoming light
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Definition 9.1 (BRDF). If Li(𝑣i) and Lo(𝑣o) are the incoming and reflected
radiances from directions 𝑣i and 𝑣o, respectively, then the BRDF is

𝜌r(𝑣i, 𝑣o) =
ΔLo(𝑣o)

Li(𝑣i)(n⃗ ⋅ 𝑣i)Δ𝜔i

(9.9)

To be completely careful about the BRDF, note that it is undoubtedly dependent on

the wavelength of light and may also vary with position on the surface. However, we

will take the practical stance that calculating the BRDF at representative red, green,

and blue wavelengths will be sufficient, and that it depends only on the material, not

on the surface position.

For the total radiance Lo reflected in direction (𝑣o), we add up the incoming contri-

butions from all the patches on the hemisphere. This means that we integrate Li over

the hemisphere. The small angle Δ𝜔 becomes the differential d𝜔 and we consider

this differential angle as a small rectangle on the hemisphere. Writing it in terms of

small changes in the two direction angles gives d𝜔i = sin𝜙id𝜙id𝜃i.

Lo(𝑣o) = ∫
2𝜋

0 ∫
𝜋
2

0

𝜌r(𝑣i, 𝑣o)Li(𝑣i)(n⃗ ⋅ 𝑣i) sin𝜑id𝜑id𝜃i (9.10)

With this integral, it is starting to look possible to compute the amount of light

reflected off a surface in a given direction. We need the BRDF of course, but research

groups have experimentally determined values for the function in many directions.

Properties of the BRDF There are a few properties inherent to the definition of the

BRDF (including Equation 9.10), but there also others that should be imposed in

order to ensure the BRDF satisfies the laws of physics.

1. Because of the cosine in the denominator of the BRDF, the value of the BRDF

may be greater than 1.

2. Owing to the solid angle Δ𝜔i in the denominator, the BRDF has units of recip-

rocal steradians.

3. Physically, it makes sense that, if we reverse the incoming and outgoing direc-

tions, we should have the same ratio of radiances. Consequently, reasonable

BRDF’s should satisfy

𝜌r(L⃗i, L⃗o) = 𝜌r(L⃗o, L⃗i)

The BRDF should be bidirectional.

4. The laws of physics require the conservation of energy, so the total incoming

radiance at a point should be greater than or equal to the total outgoing radiance

at a point. In other words, the integral over the hemisphere of Li(𝑣i) should be

greater than or equal to the integral over the hemisphere of Lo(𝑣o).
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Although Equation 9.10 may appear a little daunting, if the scene has a finite num-
ber of point sources or spot lights, the integral can be approximated by a sum over

the various light sources.

Lo(𝑣o) =
n∑

i=1
𝜌r(𝑣i, 𝑣o)Li(𝑣i)(n⃗ ⋅ 𝑣i)Δ𝜔i (9.11)

Here, Δ𝜔i may all be the same or may need to be adjusted for an appropriate balance

between types of light sources. The light value we use to shade a pixel on the screen
should be proportional to the radiance Lo(𝑣o).

BRDF Examples We can temporarily rethink the elementary lighting model in
terms of a BRDF. The diffuse and specular reflection in that model are given by

kdId(n⃗ ⋅ L⃗) + ksIs(R⃗ ⋅ V⃗)p

The vector to the light source L⃗ becomes 𝑣i in the more refined model and V⃗ becomes

𝑣o. The quantities Id and Is denote incoming light, and the total of these two corre-
sponds to the incoming intensity Li(𝑣i). In effect, for some fraction 𝜆, we have

Id = 𝜆Li(𝑣i) Is = (1 − 𝜆)Li(𝑣i)

Now we can define a BRDF that gives the elementary model.

𝜌r(𝑣i, 𝑣o) = 𝜆kd + (1 − 𝜆)
ks(R⃗ ⋅ 𝑣o)p

n⃗ ⋅ 𝑣i

(9.12)

With a single point source, we can calculate reflected light by simply multiplying by
the intensity of incoming light reduced by the cosine law, L(𝑣i)(n⃗ ⋅ 𝑣i).

The idea here is just to understand the earlier lighting model in terms of a BRDF.
Indeed, if we look more closely at this particular BRDF, we note that it is not bidirec-

tional and it also does not satisfy conservation of energy. It comes, after all, from a
lightingmodel designed to only approximate the physics and to be simple to calculate.

The BRDF allows us to model materials between two extremes. On one hand,
we have materials that reflect light equally in all directions around the normal. That

is, the BRDF is independent of the angle 𝜃o and is called isotropic. On the other
hand, we have anisotropic BRDFs which do depend on 𝜃o. Diffuse reflection in the
elementary lighting model was isotropic and specular reflection was anisotropic. An

appropriate choice of a BRDF can produce amixture of these two extremes. However,
there are other complex interactions between light and material that are not captured

by a BRDF. For example, when light strikes marble, it travels and reflects under the
surface to a certain degree, giving marble a translucent look. Other approaches to

lighting models try to deal with this effect.
TheCook–Torrance lightingmodel is an earlymodel that improved on the elemen-

tary lighting model by considering the surface to be composed of micro-facets (small
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flat surfaces) distributed with random orientations. The resulting model effectively

used a BRDF of the following form:

𝜌r(𝑣i, 𝑣o) = F(𝑣i, 𝑣o)
D(𝑣i, 𝑣o)G(𝑣i, 𝑣o)
𝜋(n⃗ ⋅ 𝑣o)(n⃗ ⋅ 𝑣i)

(9.13)

The function F describes reflection (amount and color) from a micro-facet, D gives

the fraction of micro-facets in a particular orientation, and G quantifies how much

shadowing goes on between facets. The Cook–Torrance model results in a significant

difference, for example, between the look of plastic and the look of metal surfaces.

(For a more complete description of the model, see [9].)

Researchers have experimentally measured BRDFs for a variety of surfaces, and

by fitting curves to the resulting data graphics programmers can incorporate the func-

tions to render objects much more realistically. The computational cost is rather high,

so there is a constant search for reasonable approximations to the full theory.

9.3 GLOBAL ILLUMINATION

The lighting models developed so far are local models considering only the direct

effect of light sources in illuminating a specified point. Yet, there are many complex

lighting interactions in a scene and a physically correct global illumination model is

generally computationally intractable. Instead, we move up one more step from the

local models and try to incorporate a little more of light interaction in the scene. Ray

tracing, which was introduced in an earlier chapter, takes a geometric approach to

this goal and systematically follows light rays in the scene trying to track sources of

illumination for each point. A more physics-oriented method, radiosity, focuses on

light energy and attempts to balance that energy across all the object faces in a scene.

Both of these methods are incremental improvements on the local models.

9.3.1 Ray Tracing

Ray tracing follows light rays as if they travel from the eye into the scene. We could

stop at the first intersection with an object, say point P1, and use the elementary light-

ing model to calculate the color at P1. If we did this, then ray tracing simply becomes

a visibility test and we gain nothing over some of the other elementary lighting mod-

els. However, some of the light sources may not reach P1, or light reflected from

other faces may reach P1. In both cases, the elementary lighting model could be aug-

mented with these slightly more complex interactions. Ray tracing can make these

enhancements by following three types of rays from P1 further into the scene.

Shadow Rays These are really test rays that we follow from the point P1 to the

various light sources in the scene. If one of these test rays strikes an object before the

light source, the source does not illuminate P1 and it is in a shadow. To calculate the

color at P1, we start with either the elementary model (Equation 9.5) or the BRDF
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model appropriate for the surface material (Equation 9.11). Since the point is in a
shadow relative to one of the lights, the summations in either model are taken over a

reduced set of light sources. Ray tracing then produces shadows, although they can
appear rather sharp.

Reflected Rays The light ray from the eye to P1 can be reflected using the formula
in Equation 9.3. The reflected ray starting at P1 travels further into the scene perhaps

intersecting an object at P2. This just means that light could travel from P2 to P1 and
then to the eye. In short, the color at point P1 is influenced by the color at P2. We add
P2 as a light source when determining the intensity at P1.

Refracted Rays Some materials, like water or glass, are transparent and light travels
through them. Yet, when this happens, rays are bent as they move into a material

where the speed of light suddenly changes. Figure 9.8(a) shows a light ray from P
hitting the surface of a newmaterial and bending slightly as it travels through the new
material to the point R. If we knew where the ray intersected the surface (Q), then we

could find the angles that determine how the light bends. The key concept here that
helps pin down the position of Q is called Fermat’s principle, which simply says that
light finds the path that minimizes the time to get from P to R.

Suppose that the speed of light in the first medium (maybe air) is c1 and the speed
of light in the second medium (perhaps glass) is c2. Then the length of PQ divided by
c1 is the time light spends going from P to Q. Similarly, the length of QR divided by
c2 gives the time for the second traversal. Since points P and R are fixed, the distances
d, e1, and e2 are all constants. The time T for the light to go from P to R is dependent

on Q and is therefore a function of distance x.

T(x) =

√
x2 + e2

1

c1
+

√
(d − x)2 + e2

2

c2

Surface

nP

R

Q

e1

e2

x

d−x

θ2

θ1

θr

θi

s

nvi

vr

Figure 9.8(a,b) Refraction
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To find the value of x that minimizes the time, we take the derivative and set it to
zero. (A check of the second derivative shows this is a minimum.)

T ′(x) = x

c1

√
x2 + e2

1

− d − x

c2

√
(d − x)2 + e2

2

= 0

=⇒
sin 𝜃1
sin 𝜃2

=
c1
c2

The angles are between the rays and the normal to the surface, and the ratio of their
sines turns out to be equal to the ratio of the speeds. By defining the refractive index,
denoted by 𝜂, as the ratio of the speed of light in a vacuum to the speed of light in
a particular medium, the ratio of the speeds is just the inverse ratio of the refractive
indices.

Snell’s Law:
sin 𝜃1
sin 𝜃2

=
𝜂2

𝜂1
(9.14)

Figure 9.8(b) shows an incoming ray 𝑣i and a refracted ray 𝑣r; we will take these
vectors to be unit vectors. In addition, there is a unit normal n⃗ to the surface and a
perpendicular unit vector s⃗ along the surface. By projecting the vector 𝑣i onto n⃗ and
then onto s⃗, it can be written as a combination of n⃗ and s⃗. The same is true for 𝑣r.
(Notice how the direction of the vectors affects the signs.)

𝑣i = −(sin 𝜃i)s⃗ − (cos 𝜃i)n⃗

𝑣r = −(sin 𝜃r)s⃗ − (cos 𝜃r)n⃗

The problem is to find 𝑣r once we know 𝑣i and Snell’s law helps immediately in
finding sin 𝜃r.

sin 𝜃r =
𝜂i

𝜂r
sin 𝜃i

Just a little more work gives cos 𝜃r.

𝜂2i sin
2𝜃i = 𝜂2r sin

2𝜃r = 𝜂2r (1 − cos2𝜃r)

=⇒ cos2𝜃r = 1 −
𝜂2i

𝜂2r
(1 − cos2𝜃i)

We can now write 𝑣r in terms of the sine and cosine of 𝜃i, but it is even more conve-
nient to write it in terms of 𝑣i. To that end, we get the following equalities because
the vectors are unit vectors.

− cos 𝜃i = 𝑣i ⋅ n⃗

−(sin 𝜃i)s⃗ = 𝑣i − (𝑣i ⋅ n⃗)n⃗

Putting all these together gives an expression for the refracted ray.
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𝑣r =
𝜂i

𝜂r
(𝑣i − (𝑣i ⋅ n⃗) n⃗) −

(
1 −

𝜂2i

𝜂2r
(1 − (𝑣i ⋅ n⃗)2)

) 1
2

n⃗ (9.15)

There is a square root in this formula, and if the quantity inside is negative, then

there is no refracted ray. Instead, the incident ray is totally reflected. In a more com-

plete model of light striking a transparent surface, some of the light is reflected and

some of the light is refracted. The amount of each is determined by the Fresnel

equations.

Example 9.4 A ray in the direction (1,−2, 1) travels through air and hits a glass

plate at P1 = (2, 0, 4). The plate has thickness 0.5 and normal n⃗ = (−1, 0, 0). Air
has a refractive index of approximately 1.0 and the glass plate has an index of 1.5

(Figure 9.9).

To determine the direction of the refractive ray 𝑣r, first normalize the incoming

vector to get 𝑣i = (0.41,−0.82, 0.41) and then use Equation 9.15.

𝑣r =
1.0

1.5
((0.41,−0.82, 0.41) − (−0.41)(−1, 0, 0)) − (0.79)(−1, 0, 0)

= (0.79,−0.55, 0.27)

The refractive ray starts at P1 and moves through the glass plate. Assuming paral-

lel surfaces, the back surface of the plate contains the point Q = (2.5, 0, 4). The ray
intersects the back surface when

n⃗ ⋅ (P1 + t(0.79,−0.55, 0.27) − Q) = 0 =⇒ t = 0.63

Using this value of t, we can determine that the refracted ray leaves the glass through

the back surface at P2 = (2.5,−0.35, 4.17). As it leaves, it is refracted again on

Glass

vi

P1

P2

Q

vr

Figure 9.9 Refraction through a glass plate
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moving from glass to air. Thinking of 𝑣r as a new 𝑣i and reversing the refractive

indices, we can calculate the new refracted ray and discover that it is in the same

direction as the initial 𝑣i. The exiting light ray is parallel to the original incident ray

but displaced by passing through the glass plate. ◽

Following a refracted ray further into the scene can enhance the lighting model

just like reflected rays do. If it hits another object, the intersection point acts as an

additional light source.

Full Ray Tracing The ray tracing algorithm (first outlined by Whitted in [10]) is a

recursive algorithm that continues following the rays until they pass entirely through

the scene or until we reach a predetermined level of recursion. We began with rays

from the camera (or eye) through points on the screen corresponding to pixels. At

each intersection with an object in the scene, each of the possible three types of rays is

followed deeper into the scene, building an entire tree of light rays and corresponding

intersections. Each intersection generates a color and acts as a light source for points

earlier in the tree. Once all these colors are combined as we back up the tree, we have

a color for the pixel on the screen that defined the original ray. In this way, complexity

is added to the elementary lighting models.

There are two problems that emerge from this approach. First, following a reflected

or refracted ray does identify other sources of light, but rays close to these also will

indicate possible paths of light. Probably, these other rays will not make huge contri-

butions to the final illumination of point P1, but there could be subtle effects that do

contribute to the overall realism of the image. The BRDFs of materials in the scene

will help predict just how much of a contribution a ray might make, but the main con-

clusion is that the straightforward ray tracing algorithm is an approximation, again,

to the full complexity of light interactions in the scene. Of course, we can choose to

follow additional rays, but the increasing computation cost starts to become a limiting

constraint.

The second problem is that a ray-traced image can have a blocky or jagged look.

Selecting one light ray per pixel on the screen means one ray determines the color

of an entire pixel. Since adjacent rays may end up widely spaced in the scene, adja-

cent pixels on the screen may have significant differences in color, giving rise to an

image that appears to be made of blocks; this is the common aliasing problem. To

improve the image, additional rays can be taken through subpixels by perhaps divid-

ing each pixel into four smaller ones. The four resulting rays give four colors that are

then averaged to determine the color for the entire pixel. This distributive ray tracing

produces better images, but there is, of course, a high computational cost.

9.3.2 Radiosity

The radiosity method approaches the problem of global illumination by focusing on

the fact that surfaces in the scene are illuminated not only by direct light sources

but also by light reflected off of other surfaces. As long as a point can be seen from
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another, it is possible that light reflecting from either of the two points can illuminate

the other.

Trying to compute the connection between all pairs of points is a computational

nightmare, so the immediate simplification is to consider only triangular surfaces

that make up the scene; more specifically, selecting key surfaces often gives a satis-

factory approximation. Assuming that the triangles are diffuse reflectors reduces the

complexity even further and moves the solution within reach.

With light reflecting equally in all directions from a triangle (i.e., a Lambertian

surface), the BRDF is constant. Light from direction 𝑣i is reflected equally in all

directions. Moreover, the fraction of light reflected is independent of 𝑣i and we call

this fraction diffuse reflectance, designated by 𝜌(d).
Two triangular surfaces that can “see” each other possibly reflect light to each

other. The amount of light illuminating one triangle from the other depends on their

geometric orientation and we use Fij to denote that relationship. Of the light that does

strike triangle j, the fraction reflected in all directions is 𝜌j(d). The total light per area
reflected off a triangle is called radiosity and for triangle i it is represented by Bi. In

the event that triangle i is actually part of some light source, we let Ei be the intensity

of that light; otherwise, Ei = 0. Putting these interactions together gives the radiosity

equation.

Radiosity Equation: Bi = Ei + 𝜌i(d)
N∑

j=1
BjFij (9.16)

We can determine 𝜌i(d) based on the material composition of triangle i and the Fij can

all be calculated based solely on the geometry of the triangle orientation. This leaves

the Bi as unknowns in the system of equations. (For a more complete derivation of

the radiosity equation, see Section 9.5.)

Since the equations are linear in the unknowns, we can use matrices to describe

the system and find a solution. First, put all the Bi variables in a column vector B⃗ and

put all the emitted light radiosities (Ei) in a column vector E⃗; note that most of the Ei
will be zero. Using the notation 𝜌i instead of 𝜌i(d), define the matrix M as follows:

M =

⎡⎢⎢⎢⎢⎢⎣

𝜌1F11 𝜌1F12 … 𝜌2F1N

𝜌2F21 𝜌2F22 … 𝜌2F2N

⋮ ⋱ ⋮

𝜌NFN1 𝜌1FN2 … 𝜌NFNN

⎤⎥⎥⎥⎥⎥⎦
The radiosity equation can be rephrased as follows:

B = E + MB =⇒ B = (I − M)−1E (9.17)

The matrix formulation leads naturally to a solution, but these are large matrices and

if (I − M) does have an inverse, it usually is computationally expensive to find it.
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Various numerical techniques can be brought to bear on this matrix equation and,

in particular, because of the characteristics of M, iterative techniques that calculate

successively better approximations work well but still require a reasonable amount

of computation time. Once we have the radiosities, we shade pixels proportional to

the corresponding Bi. The radiosity approach combined with ray tracing can produce

some strikingly realistic images.

9.4 TEXTURES

Various shading models and the right BRDF can turn the flat faces of an object into

a range of surfaces, from those with matte finishes and blurred bright spots to shiny

finishes with mirror-like reflections of other objects in the scene. Changing color

is also an easy matter in the rendering process, but adding details like the surface

irregularities of a plaster wall or the periodic pattern of a brickwall requires a different

approach.

Sincemodeling all the details of surface patterns and imperfections is usually com-

putationally prohibitive, it makes sense, especially in time-sensitive animation, to

simply paste a photo of a brick or stone wall, for example, onto the flat faces of an

object. It even sometimes makes sense to use an image of a window to add inter-

est to the wall. This is texture mapping and it basically takes an existing image and

maps it onto a triangular face. The image (or map) can be an actual photo (like that of

shingles on a roof), a color pattern (like patterns on fabric), or any other details (like

varying normals to the surface) that alter the lighting model used to determine color

shading.

9.4.1 Mapping

Suppose the texture map is two dimensional like a photo. In this case, it is a simple

matter to select perpendicular axes, u and 𝑣, so that any point in the map has (u, 𝑣)
coordinates. If the texture map has some other shape (perhaps circular), then another

coordinate system may be more natural. In all cases, we find two parameters u and

𝑣 that give a two-dimensional description for any point in the map. For convenience,

normalize the coordinates so that u and 𝑣 each take values between zero and 1 over

the map. This is the texture coordinate system, or texture space.
Using a texture map involves stages at the beginning and end of the rendering

process:

1. Connect the texture map to an object with an appropriate function.

2. Normal rendering—repositioning the object, converting to camera coordinates,

and projecting onto the view window.

3. While converting to pixels, find the correct texture coordinates for points cor-

responding to the center of pixels. These coordinates determine the appropriate

alteration of the shading model.
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Figure 9.10 From texture map to screen

If the connection between the texture map and object is made by assigning texture

coordinates (u, 𝑣) to the vertices of an object face, then as a face is converted to pixels
at the end of the rendering pipeline, we could reference the texture map in order

to select the correct color, shade, or other detail for enhancing the shading process

(Figure 9.10).

The first step is to pick an appropriate function that sends points in the texture map

to a triangular face, or vice versa. The texture map can be multidimensional, but start

by thinking of it as a two-dimensional rectangle with normalized coordinates (u, 𝑣). A
triangular face is also two dimensional, although it is positioned in three dimensions.

Any type of two-dimensional parameterization of the face makes the connection with

the texture map simpler. An xy coordinate system on the plane of the face will work,

or even barycentric coordinates; the first two barycentric coordinates (𝛼0, 𝛼1) suffice
because the sum of all three is 1. A mapping can now be thought of as a function of

two variables mapping texture coordinates to coordinates (s, t) on the triangular face.
If we are lucky, the mapping is one to one and there is an inverse.

f (u, 𝑣) = (s, t) =⇒ f−1(s, t) = (u, 𝑣)

The texture source is usually a rectangular image, and there are many ways to map

to the triangle. We can distort the source to fit the triangle, or simply cut a region out

of the texture to fit the triangle; stretching, shrinking, tiling, or other manipulations

are all possible functions that may be appropriate in certain situations. Whether the

function or the inverse is easier to describe depends on the application and the amount

of distortion that goes on in covering the triangular face. The end result is that we

assign texture coordinates to each point on the face. After transformations, including

the perspective transformation that brings the face to the view plane, we need some

function to recover the texture coordinates of any point on the projected triangle.

Affine Mappings There are many possibilities for the function f , but if it is linear
in some sense, then we can use linear interpolation to extend values at the vertices of

the triangular face to any point inside the triangle. This means we only have to assign

texture coordinates to the vertices of a face; the interior points follow by interpolation.

So affine transformations are a good choice. Then, the function f can be expressed as
multiplication by a homogeneous matrix M, and if the matrix has an inverse, f−1

is also easily represented by M−1. By using the perspective-correct interpolation
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detailed in an earlier chapter, it is then easy to find the texture coordinates for the

projected face vertices.

An affine transformation is determined by where it sends the three vertices of a

triangle, so once we identify where the three points in the texture space are sent,

we have the matrix M. (Notice that with homogeneous coordinates, the last row of

the 3 × 3 matrix M can be taken as (0, 0, 1). Then there are only six elements in the

matrix to determine; knowing where the transformation sends three points gives us

six equations to determine the unknowns.)

Once the triangle is projected onto the view plane, the texture coordinates

associated with each vertex can be used along with interpolation to find the texture

coordinates of any point inside the projected face. Instead of a color ci for each

vertex, we have texture coordinates (ui, 𝑣i); applying equation 8.9 then gives the

correct interpolated coordinates.

The vertices of a triangular face have three-dimensional coordinates that are con-

verted under the perspective transformation to normalized coordinates. For example,

the first two vertices may end up with normalized coordinates P1 = (x1, y1, z1) and
P2 = (x2, y2, z2). If we need the texture coordinates of point P between these two

vertices, first find the z coordinate of P = (1 − 𝛼)P1 + 𝛼P2 by interpolating the

reciprocals.

1

z
= (1 − 𝛼) 1

z1
+ 𝛼

1

z2

Then interpolate the texture u coordinate.

u
z
= (1 − 𝛼)

u1
z1

+ 𝛼
u2
z2

Finally, divide the two (
u
z
by

1

z
) to find u. This procedure is consistent with using

barycentric coordinates to find the texture coordinates of any point in the triangle.

Example 9.5 (Finding Texture Coordinates). If we use perpendicular axes on a tex-

ture map and normalize the coordinates to stay within the interval [0,1], then the

texture map is a unit square with vertices (0, 0), (1, 0), (1, 1), and (0, 1). Let a trian-
gular face have the following vertices:

P0 = (1, 4,−1)

P1 = (−2, 5, 3)

P2 = (4, 0, 1)

Suppose we decide tomap the texture triangle with coordinates (0, 0), (1, 0), and (0, 1)
to the face vertices P0, P1, P2 respecting the order. If we choose an affine function

for the mapping, then knowing the values at the vertices is enough and we can find
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Texture

Face

P0

P1

P2

Figure 9.11 Affine map for texture coordinates

other values with interpolation. Yet, it is useful to actually describe the function and
its inverse. Using homogeneous coordinates gives the following:

f (u, 𝑣, 1) = M
⎡⎢⎢⎣
u
𝑣

1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

s
t
𝑤

⎤⎥⎥⎦
For a parametrization of the triangular face, use the first two barycentric coordi-

nates (𝛼0, 𝛼1). Then P0 = (1, 0), P1 = (0, 1), and P2 = (0, 0). Putting all three texture
map vertices in a matrix and all three face vertices in a matrix gives an equation for M.
The matrix is homogeneous, so we can take the last row to be (0, 0, 1) (Figure 9.11).

M
⎡⎢⎢⎣
0 1 0

0 0 1

1 1 1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 0

0 1 0

1 1 1

⎤⎥⎥⎦ =⇒ M =
⎡⎢⎢⎣
−1 −1 1

1 0 0

0 0 1

⎤⎥⎥⎦
The function from texture coordinates to barycentric coordinates is an affine function
represented by matrix M. The inverse M−1 sends barycentric coordinates to texture
coordinates. In particular, the point (0.25, 3.50, 1.50) is on the triangular face and has
barycentric coordinates (0.25, 0.50, 0.25). Using just the first two coordinates in a
homogeneous form gives (0.25, 0.50, 1).

f−1(0.25, 0.50, 1) = M−1
⎡⎢⎢⎣
0.25

0.50

1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

0 1 0

−1 −1 1

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
0.25

0.50

1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0.50

0.25

1

⎤⎥⎥⎦
The point (0.25, 3.50, 1.50) has texture coordinates (0.50, 0.25).

The function f sends texture coordinates to barycentric coordinates (both in homo-
geneous form), but we can continue the conversions to find Cartesian coordinates of
the point on the triangle.

(u, 𝑣, 1) → (𝛼0, 𝛼1, 1) → (𝛼0, 𝛼1, 𝛼2) → (x, y, z)

The first conversion is accomplished with the matrix M. The second and third con-
versions are also matrices, R and C. Recalling that the barycentric coordinates give
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the equation P = 𝛼0P0 + 𝛼1P1 + 𝛼2P2, we can find the two matrices. The columns

are just the vertices of the triangular face.

R =
⎡⎢⎢⎣

1 0 0

0 1 0

−1 −1 1

⎤⎥⎥⎦ C =
⎡⎢⎢⎣

1 −2 4

4 5 0

−1 3 1

⎤⎥⎥⎦
If g is a function that takes texture coordinates to Cartesian coordinates, then g is just

multiplication by the matrix Mtotal = CRM. Consequently, g−1 is multiplication by

M−1
total = M−1R−1C−1.

M−1
total =

⎡⎢⎢⎣
0 1 0

−1 −1 1

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0

0 1 0

1 1 1

⎤⎥⎥⎦
⎡⎢⎢⎣

5 14 −20
−4 5 16

17 −1 13

⎤⎥⎥⎦
=

⎡⎢⎢⎣
−0.05 0.06 0.20

0.21 −0.01 0.16

0.22 0.22 0.11

⎤⎥⎥⎦
Multiplying the Cartesian coordinates of a point on the face gives the corresponding

texture coordinates.

M−1
total

⎡⎢⎢⎣
0.25

3.50

1.50

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0.50

0.25

1

⎤⎥⎥⎦
Of course, the mapping we defined is affine, so interpolation works to give texture

coordinates and it can naturally fit into the procedure for converting view window

points to pixels.

Looking only at the function f (or g) and their corresponding matrices, it is a

little hard to tell whether the texture is distorted or not as it is pasted onto the face.

Certainly, only part of the entire map in this example is used, but by examining the

correspondence between texture map vertices and face vertices it is clear here that

although lines are sent to lines, the texture does get distorted in order to fit into the

triangular face. ◽

Bilinear Mappings Functions between texture maps and faces of objects need not

be affine. The closer they are to linear, the easier it is to use some form of linear

interpolation to fill in values of the function once we know the values at the vertices.

Bilinear functions are not affine and do not preserve all lines, but they are linear in

some ways and are convenient for mapping a square texture map onto an arbitrary

convex quadrilateral.
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Texture

P0

P1

P2

P3

Q0

Q1(u,v)

f(u,v)

(1,1)

(0,0)

Figure 9.12 Bilinear map

The vertices of the texture map [using the normalized coordinates (u, 𝑣)] are sent
to the vertices of the quadrilateral. In Figure 9.12, the vertices are ordered counter-

clockwise and are mapped as follows:

f (0, 0) = P0 f (1, 0) = P1

f (1, 1) = P2 f (0, 1) = P3

To determine where an arbitrary point (u, 𝑣) in the texture map is sent, we interpolate

between the points P0 and P1 to find Q0 and then between P3 and P2 to find Q1.

Q0 = (1 − u)P0 + uP1

Q1 = (1 − u)P3 + uP2

Finally, we linearly interpolate between Q0 and Q1.

f (u, 𝑣) = (1 − 𝑣)Q0 + 𝑣Q1

= (1 − 𝑣)(1 − u)P0 + (1 − 𝑣)uP1 + 𝑣(1 − u)P3 + u𝑣P2 (9.18)

The order of the vertices Pi is important here because two opposite edges of the

quadrilateral match two opposite edges of the texture map rectangle. This function

is bilinear, because if either u or 𝑣 is held fixed, the function becomes linear in the

other variable. With u = 1∕4, f reduces to

f
(
1

4
, 𝑣

)
= (1 − 𝑣)

(
1

4
P0 +

3

4
P1

)
+ 𝑣

(
3

4
P3 +

1

4
P2

)
This shows that the points (1∕4, 𝑣), which form a vertical line in the texture map, get

sent to an affine combination of two points on opposite sides of the quadrilateral; this

forms a line through the points. Similarly, horizontal lines in the texture map also are

sent to lines through opposite sides of the quadrilateral.

The function is a one-to-one mapping and relatively easy to calculate, but perhaps,

unfortunately, it does not preserve all lines. For example, if lines were preserved, the
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diagonal line segment u = 𝑣 in the texture map should get sent to the line segment

between P0 and P2 in the quadrilateral. It is not hard to check that the point (0.5, 0.5)
is not on P0P2 unless P1 and P3 are well placed (see Exercises). The image of u = 𝑣

ends up curved, as do the images of other diagonal lines; this fact may or may not

seriously compromise the effectiveness of this texture mapping.

The inverse function f−1 is not hard to find, but we need to be careful because two
different points in texture space can map to the same point inside the quadrilateral.

The function f is still one to one on the texture map itself, so picking the correct

inverse point is not hard as the next example shows.

Example 9.6 (Inverse of a Bilinear Mapping). Suppose the texture map is sent

to a planar quadrilateral, and for convenience assume the vertices of the quadri-

lateral are given in a standard two-dimensional Cartesian coordinate system. Then,

f (u, 𝑣) = (x, y).

(x, y) = (1 − 𝑣)(1 − u)P0 + (1 − 𝑣)uP1 + 𝑣(1 − u)P3 + u𝑣P2

= P0 + 𝑣(−P0 + P3) + u(−P0 + P1) + u𝑣(P0 − P1 − P3 + P2)

Let the vertices of the quadrilateral be

P0 = (1, 1) P1 = (5, 2)

P2 = (6, 6) P3 = (3, 4)

The point P = (2, 2) is inside the quadrilateral, and if we start with this point, we

get the following equations:

2 = 1 + 2𝑣 + 4u − u𝑣

2 = 1 + 3𝑣 + u + u𝑣

Solving for 𝑣 in the first equation and substituting into the second gives

5u2 + 8u − 1 = 0

This quadratic has two solutions, u = 0.117 and u = −1.717. Only the first value

is inside the texture map; remember the coordinates u and 𝑣 are normalized to be

between zero and 1. Substituting values for u in the equations gives the values for

𝑣. The point (0.117, 0.283) maps to the point (2, 2) in the quadrilateral. The sec-

ond point (−1.717, 2.117) also maps to (2, 2), but it is clearly outside the actual

texture map.

Rather than relying on algebra to find the relevant quadratic equation, we can also

argue from the vector geometry point of view. The point P inside the quadrilateral is

on the line segment Q0Q1 which is determined by u. If we form ΔQ0PQ1, then P is

on the line segment if and only if the triangle has area zero. Letting 𝑣0 = Q0 − P and
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𝑣1 = Q1 − P, the area of the triangle is just the cross product of these two vectors (sign
of the area is irrelevant here). The equation 𝑣0 × 𝑣1 = 0 produces the same quadratic

equation we found before (see Exercises). ◽

In three-dimensional space, vectors along two adjacent sides of a quadrilateral can

be found by constructing coordinates (s, t) for any interior point. Then the bilinear

mapping and its inverse can be calculated just as in two dimensions. A quadrilateral

can naturally arise from two adjacent triangular faces of some object, but there is no

guarantee that the four vertices are planar. Nevertheless, the procedure for calculating

the bilinear function still works although the two faces are not flat. This observation

can prove useful in wrapping texture maps around surfaces.

Spherical Mappings A mapping from texture space to object space sends texture

coordinates (u, 𝑣) to coordinates on the object (s, t). Various sorts of object coordi-
nate systems will work as long as they have two parameters. If we concentrate on

flat triangular faces, then barycentric coordinates work, as do the two parameters of

bilinear functions. Instead of flat faces, we may have bicubic patches where the two

parameters (s, t) give a coordinate system for the surface. Any function from one set

of coordinates to the other serves as a mapping that effectively applies the texture to

the object surface.

One common application of this is the mapping that wraps a texture around a

sphere. Spherical coordinates (𝜌, 𝜃, 𝜙) give positions on a sphere of radius 𝜌, and

by using just the last two coordinates 𝜃 and 𝜙 we have two parameters defining the

position. To map the texture once around the sphere, 𝜃 is determined by multiplying

u by 2𝜋.

f (u, 𝑣) = (2𝜋u, 𝜋(1 − 𝑣)) = (𝜃, 𝜙)

f−1(𝜃, 𝜙) =
(

𝜃

2𝜋
,

(
1 − 𝜙

𝜋

))
= (u, 𝑣) (9.19)

The texture map is stretched and shrunk to fit around the sphere, with the entire top

edge of the map, for example, shrunk to a single point on top of the sphere. Similarly,

the bottom edge is sent to a single point at the bottom of the sphere. This is just one

of several different ways to distort the map to cover the entire sphere.

9.4.2 Resolution

Stretching the texture map or placing the camera close to the object results in mag-

nifying the original texture. Yet, the texture map no doubt has some fixed resolution,

so there are a fixed number of pixels forming the image. If we magnify it, the pix-

els appear larger and there is a distinct blocky appearance to the texture. To partially

remedy the situation, we smooth the transition between pixels by blending adjacent

pixels together. One approach is to find the texture coordinates and then bilinearly

interpolate the four closet pixels to arrive at a blended shade (Figure 9.13).
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(256u,256v)

(i, j+1)

(i, j)

(i+1, j+1)

(i+1, j)

Figure 9.13 Pixel interpolation

Suppose the texture map is composed of an array of 256 × 256 square pixels cen-

tered on integer coordinates. The coordinates (u, 𝑣) indicate position (256u, 256𝑣) in
the pixel array, but since they are not necessarily integers the position is inside a pixel

but not at its center. Round down to the center of a pixel.

(i, j) = (⌊256u⌋, ⌊256𝑣⌋)
Then consider the four pixels (i, j),(i + 1, j),(i, j + 1),(i, j). We can bilinearly interpo-

late the colors of these four pixels and assign them to the coordinates (256u, 256𝑣).
To do this, let u∗ = 256u − ⌊256u⌋ be the fractional part of 256u, and calculate the

fractional part 𝑣∗ of 256𝑣 similarly. Use c(i,j) to designate the color of pixel (i, j). Then
the bilinear interpolation gives the color (C) of point (256u, 256𝑣).

C = (1 − 𝑣∗)(1 − u∗)c(i,j) + (1 − 𝑣∗)u∗c(i+1,j)

+ 𝑣∗(1 − u∗)c(i,j+1) + u∗𝑣∗c(i+1,j+1)

This is one of several anti-aliasing techniques that strive to smooth the blocky charac-

ter of an image. For texture maps that are used at various magnifications throughout

the rendering process, usually one of several preprocessed versions (called mipmaps)
at various resolutions is selected rather than relying on interpolation alone.

9.4.3 Procedural Textures

A texture map can be an image of something like a wood surface, and the individ-

ual pixels, of course, store various shades of colors in patterns matching the grain

of wood. Rather than relying on actual images, it is also possible to generate texture

maps with an algorithm. For example, the function sin(k1u) + cos(k2𝑣) can be scaled
to represent a periodically fluctuating shade of color in two dimensions. The result-

ing generated map is a procedural texture, and by altering the parameters it can be
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adjusted to give some modest visual effects. With more carefully selected functions,

the maps can be useful in mimicking more realistic patterns.

Color is only one of the attributes a texture map can store. In particular, since most

lighting effects rely on a normal to the surface, the texturemap could hold information

about how to adjust normals to achieve various lighting changes. In 1978, Jim Blinn

(whose contributions to computer graphics are legendary) introduced the idea of a

bump map that holds information on altering the look of a surface by perturbing the

normals (Figure 9.14).

Without actually altering the surface, a bump map just changes the normals so

the lighting effects (e.g., Phong shading) change giving the appearance of regular or

random bumps. Surfaces can look like plaster or even like some heavy fabric. The

idea is to start with a displacement function which alters the length of the normals

at any point. A flat surface, for example, has equal normals at every point, but a

displacement changes their length; the actual surface is left untouched. New normals

are calculated based on the virtually changing heights of the normals. These altered

normals are used instead of the original ones.

Start with a bump map with displacements stored for coordinates (u, 𝑣). The sur-
face of an object is parameterized by s and t, so that each point is a function P(s, t).
(Think of the function as supplying x, y, and z coordinates.) Then on a face of an

object, the inverse of a texture mapping gives the displacement d(s, t) associated with
the point P(s, t). So the displaced normal is d(s, t)n⃗(s, t), where n⃗(s, t) is a unit normal

to the surface at point P. A point on the (virtual) displaced surface is then

P∗(s, t) = P(s, t) + d(s, t)n⃗(s, t) (9.20)

With this expression for points on an altered surface, we can take partial derivatives

to find tangent vectors and then use the cross product to find a new normal.

𝜕P∗

𝜕s
= 𝜕P∗

𝜕s
+ 𝜕d

𝜕s
n⃗ + d

𝜕n⃗
𝜕s

and
𝜕P∗

𝜕t
= 𝜕P∗

𝜕t
+ 𝜕d

𝜕t
n⃗ + d

𝜕n⃗
𝜕t

If the displacements are relatively small, then the last term in each equation can be

ignored. The resulting approximation to the new normal to the surface is

n⃗ne𝑤 ≈
(
𝜕P∗

𝜕s
+ 𝜕d

𝜕s
n⃗
)
×

(
𝜕P∗

𝜕t
+ 𝜕d

𝜕t
n⃗
)

(9.21)

nnew

P∗(s,t)

P(s,t)

d(s,t) n (s,t)

Figure 9.14 Bump map
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Normalizing nne𝑤 gives the new unit vector. Notice here that the partial derivatives

of P∗ are vectors, so we are indeed taking the cross product of two vectors. The cross
product can be simplified somewhat, and the partial derivatives can in practice be

approximated by using ratios of differences in heights in the horizontal and vertical

directions to approximate slopes. Lastly, notice that the expression for the new normal

never needs the actual values of d(s, t); it only needs the partial derivatives. These

could replace the actual values in the texture map.

Using texture maps in this procedural way, where we algorithmically determine

values that alter a surface, opens up many possibilities. Assuming we can find appro-

priate algorithms for producing displacement maps, color maps, or other types of

texture maps, we can turn flat faces into a variety of materials. One last observation:

there is no reason to restrict texture maps to two dimensions. Using three dimen-

sions, we could make objects look as if they are carved out of wood or marble or

other materials.

9.5 COMPLEMENTS AND DETAILS

9.5.1 Conversion between RGB and HSV

The RGB and HSV coordinate systems for representing color give a geometric shape

to the color space. However, the absolute distance between colors is almost meaning-

less. Yet, proportional distances do make some intuitive sense and allow us to convert

from RGB coordinates to HSV coordinates. Remembering that the RGB coordinates

(R,G,B) are between 0 and 1 inclusive, the following algorithm converts the RGB

coordinates to HSV coordinates:

1. Let Min = min{R,G,B} and Max = max{R,G,B}.
2. Set V = Max. (This sets the brightness.)

3. If Min = Max = 0, then H = S = V = 0. (The color is black.)

4. If Min = Max ≠ 0, then S = 0 and H is arbitrary. (The color is a shade of gray.)

5. If Min ≠ Max, then S = Max−Min
Max

. (This is the proportional distance from the

axis.)

(a) If R = Max, then H = 60 ∗ (G − B)∕(Max − Min). If H < 0, then H = H +
360. (This sets the hue to within ±60∘ of the red direction (0∘).)

(b) If G = Max, then H = 120 + 60 ∗ (B − R)∕(Max − Min). (This sets the hue
to within ±60∘ of the green direction (120∘).)

(c) If B = Max, then H = 240 + 60 ∗ (R − G)∕(Max − Min). (This sets the hue
to within ±60∘ of the blue direction (240∘).)

This conversion algorithm is convenient and approximates the equivalence

between colors in the two systems. To convert back from HSV coordinates to RGB

coordinates, we effectively undo what the algorithm does.
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9.5.2 Shadows on Arbitrary Planes

In Example 9.3, shadows were cast on the ground plane, which was simply the xz
plane. To form the shadow, object vertices are projected from the light source onto
the ground plane. The same general derivation can be used to project shadows onto
any arbitrary plane like the side of a building. Projections like this are easily done in
homogeneous coordinates and are derived in Example 4.12 from an earlier chapter.
However, we can also derive the correct transformation matrix by following light rays
as we did for the shadow on the xz plane.

The light source sits at point L and we select an object vertex V . Then the light
ray emanates in the direction from the light source to the vertex and is described by
L + t𝑣. Further, suppose that the ground plane is described by the equation n⃗ ⋅ (P − Q)
where Q is a fixed point on the plane and P is an arbitrary point on the plane.

Drawing on the previous analysis of intersections between lines and planes, the
value of t when the ray hits the plane is

t = −n⃗ ⋅ (L − Q)
n⃗ ⋅ (V − L)

The corresponding point of intersection V∗ is given by

V∗ = L + −n⃗ ⋅ (L − Q)
n⃗ ⋅ (V − L)

(V − L)

= (n⃗ ⋅ V)L − (n⃗ ⋅ Q)L + (n⃗ ⋅ Q)V − (n⃗ ⋅ L)V
n⃗ ⋅ V − n⃗ ⋅ L

Notice that we treat L, V , and Q as vectors to write the dot products in the expanded
formula for V∗. To represent this projection by a matrix, set A = n⃗ ⋅ L and B = n⃗ ⋅ Q
just to simplify the notation.

Ms =

⎡⎢⎢⎢⎢⎢⎢⎣

Lxnx − A + B Lxny Lxnz −LxB

Lynx Lyny − A + B Lynz −LyB

Lznx Lzny Lznz − A + B −LzB

nx ny nz −A

⎤⎥⎥⎥⎥⎥⎥⎦
(9.22)

Using the xz plane as the projection plane gives n⃗ = (0, 1, 0) and we can take
Q = (0, 0, 0). Then A = Ly and B = 0, turning the matrix Ms into the one from
Example 9.3.

The transformation matrix Ms is the same as the matrix developed using homo-
geneous coordinates in Example 4.12. However, there is a difference in notation,
because in the current derivation we took L, V , and n⃗ as three-dimensional instead of
as four-dimensional homogeneous coordinates. There is an advantage to the homo-
geneous approach when moving the light source out to infinity as we did earlier. With
homogeneous coordinates, a zero fourth coordinate indicates a point at infinity, so if



COMPLEMENTS AND DETAILS 337

we take the light source to be positioned at (Lx,Ly,Lz, 0), then the transformation

matrix represents a parallel projection where the direction of the parallel rays is

(Lx,Ly,Lz).

9.5.3 Derivation of the Radiosity Equation

Recall Equation 9.10 giving the radiance at a point. We need to add two details to

this equation for the radiosity model. First, we add a term on the right representing

the light emitted at the point to account for the possibility that the point is actually

on a light source. Second, since we will be tracing light reflected by one surface and

incident on another, we include a location (x) in the expressions.

Lo(x, 𝑣o) = Ls(x, 𝑣o) + ∫Ω
𝜌r(𝑣i, 𝑣o)Li(x, 𝑣i)(n⃗ ⋅ 𝑣i)d𝜔 (9.23)

This is called the rendering equation, and the integral is taken over Ω, that is, all
directions in the hemisphere. (We use d𝜔 here instead of sin𝜙id𝜙id𝜃i to make the

expression a little more compact.) The quantity Ls is zero unless the point x is on a

light source.

If we are dealing with a diffuse surface where light reflects equally in all directions,

then the BRDF is constant (𝜌). For these surfaces, it is useful to calculate the diffuse

reflectance (𝜌(d)), which we define as the fraction of incoming light that is reflected.

This means that, since it is relative to the quantities Li(x, 𝑣i), we can calculate the

diffuse reflectance as follows:

𝜌(d) = ∫Ω
𝜌(n⃗ ⋅ 𝑣i)d𝜔 = 𝜌∫Ω

cos 𝜃d𝜔 = 𝜌𝜋 (9.24)

We conclude that when the BRDF is constant, we can express it as 𝜌(d)∕𝜋
(Figure 9.15).

Light coming from a particular direction illuminates a patch on the hemisphere

and determines the differential solid angle d𝜔. Now, we want the source of light to
be another triangle. We trace light from position x1 on one triangle to position x2 on
another triangle. The triangles have normals n⃗1 and n⃗2, and the direction of incoming

light is 𝑣i which is the vector from x1 to x2.

x1

x2

n1

n2

vi

Figure 9.15 Radiance between triangles
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The differential solid angle d𝜔 is area dA1 from the first triangle projected onto

the hemisphere around x2. To correct for the orientation of the two triangles, we mul-

tiply by the cosines of the angles between the ray and the normals. To measure the

projection in terms of steradians, we divide by the square of the distance between the

two points.

d𝜔 =
(n⃗1 ⋅ 𝑣i)(n⃗2 ⋅ 𝑣i)dA1|x1 − x2|2 =

cos𝜙1 cos𝜙2dA1|x1 − x2|2 = G(x1, x2)dA1

The quantity G(x1, x2) represents the geometric relationship between the two tri-

angles. To keep the reformed rendering equation compact, we also introduce the

quantity V(x1, x2), a visibility factor, which is 1 if the point x2 can be seen from x1
and zero otherwise. Now we have an updated rendering equation describing the light

interaction between two triangles. (The integral is taken over the triangle T1.)

Lo(x2, 𝑣o) = Ls(x2, 𝑣o) + ∫T1

𝜌r(𝑣i, 𝑣o)Li(x1, 𝑣i)G(x1, x2)V(x1, x2)dA1 (9.25)

The integral in this revised equation is taken over a surface (the first triangle) instead

of over the hemisphere.

The radiosity method makes the assumption that light is reflected equally in all

directions, so the BRDF is constant and equals 𝜌d∕𝜋. Moreover, the Lo, Ls, and Li
terms are radiances coming from a diffuse surface, so they are independent of the

direction.

Lo(x2) = Ls(x2) +
𝜌2(d)
𝜋 ∫T1

Li(x1)G(x1, x2)V(x1, x2)dA1

Recall the relationship between radiance and radiosity; radiosity is the integral of

radiance in all directions. If the radiance is constant, the radiosity is proportional to

radiance. In fact, radiosity equals 𝜋 times radiance (since it is the integral over the

hemisphere). Replacing radiance with the corresponding radiosity B(x) gives us the
following:

B(x2) = E(x2) +
𝜌2(d)
𝜋 ∫T1

B(x1)G(x1, x2)V(x1, x2)dA1 (9.26)

The term E(x2) is the radiosity emitted if x2 is on a light source. What we would like

to do now is to assume that the radiosity B is constant over a small triangle. Then, for

example, B(x1) = B1 for every point on the first triangle. Unfortunately, there is no

guarantee that B(x2) will be constant for every x2 because it depends on the integral.

So we need to average the radiosity over all points in the second triangle.

B2 =
1

A2∫T2

B(x2)dx2
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Now replacing B(x2) with Equation 9.26 gives us a good approximation to the inter-

action between triangles.

B2 = E2 + 𝜌2(d)B1
1

A2 ∫T2
∫T1

1

𝜋
G(x1, x2)V(x1, x2)dA1dA2 (9.27)

The double integral in Equation 9.27 is called a form factor (denoted F12) and sum-

marizes the geometric relation between the two triangles. It is the fraction of the total

energy leaving T1 that is incident on T2. The symmetry of the definition implies that

AiFij = AjFji, and the interpretation in terms of energy gives
∑n

j Fij = 1.

The scene is filled with triangles, and the radiosity of triangle T2 depends not only

T1 but also on all the other triangles. The result is that the radiosity of triangle i a sum
over all other triangles and gives us the radiosity equation.

Radiosity Equation: Bi = Ei + 𝜌i(d)
N∑

j=1
BjFij (9.28)

9.6 EXERCISES

1. What are the HSV coordinates for the RGB color (0, 0, 0.5)?

2. A ray from a light source at position (10, 8, 6) in the direction (−3,−3,−2)
hits the plane containing the points (2, 0, 0),(0, 1, 0), and (0, 0, 1). Determine

the point of intersection and a unit vector in the direction of the reflected ray.

3. A triangle has vertices (1, 1, 2), (1, 2, 4), and (2, 0,−3). There is a light source
at (1, 10,−5) and the triangle surface is mildly shiny making p = 3. Using the

elementary lighting model, determine the light intensity at the centroid of the

triangle. (Assume kaIa, kdI, d, and ksIs are known.)

4. Specular lighting involves calculating the reflected vector R⃗ and using (R⃗ ⋅ V⃗)p

to determine intensity. In order to reduce the computations, one method uses

the vector H⃗, the halfway vector, which is equal to L⃗ + V⃗ divided by its length.

This is a vector halfway between the vector to the camera and the one to the

light. If this vector is close to the normal, then the specular intensity is high; we

use (H⃗ ⋅ n⃗)p to determine the intensity. Compare both these specular methods

for a light source at (8, 6, 4) shining on the xz plane at the origin with the camera

at position (−5, 3,−1).

5. When adjusting for the attenuation of light due to the distance to the light source,

practically we use a2D2 + a1D + a0 instead of D2. Show that this substitution

means that there is a maximum of light intensity.

6. A tetrahedron has vertices (0, 0, 0), (3,−1, 4), (−1, 1, 6), and (0, 5,−1). There
is a light source at position (12, 10, 4). Determine the diffuse shading of the

centroid of each face using both Gouraud and Phong shading.
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7. A cube is sitting on the xz plane with one vertex at (0, 0, 0) and the diagonally

opposite vertex at (1, 1, 1). A light source at position (−5, 5, 0) casts a shadow
of the cube on the plane. Determine the vertices of the shadow.

8. Suppose a material has a grain running in one direction, which means light is

preferentially reflected in the direction of the grain (plus or minus direction).

Construct a possible BRDF for this type of material.

9. In Example 9.4, the light ray enters the glass plate and is refracted. Calculate

the direction of the ray when it leaves the glass plate and show that it is parallel

to the incoming ray.

10. Using an affine transformation, map the texture triangle with vertices (0, 0),
(1, 0), and (0.5, 1) to the triangle (1.5, 2, 1), (4, 1.5, 6),(7, 1,−2). Determine the

texture coordinates of the centroid of the triangle.

11. Let a quadrilateral have coordinates (1, 0), (2,−4), (6, 1), and (3, 5). Use a bilin-
ear map to send the square texture map to the quadrilateral. Determine the

texture coordinates of the point (2.25,−1.75).

12. In Example 9.6, use the vector approach to find the texture coordinates for the

point (2, 2) in the quadrilateral.

13. For a bilinear map of the square texture, show that the diagonal line in the tex-

ture map from (0, 0) to (1, 1) is not generally mapped to a straight line in the

quadrilateral by determining where (0.5, 0.5) is mapped.

14. When doing bilinear interpolation of pixel colors to improve resolution of a

texture map, show that the method given weights the pixel containing the point

(256u, 256𝑣) the highest.

15. Verify Equation 9.24 by replacing d𝜔with sin𝜙id𝜙id𝜃i and evaluating the inte-

gral.

9.6.1 Programming Exercises

1. Implement the elementary lighting model with flat shading to produce a shaded

cube on the screen. Allow rotations of the cube and repositioning of the light

source.

2. Build an elementary ray tracer that can render a scene full of cubes and produce

simple shadows. Input the number, size, and position of cubes along with the

position of a single light source.



10
OTHER PARADIGMS

The core mathematics in computer graphics is based on vector geometry. From object
modeling to shading techniques, vectors play a significant role and offer a very useful
paradigm for constructing images. Yet, there are corners of the image gallery that can-
not be reached conveniently with the standard geometric approaches. Gradually, other
mathematical tools, structures, andmethods have surfaced to solve particular graphics
problems and to expand image generation possibilities. This chapter highlights three
of those approaches that fall outside the main flow of vectors, transformations, and
geometric optics. It is reasonable to consider these techniques as separate paradigms.

The first category of graphics problems focuses on the fact that all modeling and
rendering efforts end with an array of pixels on the display screen. Resolutions con-
tinue to increase, but the pixel still is more a block of color than a colored point.
Jagged edges in images are a common result of this coarseness. Coping with this and
other artifacts requires a different take on the mathematics of images.

Nature is not particularly fond of Euclidean geometry, so a major challenge is
to generate more natural organic forms. One approach here involves introducing
noise into the process. It is a little odd that adding randomness expands the set of
image-generating tools, but properly handled, noise produces many of the natural
patterns we encounter.

A more structured approach to organic forms leads to the third paradigm. In an
effort to construct images of plants, a technique borrowed from the theory of computa-
tion turns descriptions of plants into a process of selecting grammars and constructing
words. The resulting L-systems have been successful in producing landscapes and
fractal forms.

Mathematical Structures for Computer Graphics, First Edition. Steven J. Janke.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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All the above three alternative paradigms are well-established approaches in com-

puter graphics and bring a wider array of mathematical tools to bear on some key

graphics problems.

10.1 PIXELS

Pixels have nonzero area, and consequently drawing on the display screen is a matter

of drawing with blocks of color. Theoretically, a line is an infinitely thin, continuous

set of points, but on the screen it is a finite number of blocks arranged in a regular

array. Higher screen resolutions generally mean more pixels per unit distance and

therefore finer image detail, but the discrete nature of pixels causes two key problems.

First, an algorithm is necessary to decide which pixels to use in representing a

line or a curve segment. Since the screen is an array of pixels centered at integer

coordinates, there will be small jumps between some pixels on a line segment. Deter-

mining quickly where these discontinuities should occur is the key to decent graphics

performance. Second, there are various unintended artifacts that appear in an image

as a result of the array-centered pixels. In the case of a line segment, the image

looks jagged instead of smoothly straight. In more complicated images, ghost pat-

terns appear showing, for example, circular rings where the original image had no

such curves. Coping with both these problems requires mathematical analysis of the

pixel array.

10.1.1 Bresenham Line Algorithm

A line can be described in several ways, but since we are focused on its representation

in terms of integer coordinates, the explicit form y = mx + b is probably the most

helpful. Assume that we have converted the original line segment in some scene into

normalized device coordinates and then into actual coordinates for a particular display

screen. By possibly rounding coordinates up or down, we have integer coordinates

for both end points of the segment: (x0, y0) and (xn, yn).
The task is to find integer coordinates (xi, yi) for 0 < i < n, where xi+1 = xi + 1. In

other words, there should be a pixel in each column on the screen between the first

and last endpoints. The x coordinates for pixels on the line segment are then easy to

determine. For the y coordinates, their position will depend on the slope m of the line,

which can be positive or negative. Compare the line y = mx + b with y = −mx + b;
the point (x, y) is on the first line if and only if (−x, y) is on the second. If we find

the pixels for the line with a positive slope, then we can easily find the pixels for the

other line. So, assume m > 0. (Note that m = 0 is a trivial case.)

If the slope is nonnegative, then we have either m ≤ 1 or m > 1. In the second case,

rearrange the line equation to get x = 1

m
y − b

m
. Nowwe have a line with positive slope

less than 1. If we interchange x and y in Figure 10.1 and in our analysis, we will find
the appropriate pixels for the original line.

The end result of considering slopes is that we have reduced the problem of find-

ing pixels for an arbitrary line to finding pixels for a line with slope 0 ≤ m ≤ 1.
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15 24

19

23
yi+1

yi

xi+1xi

d1

d0

Line

Figure 10.1 Screen pixels for a line segment

With this assumption, if pixel (xi, yi) is on the line, then the next pixel is one of the
following:

(xi+1, yi+1) = (xi + 1, yi)

(xi+1, yi+1) = (xi + 1, yi + 1) (10.1)

The next y coordinate can be the same as the current one or it can move up by 1.
There are no other choices because the slope of the line is assumed to be less than or
equal to 1.

To decide between these two choices, compare the distances between the true line
and either of these pixels. We have drawn the pixels as squares in the figure, and
we assume their centers are in the middle of the square. When the x coordinate is
xi+1 = xi + 1, the y coordinate for the point on the line is y = m(xi + 1) + b. The dis-
tance between each pixel choice and the point on the line is just the difference in y
coordinates. Let d(0,i) be the distance to the lower pixel and d(1,i) the distance to the
upper pixel.

d(0,i) = y − yi = m(xi + 1) + b − yi

d(1,i) = (yi + 1) − y = yi + 1 − m(xi + 1) − b (10.2)

Selecting the next pixel is simply a matter of comparing d(0,i) to d(1,i). If d(0,i) < d(1,i),
then the next pixel should be (xi + 1, yi), and if d(0,i) ≥ d(1,i), it should be (xi + 1, yi +
1). (d(0,i) = d(0,i) is really a judgment call.)

Before continuing with the development of the algorithm, there is one further
property that is desirable. If all the arithmetic operations are integer (as opposed to
floating-point) operations, then implementations of the algorithmwill run faster.With
integer endpoints already established, the slope is

m =
Δy

Δx
=

yn − y0
xn − x0

The division here probably results in a floating-point value for m, so it would be nice
if we can avoid the division as we look for a decision process for each new pixel.

With this design approach in mind, we revise our decision criteria by defining a
quantity Di.
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Di = Δx(d(0,i) − d(1,i))

= Δx(m(xi + 1) + b − yi − yi − 1 + m(xi + 1) + b)

= 2Δy ⋅ xi − 2Δx ⋅ yi + b∗ (10.3)

The quantity b∗ is just a constant. By multiplying byΔx, references to m are removed
and the resulting Di only requires integer multiplication and addition (includes sub-
traction). Moreover, Di < 0 implies that d(0,i) < d(1,i) because Δx > 0. Comparing Di
to zero decides between the next two possible pixels.

Computing Di for each i is made easier by the following recursion:

Di+1 − Di = 2Δy ⋅ (xi+1 − xi) − 2Δx ⋅ (yi+1 − yi) + (b∗ − b∗)

= 2Δy ⋅ (xi + 1 − xi) − 2Δx ⋅ (yi+1 − yi)

=⇒ Di+1 = Di + 2Δy − 2Δx ⋅ (yi+1 − yi) (10.4)

The endpoints of the segment are assumed correct, implying that y0 = mx0 + b. Using
this in Equation 10.2 to find d(0,0) and d(1,0) givesD0 = Δx(m − (1 − m)) = 2Δy − Δx.
All the arithmetic operations in the recursion 10.4 are integer operations. The com-
plete line algorithm patterned after Jack Bresenham’s 1965 algorithm [11] now pro-
ceeds as follows:

1. Input (x0, y0) and (xn, yn). Set the first pixel to (x0, y0).
2. Calculate Δx = (xn − x0) and Δy = (yn − y0).
3. Calculate D0 = 2Δy − Δx. Set i = 0.

• If Di < 0, the next pixel is (xi + 1, yi). Set Di+1 = Di + 2Δy.

• If Di ≥ 0, the next pixel is (xi + 1, yi + 1). Set Di+1 = Di + 2Δy − 2Δx.

4. Repeat step 3 while i < n.

Example 10.1 (Bresenham’s Line Algorithm). The algorithm for finding the pix-
els on a line from (15, 19) to (24, 23) proceeds by setting pixel (15, 19) and then
calculating the initial quantities:

Δx = (24 − 15) = 9

Δy = (23 − 19) = 4 =⇒ 2Δy = 8

2Δy − 2Δx = −10

D0 = 2Δy − Δx = −1
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i Di Next Pixel

0 −1 (16, 19)
1 7 (17, 20)
2 −3 (18, 20)
3 5 (19, 21)
4 −5 (20, 21)
5 3 (21, 22)
6 −7 (22, 22)
7 1 (23, 23)
8 −9 (24, 23)

Then the steps selecting next pixels can be summarized in a table. Since the last line

in the table gives a point which matches the second endpoint, the last calculation is

not strictly necessary. ◽

Bresenham’s line algorithm is an enhanced version of a digital differential ana-
lyzer or DDA. These form a class of algorithms that take unit steps through one

coordinate and compute the change in the other coordinate. For a line, the change is

connected to the slope, so both Δx andΔy play a role. The advantage of Bresenham’s

algorithm is that only integer calculations are necessary. Using the same techniques,

Bresenham devised another algorithm for drawing circles, and with a little effort the

DDA approach can work for a variety of curves.

10.1.2 Anti-Aliasing

The line algorithm by necessity produces a jagged line, and the effects of these some-

what abrupt jumps are called aliases in signal processing theory. The theoretical line
is continuous, but when it is sampled at discrete positions, spurious patterns emerge.

On the simplest one-dimensional level, imagine sampling a single sine wave at

some periodic rate. The resulting samples could always hit the peak of the wave

or they might fluctuate with a frequency far different from the sine wave. In both

cases, they exhibit a pattern that did not originally exist. If now we consider a

two-dimensional signal, it is not hard to see that the patterns might disturb the image

in a variety of ways. The study of signal processing includes a vast mathematical

theory which helps considerably in designing anti-aliasing algorithms.

For the jagged line problem, the intensity of the two-dimensional image at any

point, I(x, y), forms a signal, and the pixels selected are samples from this signal.

If the image changes intensity quickly as when we move from the line to the back-

ground, then this adds a high-frequency component to the signal. The signal is a

sum of many frequencies, and sampling from it at discrete locations is an attempt to
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adequately capture all these frequencies. The jagged line is a result of not adequately

capturing the signal detail and, at the same time, introducing spurious detail. With this

in mind, there are two immediately accessible anti-aliasing techniques that minimize

the jagged appearance.

First, increase the sampling rate. Pixels on the screen are a fixed size, but we

could imagine that they are much smaller. In fact, referring to the pixel array ana-

lyzed in Bresenham’s algorithm, divide each square pixel into four smaller pixels

(Figure 10.2).

Apply Bresenham’s algorithm as before on this higher resolution array. It is possi-

ble that of the 2 × 2 array of subpixels, 0, 1, or 2 are selected by the algorithm. Now,

instead of an all-or-nothing decision, we have three levels and can color the pixel

according to the level. Using gray levels, 0 denotes white, 1 is a middle gray, and 2 is

black. This coloring mitigates some of the sudden jumps from one level to another by

shading a pixel gray instead of just black or white. Of course, the procedure is more

effective if we increase the subpixel array to a 3 × 3 array and add one more level

of gray.

The supersample technique is effective, but human vision is complicated and dif-

ferent supersample schemes can improve things further. Thinking of the theoretical

line as 2 pixels wide or using sampling patterns within the subpixel array can give

some encouraging results. The major idea, however, in all these techniques is to intro-

duce additional shading to the original notion of picking a pixel or not.

A second technique uses shading in a slightly different way. In Bresenham’s algo-

rithm, think of the line as a function, f (x) = mx + b. Then the pixel we pick is ⌊ f (xi) +
0.5⌋, where the notation ⌊⋅⌋ indicates the floor function (rounding down). This is the
result of using a criterion that simply determines which pixel’s center is closest to the

line. Yet, there are other criteria that may better fit human visual perception.

Bresenham’s algorithm results in a series of pixels that form an intensity function

IB(x, y), which is I0 over a selected pixel and zero elsewhere. The sharp jumps from

one location to another are analogous to square waves that can be thought of as a

sum of many sine waves of increasing frequency. In signal processing, applying what

is called a low-pass filter eliminates some of the high frequencies and smooths the

signal. Mathematically, the signal is averaged by integrating the signal over local

regions. (This is called a convolution.)

xi

yi

Line

Figure 10.2 Supersampling a pixel
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More practically, Bresenham’s line algorithm picks between yi and yi + 1when the

true value of f (x) is most often somewhere in between. So the idea is to shade both

pixels P0 = (xi+1, yi) and P1 = (xi+1, yi + 1) in such a way that the center of intensity
falls right at y = f (xi). We are effectively averaging a pixel over its immediate neigh-

bors. To achieve this, recall that d(0,i) and d(1,i) are the distances from the line to the

lower (P0) and upper (P1) pixels, respectively.

d(0,i) = f (xi+1) − yi = f (xi+1) − ⌊ f (xi+1⌋
d(1,i) = yi + 1 − f (xi+1) = ⌈f (xi+1)⌉ − f (xi+1)

d(0,i) + d(1,i) = 1

Use d(0,i) and d(1,i) as weights for the intensities of the two pixels. Specifically, to

have an overall intensity of IL at each position on the line, set the intensity of P0 to

d(1,i)IL and the intensity of P1 to d(0,i)IL. If the line is closer to P0, then d(1,i) > d(0,i)
and we make P0 more intense (brighter or darker depending on the background) than

P1. The center of gravity of the two intensities is just the affine combination of the

two positions.

d(1,i)P0 + d(0,i)P1 = (yi + 1 − f (xi+1)(xi+1, yi)

+ (f (xi+1 − yi)(xi+1, yi + 1)

= (xi+1, f (xi+1) (10.5)

Assuming that human perception integrates this combination of two intensities, the

line should appear in its correct position and the sharp changes in intensity from

one position to the next should be softened. The result is a respectable anti-aliasing

algorithm (see [12] for more details).

10.1.3 Compositing

The color of an individual pixel is stored in the frame buffer (part of memory). One

of the most common color models is the RGB model, which stores red, green, and

blue color components often with one byte for each component; the pixel is then a

vector (r, g, b) with each component between 0 and 1. Early in the development of

graphics (late 1970s as a result of work by Alvy Ray Smith), a fourth component

called the alpha channel was added to the mix. Pixels now could be considered as a

vector (r, g, b, 𝛼), where the 𝛼 component indicated how opaque the pixel was. With

𝛼 = 1, the pixel is fully opaque and with 𝛼 = 0 it is fully transparent.

Representing pixels as vectors hints at the possibility of a pixel arithmetic. Are

there vector-like operations on pixels that have significant useful effects on an

image? Scalar multiplication makes some sense: s(r, g, b, 𝛼) = (sr, sg, sb, s𝛼); if, for
example, s decreases to zero, the pixel fades away as the color gradually reaches

black and the pixel becomes transparent. We have to keep in mind that the color
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components are constrained between 0 and 1, so it is not entirely obvious how either
scalar multiplication or pixel addition should work in general.

Earlier, while investigating shading, our technique was to find the appropriate col-
ors at the vertices of a triangle and then interpolate the colors throughout the interior
of the triangle. Since the coordinates sum to 1, an interpolation using barycentric coor-
dinates certainly chooses colors in some sense between the vertex colors. (It should
be noted that it is not totally clear how human visual perception of linear changes in
color affects the sense of the scene.) The alpha channel, however, adds a little com-
plexity, and it is not immediately clear whether interpolating the 𝛼 component gives
reasonable results.

One advantage of 𝛼 is the possibility of placing one image over another where the
foreground could obscure the background or perhaps where the background shows
through slightly. This is one way to composite two images, and the operation histor-
ically is referred to as the over operator. Consider just the color components of two
pixels, F = (rf , gf , bf ) from the foreground image and B = (rB, gB, bB) from the back-
ground image, and let the notation F ⊳ B represent the over operation. The task, then,
is to define this operator in terms of the arithmetic of pixel components (Figure 10.3).

The over operation should produce a new pixel which will replace the current
one at the given location in the frame buffer. If both F and B are completely opaque
(𝛼 = 1), then P = F ⊳ B = F. If B is opaque and F has 𝛼 as the alpha channel value,
then

P = 𝛼F + (1 − 𝛼)B (10.6)

The case where B is not fully opaque may not seem to make practical sense, but if
we compose three images together, then it does make sense for the two foreground
images.

If there are two foreground images and hence two pixels F1 and F2, then composit-
ing the second over the first and then over the background gives P = (F2 ⊳ F1) ⊳ B.
If this is to be a coherent operation, we may insist that it is associative.

P = (F2 ⊳ F1) ⊳ B = F2 ⊳ (F1 ⊳ B)

In this expression, we do not yet know how to define (F2 ⊳ F1) because here F1 may
not be completely opaque. Designate the alpha value of (F2 ⊳ F1) temporarily as 𝛼∗.

Foreground
α=0.5

Background
α=1

Figure 10.3 Over operation
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Calling on a little algebra gives the following derivation:

(F2 ⊳ F1) ⊳ B) = 𝛼∗(F2 ⊳ F1) + (1 − 𝛼∗)B

= [𝛼∗(F2 ⊳ F1)] + [1 − 𝛼∗]B

F2 ⊳ (F1 ⊳ B) = 𝛼2F2 + (1 − 𝛼2)(𝛼1F1 + (1 − 𝛼1)B)

= [𝛼2F2 + (1 − 𝛼2)𝛼1F1] + [1 − 𝛼2 − 𝛼1 + 𝛼2𝛼1]B (10.7)

The expressions in 10.7 must be equal to ensure associativity. For this to be true for
any B, the coefficients (in brackets) in front of B in both equations must be equal. For
it to be true for any F1 and F2, the remaining two expressions must be equal.

(1 − 𝛼∗) = 1 − 𝛼2 − 𝛼1 + 𝛼2𝛼1

𝛼∗(F2 ⊳ F1) = 𝛼2F2 + (1 − 𝛼2)𝛼1F1 (10.8)

Pulling this together gives the correct pixel arithmetic for compositing two pixels
when each has an arbitrary alpha value.

𝛼∗ = 𝛼2 + (1 − 𝛼2)𝛼1

F2 ⊳ F1 =
𝛼2
𝛼∗

F2 +
(
1 −

𝛼2
𝛼∗

)
F1 (10.9)

Checking to see that this formula is consistent with our earlier assumption, we set
𝛼1 = 1, which makes F1 fully opaque. Then, 𝛼

∗ = 1 and we get Equation 10.6 which
we initially developed for compositing a foreground over an opaque background.
When 𝛼2 = 1, F2 ⊳ F1 = F2, which is what we might expect when an opaque image
is placed over another image.

Up to now, F1 and F2 were three-dimensional vectors representing the three color
components. But suppose we represent pixels as (𝛼r, 𝛼g, 𝛼b, 𝛼), where the color com-
ponents have already been multiplied by the alpha value. This is the premultiplied
alpha form. The advantage is that we can bring further symmetry to the compositing
formulas.

Let F1 and F2 be the premultiplied alpha forms for the pixels; they are now four
dimensional vectors. Then

F2 ⊳ F1 = F2 + (1 − 𝛼2)F1 (10.10)

Some algebra verifies that this last formula encapsulates both the formulas in
Equation 10.9. Now, the fourth component of the vector holds the correct value
for alpha. The convenience of this expression argues for storing pixels in the
premultiplied form; as one might expect, there are reasons to use either pixel form.

There are many compositing operations in addition to the over operation (see [13]
for the original exposition of several operations). Some have tried to add and subtract
pixels in various ways to combine images, and in particular situations the effects
are useful. Yet, there does not seem to be a consistent theory of a universal pixel
arithmetic.
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10.2 NOISE

Organic objects like plants, mountains, and clouds are not simple cubes or spheres,

and it is not even apparent how they can be formed from many polygons or polyhe-

dra. Even if the basic shape of a mountain is captured with a multifaceted pyramid,

the texture of each face is far from smooth and reflective. These modeling problems

are indicative of many problems in graphics and also in mathematics where a deter-

ministic approach to a solution seems elusive. Since plants, mountains, and clouds

appear to have elements of randomness when viewed at any distance, it might be that

a random perturbation here or there can turn a sphere into a rock or a pyramid into a

mountain.

10.2.1 Random Number Generation

It all starts with random numbers, and most programming languages offer methods

or functions for producing a sequence that appears to be random. Actually, unless

we have a quantum computer or some way to sense electronic noise, the processes

are all deterministic and the string of random numbers is really pseudo-random. That

is, there is some algorithm which starts with a number (called the seed) and manipu-

lates it to get the first pseudo-random number. Then, generally, the algorithm uses the

first number to get the second number and continues indefinitely. One common and

simple algorithm referred to as a linear congruential generator uses the following

recurrence:

xn+1 ≡ axn + b (mod m) (10.11)

The constants a, b, and m must be selected carefully, but then the sequence {xn}
appears to be random. Notice that the recurrence uses arithmetic modulo m, meaning

that all the xn are remainders after dividing by m. That is, 0 ≤ xn ≤ m − 1. Certainly,

m should be large to ensure plenty of possible numbers; once a number repeats, the

sequence starts to cycle. There is some significant number theory behind choosing all

three constants to give a good pseudo-random generator.

Example 10.2 (Simple Linear Congruential Generator). Consider the recurrence

xn+1 ≡ 3xn + 2 (mod 7). Starting with the seed x0 = 3, the sequence proceeds as fol-

lows:

x0 = 3, x1 = 4, x2 = 0, x3 = 2, x4 = 1, x5 = 5, x6 = 3

Once 3 appears for the second time, the sequence starts repeating. Clearly, m should

be large and chosen so that a large number of possible remainders appear before

repeating. Primes are good choices, and m = 231 − 1 has proved desirable. ◽

With a sequence of positive integers modulo m, the numbers
xn

m
are all rational

(floating point) numbers between 0 and 1. A programming language might use the

function name rand() to return one of these rational numbers, and they can then be
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used in a variety of ways to choose other sorts of random numbers. For example,⌊3 ⋅ rand()⌋ + 1 selects one of the numbers 1, 2, or 3, pseudo-randomly.

From a long sequence of 1’s, 2’s, and 3’s, the fraction of 1’s should be close to

p3 = 1∕3. If we consider adjacent pairs of numbers, the fraction of pairs that are

two 1’s should be close to 1∕9. These sorts of patterns should appear with frequen-

cies indicative of equally likely chances of any of the three numbers. In particular,

p1 = p2 = p3 = 1∕3 is the probability of each number appearing. Pseudo-random

sequences that pass all these statistical tests are usually sufficiently random that if

we use them in a graphics setting, no unintended patterns will arise in the image.

10.2.2 Distributions

Usually, the sequence generated above by rand() is uniform in that the fraction of

numbers appearing in any small subinterval of [0, 1) depends only on the width of the
interval. So one-fourth of the numbers should appear in each of the intervals [0, 0.25),
[0.25, 0.5),[0.5, 0.75), and [0.75, 1). Of course, the numbers are pseudo-random, so

the exact fraction in an interval may vary, but it approaches one-fourth as more num-

bers are generated. If rand() generates a uniform sequence, then ⌊3 ⋅ rand()⌋ + 1 gen-

erates the numbers 1, 2, 3 equally often.

Characterizing the distribution of these random (understood to be pseudo-random)

numbers requires some ideas from probability theory. The probability that a number

appears in a sequence is the fraction of the time it appears. If we only generate num-

bers 1, 2, and 3, we say we have a discrete sequence and to describe it we list the

probability of getting each of the numbers. So the probabilities p1, p2, and p3 where
p1 + p2 + p3 = 1 describe the possible sequences that may be produced by the gen-

erator. These probabilities depend on how we designed the generator. If we actually

generate a sequence of 100 numbers, it may or may not exactly match the theoreti-

cal probabilities, but as we generate a longer and longer sequence, the match should

become closer.

For a discrete generator, we put the probabilities together into a mass function,

f (k) = pk, giving the probabilities for each possible value k. A histogram showing

bars whose heights are the probabilities pi visually summarizes the distribution. With

more possible values, there are more bars in the histogram, but the sum of all the

probabilities is always 1 (Figure 10.4).

On the other hand, if the generator can produce any fraction, say between zero

and 1, then the sequences generated are more continuous than discrete. Instead

of focusing on a single value, we find the fraction of the time that the generated

numbers appear in some interval [a, b). As the sequence grows longer, this fraction
gets closer to the theoretical probability of that interval. Instead of a histogram,

we use a curve, f (x), to describe the distribution’s shape. The area under the curve

between a and b is now the probability of that interval. This curve is called a density
function for the distribution, and analogous to the bars in the histogram, the total

area under the density curve is 1.

In probability theory, numbers in a random sequence are thought of as values for a

random variable, denoted by X. A generator produces values of X, and theoretically
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Figure 10.4 Distribution histogram (a) and curve (b)

the average of all those values should be what we call the expected value denoted as
EX. The expected value depends on the design of the generator, and in any particular
sequence produced the actual average may be a little different. Yet, as the sequence
grows, the average should get close to EX.

Definition 10.1 (Expected Value). For a discrete distribution of k distinct values xi
with probabilities pi, the expected value is a sum.

EX =
k∑

i=1
pixi

For a continuous distribution with density function f (x) and values ranging between
s1 and s2, the expected value is an integral.

EX = ∫
s2

s1

xf (x)dx

The variance (denoted 𝜎2) measures the spread of a distribution. Any particular
value of the random variable X may be close to or far from the expected value EX.
Variance measures how far away it is by calculating the square of the distance to EX
and then finding the average over all possible values.

Definition 10.2 (Variance). For a discrete distribution of k distinct values xi with
probabilities pi, the variance is a sum.

𝜎2 =
k∑

i=1
pi(xi − EX)2

For a continuous distribution with density function f (x) and values ranging between
s1 and s2, the variance is an integral.

𝜎2 = ∫
k

i=1
(xi − EX)2f (x)dx
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Figure 10.5 Variances of a normal distribution

The expected value and variance of a distribution summarize the key features of

the distribution’s shape. Expected value is the center, and the variance measures how

spread out the curve is. In the case of the normal distribution which looks like a

bell-shaped curve, the expected value marks the peak of the curve and hence indicates

the values in the sequence that occur most often. With high probability, the numbers

will be near the expected value. A high variance implies that the curve is flat and

spread out, meaning that there is a larger probability that numbers will be far from

EX, whereas a low variance indicates a curvewith a sharper peak and a low probability

of numbers straying far from EX (Figure 10.5).

10.2.3 Sequences of Random Numbers

Distributions are described theoretically, but once we have an actual sequence of

random numbers (called a sample), we can summarize it by finding an average and

measuring how spread out it is. If there are n numbers (ai), then a is the sample mean.

a = 1

n

n∑
i=1

ai

Most likely, a will be close to the theoretical expected value EX. To measure the

spread of the sequence, we calculate the squared of the distance between each number

and the average. The average of all these squared distances is the sample variance S2.

S2a = 1

n

n

i=1
(ai − a)2

It is often necessary to determine whether two sequences are independent of each

other or rather they rise and fall somewhat together. When generating an image using

random sequences, we may want the effects in the horizontal direction to be indepen-

dent of those in the vertical direction. To detect dependence, we calculate the sample
covariance between two sequences {ai} and {bi}.

c(a,b) =
1

n

n∑
i=1

(ai − ai)(bi − bi) (10.12)
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This quantity measures how the two sequences vary together. If at some position in
the sequence they are both above their mean (or below their mean), then the product
in the sum is positive. Otherwise, it is negative. So the sum is positive if the two
sequences tend to rise and fall together. It is negative if they tend to move in opposite
directions, and it is near zero if they do not seem to behave together in any way. (One
quick aside: for both sample variance and sample covariance, there are good reasons
to divide by n − 1 instead of n. This has to do with methods of statistical inference.)

Finally, by dividing by the square root of the sample variances of each sequence,
the covariance is normalized to be a number between −1 and 1.

Definition 10.3 (Sample Correlation Coefficient). The sample correlation coeffi-
cient is

r =
c(a,b)
SaSb

In working with random sequences in graphics, we look mostly for evidence of
correlation between sequences. This means that r is significantly nonzero.

Example 10.3 (Statistical Summary of Sequences). Suppose the {ai} sequence is
{2, 0, 1, 5, 4} and the {bi} sequence is {11, 7, 5, 2, 8}.

a = 1

5
(2 + 0 + 1 + 5 + 4) = 2.4

b = 1

5
(11 + 7 + 5 + 2 + 8) = 6.6

S2
a = 1

4

5∑
i=1

(ai − 2.4)2 = 4.3

S2
b = 1

4

5∑
i=1

(bi − 6.6)2 = 11.3

r =
c(a,b)
SaSb

= −3.67√
4.3

√
11.3

≈ −0.53

The correlation coefficient is always between −1 and 1, so the 0.53 value indicates
a positive correlation between the sequences. There is some evidence that they move
in opposite directions. Of course, we have very little data here. The key observa-
tion is that they appear correlated. Usually, we are looking for sequences that are
uncorrelated and hence have a correlation coefficient close to zero. ◽

10.2.4 Uniform and Normal Distributions

Two distributions stand out in computer generation of random sequences: the
uniform distribution and the normal (or Gaussian) distribution. The rand() function
will produce a uniform distribution if the underlying linear congruential generator
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(or other algorithm) is tuned appropriately to produce numbers with equal

probabilities. Then the distribution of
xn

m
can be considered continuous with density

f (x) = 1 for 0 ≤ x ≤ 1. Using the definition of expected value and variance, we

discover that EX = 1∕2 and 𝜎2 = 1∕12.
The normal distribution has a density that is bell-shaped. Many measurements in

nature like the height of pine trees or the density of vegetation tend to follow this

shape. (If not normal, the quantities are often log-normal, which is related). This

argues that the normal distribution is useful in producing natural-looking images.

The actual shape of the bell curve (and hence of the normal density) is characterized

by the expected value and the variance. The distribution with EX = 0 and 𝜎2 = 1 is

called the standard normal distribution and its density function is as follows:

f (x) = 1

2𝜋
e

x2

2 for −∞ < x < ∞ (10.13)

To produce a sequence of numbers with a normal distribution, one approach is to

start with the ubiquitous rand(). Perhaps the most important theorem in probability

theory, the Central Limit Theorem, says that if we add up numbers from almost any

distribution, the sum has a normal distribution.

Result 10.1 (Generating a Normal Distribution). If the values x1, x2, … , xk come
from a uniform distribution on [0, 1), then

Z =
∑k

i=1 xk − (k∕2)√
k∕12

is a value from an approximate normal distribution with EX = 0 and 𝜎2 = 1. As k
gets larger, the approximation gets better.

Assuming rand() produces values from a uniform distribution (between 0 and 1),

we generate k numbers and add them up. Then subtract k∕2, which we recognize as

k times the expected value of the uniform distribution. Finally, divide by the square

root of k times the variance of the uniform distribution. The subtraction and division

serves to normalize the value to fit the standard normal distribution. A histogram of

the Z values will have a bell shape. (A slightly deeper study of probability theory

verifies why these are the correct quantities to use for normalizing.)

Result 10.2 (Generating an Arbitrary Normal Distribution). If the values Z form an
approximate standard normal distribution, the values aZ + b form an approximate
normal distribution with EX = b and 𝜎2 = a2.

Using the technique just outlined, we can produce a sequence from any normal

distribution we wish. There are other more efficient techniques for doing this, but

even with k = 4 [taking a sum of four values from rand()], the current technique

gives a reasonable pseudo-random sequence with a normal distribution.
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10.2.5 Terrain Generation

A raw form of a landscape is just a compilation of rocky hills and valleys. To produce

a graphics simulation of such a terrain, one simple way is to start with a triangulation

of a planar region. For each vertex in the triangulation, generate a random number rep-

resenting the height (positive or negative) of the vertex. Reconnecting all the vertices

forms a surface made up of triangular faces. The resulting terrain looks reasonable,

although probably a little blocky. There are two reasons for this look: the resolution is

fixed by the original triangulation, and the distribution of heights can drastically affect

the overall shape of the terrain. If the variance of the random sequence is large, the

terrain might look quite spikey, and if the variance is small it may be overly smooth.

Moreover, if we choose a uniform distribution over a normal distribution, it may look

as though changes in height are too sudden or too sharp (Figure 10.6).

There are many custom algorithms for generating terrains and all of them need to

cope with two main criteria.

1. The distribution of random numbers should result in natural looking changes in

height.

2. There should be detail at all scales. As we zoom in, the detail should look just

as random as it did originally.

A general class of algorithms uses a midpoint displacement technique to improve

on the primitive algorithm above by adding detail and improving resolution. One of

these algorithms is called the diamond-square algorithm and begins with a square

grid of points (Figure 10.7).

Diamond-Square Algorithm

1. Initialization. Assign heights to the grid points using a standard normal distri-

bution. (EX = 0 and 𝜎2
0
= 1.)

2. Update Distribution. Reduce the variance by half (𝜎2
n+1 =

1

2
𝜎2

n ).

3. Square Midpoint. Find the midpoint of each grid square and assign a height

equal to the average of the four corner points plus an additional random amount

(positive or negative).

(a) (b)

Figure 10.6 Terrains: low variance (a), high variance (b)



NOISE 357

Diamond midpoint Increased resolution

Figure 10.7 Diamond-square algorithm

4. Diamond Midpoint. Themidpoints of two adjacent squares and the two common

corner points of those squares form a diamond shape (a rotated square). Set the

height of the center of the diamond shape to the average of the four corners of
the diamond plus an additional random amount.

5. Increased Resolution. Now the original points together with the new points form

a square grid with edge length one-half the original grid. Repeat steps 2 through

5 until the grid size becomes sufficiently small.

The algorithm continues looping until the grid size is small enough to look decent

on the display. Adding diagonals to the squares produces triangular faces which can

then be shaded and displayed. The use of randomly perturbed midpoints in this algo-
rithm ensures that the terrain detail looks equally random at many scales. Reducing

the variance on each pass through the loop keeps the distribution of peaks looking
statistically the same as we enlarge the terrain. (More theoretically, the midpoint con-

struction approximates a two-dimensional Brownian motion which is an example of

a stochastic process.)
Without the diamond midpoint step in the algorithm, the resulting terrain can

have faint remnants of the underlying rectangular grid. This is a common problem in

random algorithms that begin with some geometrically uniform structure. Mathemat-
ically, there is a correlation between two lines of heights in the grid. Other correlations

between sequences of heights may appear and add unwanted artifacts. It is some-

times more of an art than a science to adjust the algorithm appropriately to minimize
correlations.

Finally, instead of changing the height of points on a grid, the algorithm could

change the color of the points, perhaps on a gray scale. The result is a cloud-like
image. Random image algorithms like the one above generally benefit from a wide

range of input parameters, allowing the graphics programmer to alter details to match
the type of terrain or cloud appropriate for the scene. In particular, different distribu-

tions of random numbers have a significant effect on the image.

10.2.6 Noise Generation

A terrain is an example of a two-dimensional random signal. At any point in the grid

plane, the height of the terrain is a value from a signal that spatially changes randomly.
We are most familiar with random signals in the context of sound waves where we

call such signals noise and the random changes are in time and not in space. A simple
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sine wave is a puremusical tone, but if we add random perturbations to it we get noise.

The key idea in Fourier analysis is that these noise signals can be decomposed in to a

sum of sine waves with differing frequencies and amplitudes. Random perturbations

tend to add additional frequencies to the mix, particularly high frequencies.

The field of signal processing studies various attributes of noise and catalogs ran-

dom signals according to various properties of the decomposition into sine waves. For

example, if the power in a sine wave is the same for all frequencies, then the signal

is called white noise. Based on the power spectrum, noise signals can have widely

different characters.

The coloring in a piece of granite can be thought of as a noisy perturbation of an

underlying pattern (flecks of various minerals). Producing a texture map to simulate

granite is then a matter of starting with an appropriate pattern and adding noise in

various ways. It would be convenient if we had a noise function that returns a value

from a random signal which could then be used to either add color to a texture or per-

turb the original texture pattern. In this way, the graphics programmer could generate

textures algorithmically. Bump maps from an earlier chapter are examples of using

noise to procedurally produce textures.

In 1983, Ken Perlin recognized the usefulness of noise in graphics and designed

a noise function with many desirable properties. He was interested in constructing

textures, so the function had to be used in a variety of ways to integrate randomness

into other sorts of patterns. Simply calling on a random number generator would not

do because it is too wildly fluctuating; more control is needed. Starting with a grid,

Perlin built a surface that could be sampled at any point to get a noise value. The

following criteria were the key in his design.

1. The function should be relatively controlled. Intuitively, it should not be widely

fluctuating, but the programmer should be able to use it to produce more widely

fluctuating textures. Technically, it should not have very high frequencies (small

details) or very low frequencies (larger structural details). “Controlled” also

means that it does not have discontinuities and that the average height is zero,

allowing the programmer to scale and translate as needed.

2. Rotating or translating the surface should maintain all statistical characteristics.

Basically, it should look random from any direction.

3. There should not be any correlations that are visually obvious.

4. It should be easy and efficient to calculate a value at any point.

We will focus on a two-dimensional noise function which gives a surface, but Per-

lin’s methods work in any dimension and we could construct a three-dimensional

function corresponding to a random volume. One key criterion for Perlin is calcula-

tion efficiency. Part of the surface structure can be precomputed, but for any point the

final calculations need to be fast.

Perlin’s Method [Defining the function Noise(x, y).]

1. Begin with a grid of points with integer coordinates.



NOISE 359

2. Pick a random normal for each grid point to determine a plane through that grid
point.

3. Compute the height of the plane at a given point (x, y).
4. Compute the weight of the grid point using a weight function which falls off

with distance from the grid point.

5. Multiply the height by the weight to get the influence from the grid point.

6. Add up the influences at the four grid points, marking corners of a square con-
taining (x, y). Return the sum as the quantity Noise(x, y).

Step 2 involves several details. For random normals, we really want vectors dis-
tributed on the surface of a sphere. These can be picked by selecting each of the three
coordinates for a vector using a uniform distribution on [0, 1). This gives vectors in a
unit cube; simply discard any vector with length greater than 1. The resulting vectors
are distributed throughout the sphere and can be normalized if needed.

Yet, we only want one normal per grid point; any time we have the same integer
coordinates, we want the same normal. To guarantee this uniqueness, put all the nor-
mals in a table and use the grid point coordinates to find a position in the table. Perlin
precomputes a random permutation and uses it to locate a normal in the table.

Example 10.4 (Computing Perlin Noise). To find the value of Noise(1.2, 0.6), first
notice that it is in the square defined by the grid points G1 = (1, 0), G2 = (2, 0), G3 =
(2, 1), and G4 = (1, 1).

Now use the grid point coordinates to find the associated random normals. Suppose
that these normals are n⃗1 = (0.2, 0.1, 0.5), n⃗2 = (0.1, 0.3,−0.1), n⃗3 = (0.5,−0.1, 0.1),
and n⃗4 = (0.1, 0.2,−0.2) (Figure 10.8).

Using three-dimensional coordinates for G1 = (1, 0, 0), this point is on a plane
with normal n⃗1, and point P = (1.2, 0.6, h) is also on the plane where h is the
height above (or below) the grid. Vector (P − G1) is parallel to the plane, and
consequently

n⃗1 ⋅ (P − G1) = 0 =⇒ 0.04 + 0.06 + 0.5h = 0 =⇒ h = −0.2

This is the height from step 3 of Perlin’s method. To calculate the weight in step 4, we
use the cubic polynomial 1 − 6t5 + 15t4 − 10t3. This function falls off in an S-shape

G1

G3

G4

G2

P

h

n

Figure 10.8 Perlin noise calculation
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manner as we get farther from a grid point. The two-dimensional vector from G1 to

(1.2, 0.6) is (0.2, 0.6). The weight is then

(1 − 6|0.2|5 + 15|0.2|4 − 10|0.2|3) = 0.942

(1 − 6|0.6|5 + 15|0.6|4 − 10|0.6|3) = 0.317

Weight = (0.942)(0.317) ≈ 0.3

The influence from grid point G1 is then Height × Weight = −0.2 × 0.3 = −0.06.
The same type of calculation gives the influence from each grid point.

Height Weight Influence

G1 −0.2 0.3 −0.06
G2 1.0 0.018 0.018

G3 −4.4 0.04 −0.176
G4 −0.3 0.64 −0.192

In step 6, we find the sum of the influences to get noise(1.2, 0.6) = −0.41. ◽

Perlin’s noise has proven very flexible and useful in constructing realistic textures.

At first, the weight function was not quite right and the function 1 − 6t5 − 15t4 + 10t3

was substituted to guarantee smoothness (the first derivative is zero at the endpoints

0 and 1). The method for computing random normals presented here allows normals

close to the direction of the grid lines and this can cause some artifacts. Perlin’s

revised algorithm deletes those normals in the direction of the lines. All these adjust-

ments come from building textures using the noise function and then noting any visual

flaws.

The distribution of heights in the noise function is not easy to calculate, but notice

that the last step of Perlin’s method adds four random quantities together. The Central

Limit Theorem suggests that this introduces a hint of a normal distribution. To add

higher frequencies to the noise and hopefully change the distribution in interesting

ways, one approach is to sum up values of the noise function. Consider the following

sum:

noise(x, y) + 1

2
noise(2(x, y)) + 1

4
noise(4(x, y)) (10.14)

The sum could continue by adding more terms, but effectively it is adding higher and

higher frequencies into the mix and making the surface less smooth. Dampening the

higher frequencies with coefficients that get smaller and smaller controls the effects.
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This sort of manipulation is indicative of the flexibility available when working with
the noise function.

10.3 L-SYSTEMS

One characteristic of many organic forms is self-similarity. A single branch of a pine
tree when scaled up looks much like the entire pine tree; a part of the tree is similar to
the entire tree. Clouds behave in much the same way, where chunks of the cloud, on
close examination, look like the entire cloud. The phenomenon can continue down in
scale because pieces of pieces can also have the same form as the whole.

Sometimes the self-similarity is quite geometric, and we have fractal structures
which were first thoroughly investigated by Benoit Mandelbrot. The snowflake curve
introduced in an earlier chapter is an example of this deterministic self-similarity. To
construct these shapes, basic parts of the image, such as line segments, are replaced
recursively by some generating shape that determines the final image. In the case of
the snowflake curve, line segments are replaced by four smaller segments forming a
triangle. The process continues at smaller and smaller scales theoretically without
limit. The mathematical characteristics of fractal curves are just as interesting as
the visual image. Unlike simple curves with dimension one, the wiggly nature
of fractal curves means they have fractional dimension, often between 1 and 2
(Figure 10.9).

Rather than being completely deterministic, plants and other natural forms have
a stochastic component as well. Trees grow in uniform ways, but are perturbed by
environmental events. Overall, tree growth displays self-similarity because a branch
is made from smaller branches all with similar structure. In 1968, Aristid Linden-
mayer, a theoretical biologist (University of Utrecht), devised a system for describing
the recursive nature of plant growth in order to more carefully study multicellular
organisms. His system borrowed from the use of grammars in the study of natural
and artificial languages. Effectively, his grammar rules were growth rules, and rather
than constructing sentences he was constructing plants.

Snowflake Windmill Dragon

Figure 10.9 Fractal curves
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10.3.1 Grammars

Grammars have been used for a long time in an attempt to describe how we gener-

ate good sentences. They also grew out of the study of logic, when computers were

first conceived, to help describe the nature of computation. If we think of digital

computers as devices that turn strings of characters (the input) into new strings of

characters (the output), then we can imagine the computation process as starting with

a string of symbols and applying grammar rules to produce other strings. Once the

strings are interpreted as numbers or other forms of data, we understand the process

as computation.

Grammars have different formal structures depending on the context, but all have

some form of the following characteristics:

1. There is a finite set of possible symbols called the alphabet and denoted by Σ.
2. Each finite string of symbols (like aaba) is called a word.

3. A set of words is called a language.

4. A rule, or production, describes how to replace one string with another. For

example, a → ab is a production that allows a to be replaced with ab.

5. There is an initial word called an axiom.

Many of the grammars used in studying natural language or the theory of com-

putation allow the application of one production at a time to generate a new word.

Starting with the axiom word, a series of productions derives a new word. The col-

lection of all these words is called the language of the grammar; if G is the grammar,

then L(G) is the language of the grammar. When Lindenmayer designed the gram-

mars now called L-systems (after Lindenmayer), he wanted to mimic the growth of

living systems where all cells are participating in growth at the same time. So for

L-systems, all possible productions are applied at the same time.

Example 10.5 Let G be a grammar with alphabet Σ = {a, b}. There are two pro-

ductions in G: a → a, b → ab. The axiom is ab. Then we can successively derive the
following words:

ab → aab → aaab

Notice that in the first step, the axiom ab becomes the word aab. Here, both produc-
tions were applied because a was replaced with a and b was replaced with ab.

It is not hard to see that we can continually produce words, an infinite number, and

they all are a series of a’s followed by a single b.

L(G) = {anb|n ≥ 1}

Continuing with the biological analogy, we might consider that the symbol a repre-

sents a mature cell and the symbol b represents a cell that is ready to divide. ◽
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In the last example, the productions each allowed one symbol to be replaced. This

is the key, and each symbol in the alphabet should have a corresponding production.

If not, we assume there is an identity production that replaces a symbol with itself.

With exactly one production for each symbol, the grammar is deterministic in that

there is no choice involved when moving from one word to the next.

Definition 10.4 (DOL-system). An L-system is a grammar where all possible pro-
ductions are applied at once. If all productions have the form 𝜆 → W, where 𝜆 is
a symbol and W is a word, and if there is exactly one production for each symbol
in the alphabet, then the system is called a DOL-system (deterministic context-free
L-system).

This definition hints at further extensions of L-systems. First, a DOL is

context-free, which means all the productions have just one symbol on the left-hand

side. For the production a → b, it does not matter what other symbols are next to

a; any a can be replaced with a b. On the other hand, a production like ab → abab
can be applied only when b follows a in the string. This is a context-sensitive

production. Extending L-systems to allow context-sensitive productions offers yet

more descriptive power.

Moreover, if there were two productions like a → b and a → c, then we have to

make a decision as to which one to apply and this adds an element of randomness

to the grammar. In addition to extending the form of productions, other avenues,

like adding special symbols, can make the basic grammars more and more com-

plex. Yet, the DOL-systems alone prove remarkably expressive in building graphics

images.

10.3.2 Turtle Interpretation

A DOL-system describes words (more generally a language), but to turn those

words into images we need a method for transcribing words into geometry. A useful

approach is what has historically been called turtle geometry. Several research

projects in the late 1960s sought to teach programming skills using a robot (referred

to as a turtle) to draw simple two-dimensional geometric images as it rolled over

paper on the floor. Writing programs for the turtle involved issuing commands to

turn right or left, to go forward a certain amount, and to raise or lower the pen.

These commands can be encoded as symbols in a grammar. A word in the resulting

language is then a sequence of commands that can direct the construction of an

image on the display screen instead of the floor. A somewhat common encoding is

the following:

F Move forward one step while drawing a line segment.

+ Turn left by angle 𝜃.

− Turn right by angle 𝜃.

With 𝜃 = 𝜋∕2, the word F + F + F + F means take one step while drawing,

turn left 𝜋∕2, take another step, turn left 𝜋∕2, and so on. The end result is a
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Figure 10.10 Turtle graphics

square traced counterclockwise. To step and turn, we need to keep track of where

the turtle is and which direction it is headed. Suppose it is currently at position

(x, y) heading in direction 𝛼, where horizontally to the right is 𝛼 = 0 and positive

angles are counterclockwise. To go forward one step, a line is drawn from (x, y) to
(x + d cos 𝛼, y + d sin 𝛼). A left turn updates the heading to 𝛼 + 𝜃 (Figure 10.10).

To describe a DOL-system, we start with the alphabet Σ = {F,+,−}, specify
the length of a step (d) and the turn angle (𝜃), give the initial axiom, and list the

productions. To capture the recursive nature of some images, we devise a production

rule that replaces a move forward F with some other pattern.

Example 10.6 (Snowflake Curve). Let the DOL-system have the alphabet

Σ = {F,+,−} and axiom F + +F + +F. There is an identity production for each

symbol except F.

F → F − F + +F − F

Set the step size to d and let 𝜃 = 𝜋∕3. Then the production replaces an edge F with

an edge of four segments forming a small equilateral triangle on the original edge.

This is the way a snowflake curve is built.

Applying the productions starting from the axiom gives a new word.

F + +F + +F →

F − F + +F − F + +F − F + +F − F + +F − F + +F − F

New words grow quickly in length, so the step size might need to be scaled appro-

priately to make sure the image fits on the display screen (see the curve on the left in

Figure 10.9). ◽

A useful addition to the alphabet for the DOL-system is a pair of brackets

( [ and ] ). The left bracket causes the turtle to save its current position and direction.

(In programming terms, we push the position and direction onto a stack.) The right

bracket causes the turtle to retrieve a position and direction from the stack (pop from
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the stack) and reposition itself accordingly. With these new symbols, additional

image structures are possible.

Example 10.7 (Bracketed DOL-System). The bracketed DOL-system has alphabet

Σ = {F,+,−, [, ]}. The axiom is just F. Aside from the identity productions, there is

one other production.

F → F[+F]F[−F]F

Set 𝜃 = 𝜋∕6. The first few words derived are the following:

F → F[+F]F[−F]F

→ F[+F]F[−F]F[+F[+F]F[−F]F]F[+F]F[−F]

F[−F[+F]F[−F]F]F[+F]F[−F]F

The brackets add a branching character to the image, which begins to resemble a

plant or even a tree. It is not too hard to add a leaf symbol and adjust the productions

so that leaves appear at the end of branches (Figure 10.11). ◽

There is nothing prohibiting a three-dimensional version of these images. A for-

ward step F is still a line segment on the screen, but now we need the position and

direction to be adapted to three dimensions. The position is no problem; simply add a

coordinate (x, y, z). The direction, however, requires not only a heading but also an up
direction and a left (or right) direction. Actually, we need a right-handed coordinate

system with an up vector, a forward vector, and a left vector. All three vectors need

to be saved as the direction. In order to indicate various turns, we need more symbols

in the alphabet to encode turns around each of the three axes. The resulting image

should be rendered in perspective to preserve the three-dimensional quality.

10.3.3 Analysis of Grammars

The mathematical analysis of grammars can take several directions depending on the

context. For the theory of computation, the main question is which grammars corre-

spond to particular types of abstract machines (finite automata, push-down automata,

Figure 10.11 Branching plant (two and four iterations)
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Turing machines). For the more general study of abstract languages (sets of words),

an important question is to determine whether two grammars generate the same lan-

guages.

For graphics purposes, the main question is to infer the structure of a grammar

that could generate a particular type of image. In the original study of L-systems,

mimicking plant growth was the key goal. One interesting aspect of this is to deter-

mine how fast words grow in length under a particular grammar; this is analogous to

how fast plants grow. Since this question can arise in various contexts in the study of

grammars, it is useful to dig deeper.

Consider the DOL-system in Example 10.5. There were two productions a → a
and b → ab. Keeping track of how many of each symbol are in a derived word is a

matter of looking at the productions and counting how each symbol gets replaced.

For example, according to the productions, each a in the initial string leads to one a
in the derived word, and each b in the initial string leads to one a in the derived word.

So the number of a’s in the derived word is the sum of the a’s and b’s in the initial

string. Let ni(a) be the number of a’s in the ith word and let ni(b) be the number of

b’s. The sum of these two quantities gives the total number of symbols in the word

and is called the growth function, f (i).

C =
[
1 1

0 1

]
=⇒ C

[
ni(a)
ni(b)

]
=

[
1 1

0 1

] [
ni(a)
ni(b)

]
=

[
ni+1(a)
ni+1(b)

]
(10.15)

The matrix C represents the effect of the grammar productions, and multiplication by

C updates the symbol counts in the derived word. The total number of symbols in the

derived word is f (i + 1) = ni+1(a) + ni+1(b). Starting with the axiom ab, the growth
function f (k) is determined by the kth power of C.

Ck =
[
1 k
0 1

]
=⇒ Ck

[
1

1

]
=

[
k + 1

1

]
(10.16)

There are k + 1 symbols a and one symbol b in the kth derived word, so f (k) = k + 2.

This is not a surprise because it is rather simple to see how the symbols accumulate

in this grammar.

Replace the first production with a → b. Then the matrix C is slightly different,

but the powers of C are very different.

C =
[
0 1

1 1

]
C2 =

[
1 1

1 2

]
C3 =

[
1 2

2 3

]
The corresponding growth function increases as follows: f (0) = 2, f (1) = 3, f (2) =
5, f (3) = 8. It follows the Fibonacci numbers and in fact grows exponentially. (The

growth is determined by the eigenvalues of the matrix C. These are values 𝜆 such

that C𝑣 = 𝜆𝑣 for some vector 𝑣. The theory of eigenvalues is developed in linear

algebra, but in this example the eigenvalues are
1±

√
5

2
and powers of these determine

the growth function.)
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The grammar in Example 10.6 has only one production that is not the identity:F →
F − F + +F − F, and it is rather straightforward to count symbols as they accumulate.

However, the same matrix technique can work here. Suppose we divide the symbols

into two categories: F’s and all the others. The correct matrix C is again easy to

construct.

C =
[
4 0

4 1

]
C2 =

[
16 0

20 1

]
C3 =

[
64 0

84 1

]
The growth function grows exponentially, and powers of 4 govern how rapidly it

grows.

Grammars with many productions have complicated growth functions, but never-

theless, they all have a common structure [14].

Result 10.3 (Growth Functions for DOL-Systems). For a DOL-system, the growth
function has the following form:

f (k) =
m∑

j=1
Pj(k)𝜆k

j

The Pj’s are polynomials and the 𝜆j’s are nonnegative integers.

Unfortunately for those interested inmodeling plants with L-systems, plant growth

usually levels off (logistic growth). This means that the basic DOL-system has to be

altered to adjust growth rates. Yet, this did not prove to be a major problem and the

modeling of plants with L-systems has proved very successful.

10.3.4 Extending L-Systems

To give just a hint of further extensions that can lead to more interesting images,

the next example makes two simple alterations: adding an additional symbol, and

allowing a random choice of productions.

Example 10.8 (Recursive Tree). Replace the symbol F with two new symbols F0

and F1. Both new symbols cause a line segment to be drawn on the screen. The axiom

for the system will be F1, and the productions are:

F1 → F0[+ + F1] − F1

F1 → F0[+F1] − F1

F1 → F0[+F1]–F1

F1 → F0[+ + F1]–F1

F0 → F0
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Figure 10.12 Recursive tree

All other symbols have an identity production. The four productions with F1 on the

left offer a choice, so each will be selected with probability one-fourth. Notice that

the difference between these productions is the angle of a turn. In some, it is twice

what it is in others. This adds a stochastic quality to the image, which may mimic the

random perturbations in nature (Figure 10.12).

The production withF0 simply designates a mature branch that no longer produces

two new branches. For further realism, the production could beF0 → F0F0, indicating

that the mature branches grow longer and longer relative to new branches. ◽

More elaborate L-systems actually track theways inwhich varieties of plants grow.

By introducing parametric L-systems, where symbols like F become functions F(x),
graphics programmers can simulate plant signals that prompt leaf or flower growth.

In a parametric system, F(x) can represent a line segment of length x. This type of
control can simulate the way trees grow to avoid shading from other trees (see [15]

for a more in-depth exposition).

10.4 EXERCISES

1. Use Bresenham’s line algorithm to find the correct pixels on the line between

(6, 2) and (20, 8).

2. Use Bresenham’s line algorithm to find the correct pixels on the line between

(8, 4) and (18, 16).

3. Design an improvement to Bresenham’s line algorithm that looks ahead two

pixels to decide which next two to include.

4. Design an algorithm analogous to Bresenham’s line algorithm to draw a circle

of radius r centered at the origin. (Hint: Consider the part of the circle in the

first or second octant.)
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5. Let pixels P0 = (0.2, 0.35, 0.7, 0.4) and P1 = (0.5, 0.5, 0.4, 0.3) be two pixels
where the alpha is not premultiplied. Calculate the value of the pixel P0 ⊳ P1.
Repeat the calculation using the premultiplied alpha form.

6. Suppose the boundary of a polygon (possibly concave) has already been con-
verted to pixels. Design an algorithm which, when given the coordinates of any
pixel inside the polygon, will fill the entire interior with a fixed color.

7. Algebraically verify that Equations 10.9 and 10.10 are correctly derived from
the previous compositing results.

8. Starting with x = 2, find the sequence of numbers coming from the linear con-
gruential generator xn+1 = 3xn + 5 (mod 17). Do all the possible remainders
show up in the sequence?

9. Using the definitions of expected value and variance of a continuous distri-
bution, verify that for a uniform distribution between 0 and 1, EX = 1∕2 and
𝜎2 = 1∕12.

10. Calculate the covariance of the two sequences 2, 5, 4, 4, 3 and 1, 1, 3, 2, 1.

11. Evaluate Perlin’s noise function at (1.1, 2.7).

12. Find two different DOL-system grammars that produce the same language (set
of words).

13. Determine how the growth function for the bracketed L-system in Example 10.7
behaves. Give the appropriate matrix C.

10.4.1 Programming Exercises

1. Implement Bresenham’s line algorithm. Input the integer coordinates of two
pixels on the screen and draw the line segment between them.

2. Experiment with compositing one solid color rectangle on top of another where
the overlap is a smaller rectangle.

3. One common image processing task is to blur an image slightly. Read in an
image and replace each pixel with the average of its four (or eight) neighbors.
(Be careful not to overwrite previously blurred pixels.)

4. Using the technique given, write a method (function) for generating a sequence
from a normal distribution where EX and 𝜎2 are the input. Produce a histogram
(from any program or code) of the sequence and verify the bell shape.

5. Generate a terrain by simply selecting heights at grid points from a normal dis-
tribution. Experiment with changing the variance of the normal distribution.
Compare the result with a terrain constructed using the diamond-square algo-
rithm.

6. Write code to implement an L-system with the alphabet Σ = {F,+,−, [, ]}.
Input the axiom and productions from the examples and output the image.



APPENDIX A

GEOMETRY AND TRIGONOMETRY

A.1 TRIANGLES

Two triangles that share the same three interior angles are said to be similar
(Figure A.1). The three ratios of corresponding sides for similar triangles are all

equal. That is, letting |AB| denote the length of the edge from vertex A to vertex B,
the following ratios are equal:

|AB||DE| = |BC||EC| = |CA||CD| (A.1)

A line segment passing through a vertex and perpendicular to the opposite side of

a triangle is called an altitude (Figure A.2). There are three altitudes in a triangle and
they all intersect in a single point called the orthocenter. Any side of the triangle can
be considered the base and the area of the triangle is one-half of the length of the base
(b) times the length of the altitude (h) that is perpendicular to the base

Area of Triangle = 1

2
bh (A.2)
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Figure A.1 Similar triangles

Another formula, known as Heron’s formula, uses the lengths of the three sides of
the triangle a, b, and c, along with one-half the perimeter s = 1

2
(a + b + c).

Area of Triangle =
√

s(s − a)(s − b)(s − c) (A.3)

A line segment passing through a vertex and the midpoint of the opposite side is
called a median. Again, the three medians of the triangle intersect in a single point
called the centroid. This point divides each median in the ratio of 2 ∶ 1; in other
words, the intersection point is one-third of the way from a side to the opposite vertex
along a median (Figure A.2).

A line segment passing through a vertex and bisecting the vertex angle is simply
called an angle bisector. The three angle bisectors of a triangle meet in a single point
called the incenter. A circle centered at the incenter that just touches (tangent to) one
side of the triangle also touches the other two sides. This circle is the inscribed circle
for the triangle and is called the incircle.

A perpendicular bisector for the side of a triangle is a line that intersects the side
at its midpoint and is perpendicular to the side. The three perpendicular bisectors
for a triangle all meet in a single point called the circumcenter. Any point on a per-
pendicular bisector is equidistant from the two vertices bounding the triangle’s side.

Altitude

Median

Angle
bisector

Perpendicular
bisector

b

h

Figure A.2 Altitudes, bisectors, medians
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Consequently, the circumcenter is equidistant from all three vertices and is the center

of a circle that passes through the three vertices. This circle is the circumscribed circle

for the triangle and is called the circumcircle.

A.2 ANGLES

Angles are measured by how much arc they cut from a circle. In Figure A.3, ∠BAC,

positioned at the center of the circle, cuts the arc BC from the circle. A full circle

has 360∘ or, in the radian measuring system, 2𝜋 radians. The circumference of a unit

circle is 2𝜋, so radian measure is measuring the length of the arc cut from a unit circle

by an angle whose vertex is at the center of the circle. A right angle is 90∘, which is
𝜋

2
radians.

The sum of the three interior angles for a triangle is 180∘ or 𝜋 radians. Using this

fact and by considering the triangles ΔDAB and ΔDAC in Figure A.3, it follows that

∠BAC = 2 × ∠BDC. An angle inscribed in a semicircle with vertex on the circle cuts

exactly half the circle and is therefore a right angle ( 𝜋
2
radians or 90∘).

A dihedral angle is the angle between two planes. If the planes are not paral-

lel, they intersect in a line. Any plane perpendicular to this line cuts both planes in

lines. The angle between these two lines of intersection is the dihedral angle. (There

are actually four such angles with opposite angles equal. The sum of two adjacent

angles is 180∘.) The dihedral angle is equal to the angle between the normals to the

plans.

Three-dimensional angles, called solid angles, can be formed by cones emanating

from a vertex point. (A cone is formed by drawing straight lines from a vertex to the

perimeter of Figure A.4.) The cone cuts the surface of a unit sphere just like an angle

cuts the unit circle. The unit sphere has a total surface area of 4𝜋, and the area cut by

the cone is the size of the angle. The unit of measure is the steradian. A cone formed

by the three perpendicular coordinate planes cuts one-eighth of the sphere and hence

𝜋∕2 steradians.

A

B

C

D

Figure A.3 Angle in circle
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P

Figure A.4 Solid angle

A.3 TRIGONOMETRIC FUNCTIONS

Figure A.5(a): There is a large and small right triangle with one angle labeled 𝛼.

Looking first at the larger triangle, define the basic trigonometric functions by

sin 𝛼 = a
c

cos 𝛼 = b
c

tan 𝛼 = a
b

(A.4)

The smaller right triangle is a reduced version of the larger and therefore similar;

the ratios of the sides stay the same, so our definition of sine, cosine, and tangent are

consistent. Now suppose we scale the larger triangle until the hypotenuse is exactly

equal to 1. Let the vertex of angle 𝛼 be the center of a unit circle and let this center

also be the origin of a Cartesian coordinate system. One side of the angle is placed

along the positive x-axis and we move counterclockwise to indicate a positive angle.

We can reinterpret the trigonometric functions in terms of the coordinates of the point

where the angle’s side intersects the circle.

Figure A.5(b): Since the length of the hypotenuse is 1, the point of intersection has

coordinates ( b
c
,

a
c
), so the x coordinate is the cosine and the y coordinate is the sine.

This definition allows us to find the sine and cosine of angles larger than 𝜋∕2 radians.
It is then possible that the coordinates are negative. Hence, using radian measure,

sin( 2𝜋
3
) =

√
3

2
and cos( 2𝜋

3
) = − 1

2
.

(a) (b)

α

α
a

b

c
1

x

y

(cos(α),sin(α))

Figure A.5 Trigonometric functions
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This definition of sine and cosine using the unit circle leads to several relations

among the trigonometric functions:

sin2(𝛼) + cos2(𝛼) = 1

sin(−𝛼) = − sin(𝛼) cos(−𝛼) = cos(𝛼)

sin(𝜋 − 𝛼) = sin(𝛼) cos(𝜋 − 𝛼) = − cos(𝛼)

sin(𝛼 + 2𝜋) = sin(𝛼) cos(𝛼 + 2𝜋) = cos(𝛼)

(A.5)

It is convenient to define other trigonometric functions in terms of sine and cosine.

Tangent: tan(𝛼) = sin(𝛼)
cos(𝛼)

Secant: sec(𝛼) = 1

cos(𝛼)

Cosecant: csc(𝛼) = 1

sin(𝛼)

Cotangent: cot(𝛼) = cos(𝛼)
sin(𝛼)

(A.6)

Using the law of cosines establishes two addition formulas. Corresponding sub-

traction formulas can be found by substituting −𝛽 for 𝛽.

sin(𝛼 + 𝛽) = sin(𝛼) cos(𝛽) + sin(𝛽) cos(𝛼)

cos(𝛼 + 𝛽) = cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽) (A.7)

Setting 𝛽 = 𝛼 and using sin2(𝛼) + cos2(𝛼) = 1 gives

cos(2𝛼) = cos2(𝛼) − sin2(𝛼) = 2cos2(𝛼) − 1

=⇒ cos2(𝛼) = 1 + cos(2𝛼)
2

(A.8)

Similarly, we can also establish

sin2(𝛼) = 1 − cos(2𝛼)
2

Table A.1 gives a sampling of values derived from the previous relations:

The sine function takes an angle and returns a number between −1 and 1. There is
an inverse sine function, denoted sin−1(x), which takes a number between −1 and 1

and returns the angle. (The function is also called arcsine, and in some program-

ming languages it is named asin). Several angles have the same sine, but the inverse

function can return only one, so we have to be clear about the domain and range
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TABLE A.1 Values of Trigonometric Functions

Degrees Radians Sine Cosine Tangent

0 0 0 1 0

22.5 𝜋∕8
√

2−
√
2

2

√
2+

√
2

2

√
2 − 1

30 𝜋∕6 1

2

√
3

2

1√
3

45 𝜋∕4
√
2

2

√
2

2
1

60 𝜋∕3
√
3

2

1

2

√
3

90 𝜋∕2 1 0 ∞

of the inverse functions. For the inverse sine function, the domain is [−1, 1] and the

range is [−𝜋∕2, 𝜋∕2]. The following gives the domain and range for the three main

trigonometric inverse functions:

sin−1 ∶ [−1, 1] → [−𝜋∕2, 𝜋∕2]

cos−1 ∶ [−1, 1] → [0, 𝜋]

tan−1 ∶ (−∞,∞) → (−𝜋∕2, 𝜋∕2) (A.9)



APPENDIX B

LINEAR ALGEBRA

B.1 SYSTEMS OF LINEAR EQUATIONS

A system of m linear equations in n unknowns looks like this:

a11x1 + a12x2 + · · · + a1n = b1

a21x1 + a22x2 + · · · + a2n = b2

⋮

am1x1 + am2x2 + · · · + amn = bm (B.1)

The xi’s are unknowns and aij and bi are constants. To put this in simpler form, we

form matrices and define matrix multiplication.

M =

⎡⎢⎢⎢⎢⎣
a11 a12 … a1n

a21 a22 … a2n

⋮ ⋮ ⋱ ⋮

am1 am2 … amn

⎤⎥⎥⎥⎥⎦
X =

⎡⎢⎢⎢⎢⎣
x1
x2
⋮

xn

⎤⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎣
b1
b2
⋮

bm

⎤⎥⎥⎥⎥⎦
(B.2)
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Notice that matrix M has m rows and n columns; its size is denoted as m × n. Matrix

X is a column matrix and has size n × 1. Matrix B is also a column matrix with size

m × 1.

To multiply twomatrices, the rows of the first matrix are lined up with the columns

of the second matrix and corresponding entries are multiplied. The resulting products

are then added. In order for this to work, the number of columns in the first matrix

must equal the number of rows in the second matrix. For example,

[
1 −1 2

0 3 2

] ⎡⎢⎢⎣
8 −4
1 −2
6 1

⎤⎥⎥⎦ =
[
19 0

15 −4

]

The first entry in the first row of the product is 1 × 8 + (−1) × 1 + 2 × 6 = 19. In

general, when an m × n matrix is multiplied by an n × p matrix, the result is an m × p
matrix. If the entries in the first matrix are {aij} and the entries in the second are {cij},
the entry in the ith row and jth column of the product is

∑n
k=1 aikckj.

The identity matrix I is a square matrix of any size with 1’s down the diagonal and

zeroes elsewhere. When multiplied by any square matrix M, the product is just M.

Matrix multiplication is not necessarily commutative. In fact, only if the matri-

ces are square can you actually multiply in either direction because the number of

columns of the first matrix must match the number of rows in the second. Even then,

however, the products often differ.[
2 −1
3 3

] [
4 2

1 −5

]
=

[
7 9

15 −9

]
[
4 2

1 −5

] [
2 −1
3 3

]
=

[
14 2

−13 −16

]
The original system of linear equations in (B.1) can be written as a product of

matrices. Matrix M (m × n) and X (n × 1) are multiplied to give B (m × 1).

MX = B (B.3)

The system does not necessarily have a unique solution. Geometrically, each equation

is the equation of a plane in n-dimensional space. If the planes have a common point

(or points) of intersection, then there is a solution to the system.

B.1.1 Solving the System

There are several approaches to solving the system of linear equations.

• Gaussian Elimination. By systematically using algebra to add multiples of one

equation to another, unknowns can be removed one by one until there is either a

unique value for one unknown or a range of possible values. Substituting back
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into the other equations yields values for the other unknowns. A well-defined

algorithm keeps this process in order.

• Inverses. If the matrix M is a square matrix, then it possibly has an inverse, M−1.
This is a matrix such that when multiplied on either side of M, the product is
the identity matrix.

M−1M = MM−1 = I

In this case,

MX = B =⇒ M−1MX = M−1B

=⇒ X = IX = M−1B (B.4)

This gives the values of all the unknowns as a product of matrices. Again, only

if M is square and satisfies certain properties does it have an inverse.

• Determinants and Cramer’s Rule. For a 2 × 2 matrix, the determinant is defined

as follows: ||||a11 a12
a21 a22

|||| = a11a22 − a12a21

Vertical lines indicate the determinant. For a 3 × 3 matrix, the determinant is

defined in terms of the determinants of 2 × 2 submatrices.|||||||
a11 a12 a13
a21 a22 a23
a31 a32 a33

||||||| = a11
||||a22 a23
a32 a33

|||| − a12
||||a21 a23
a31 a33

|||| + a13
||||a21 a22
a31 a32

||||
Notice the negative sign in front of the second term on the right. For n × n
matrices, the determinant is defined recursively in terms of determinants of
(n − 1) × (n − 1) submatrices. The signs of the terms alternate, starting with

a plus sign in front of a11. The determinant of a square matrix M is denoted

det(M). IfM is an n × nmatrix, define M(i, j) to be the submatrix equal to matrix

M with the ith row and jth column deleted. Then the following formula gives
one way to calculate the determinant of M.

det(M) =
n∑

j=1
(−1) j+1a1j det(M(1, j)) (B.5)

Result B.1 A square matrix has an inverse if and only if the determinant is
nonzero.

There is a method for solving a system of linear equations using determi-

nants. To describe the method, first imagine replacing the ith column of the
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square n × n matrix M with the n × 1 column matrix B to get a new n × n
matrix Mi(B).

Result B.2 (Cramer’s Rule). If M is an n × n matrix with an inverse and B is
any n × 1 matrix, then the unique solution of the system MX = B is X, where the
entries {xi} are

xi =
det(Mi(B))
det(M)

for i = 1, 2, … , n

Cramer’s rule is usually more useful theoretically than it is practically, but with
only a few unknowns it gives a reasonable algorithm for finding a solution.

B.2 MATRIX PROPERTIES

• Algebra. Two matrices of the same size can be added or subtracted component-
wise. Any matrix can be multiplied by a scalar, again component-wise:[

c11 c12 c13
c21 c22 c23

]
+

[
d11 d12 d13
d21 d22 d23

]
=

[
c11 + d11 c12 + d12 c13 + d13
c21 + c21 c22 + d22 c23 + d23

]

k

[
c11 c12 c13
c21 c22 c23

]
=

[
kc11 kc12 kc13
kc21 kc22 kc23

]
• Transpose. The transpose of a matrix M is denoted MT and is defined by inter-

changing the rows and columns.

C =
[

c11 c12 c13
c21 c22 c23

]
=⇒ CT =

⎡⎢⎢⎣
c11 c21
c12 c22
c13 c23

⎤⎥⎥⎦
• Finding the Matrix Inverse. Assuming that the determinant is nonzero

(Result B.1), the inverse of a 2 × 2 matrix can be described as follows:

M =
[

a11 a12
a21 a22

]
=⇒ M−1 = 1

det(M)

[
a22 −a12
−a21 a11

]
(B.6)

The inverse of an arbitrary square matrix can be described by first using the
matrix M(i, j) (obtained from M by deleting the ith row and the jth column). Let
Cij = (−1)i+j det(M(i, j)). If {Cij} are the entries of matrix C, then define the

adjugate of M to be the transpose of C; that is, adj(M) = CT . Finally,

M−1 = 1

det(M)
adj(M) (B.7)
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• Calculation Properties.

1. For matrices A and B with appropriate sizes,

(A + B)T = AT + BT

(AB)T = BT AT (B.8)

2. If A and B have inverses,

(AB)−1 = B−1A−1

(AT )−1 = (A−1)T (B.9)

3. For square matrices A and B,

det(AT) = det(A)

det(AB) = det(A) det(B) (B.10)

• Eigenvalues and Eigenvectors. For square (n × n) matrices M, it is possible that

there exist vectors 𝑣 and scalars 𝜆 such that M𝑣 = 𝜆𝑣. In this case, 𝜆 is an eigen-
value and 𝑣 is an eigenvector.
To find eigenvalues, notice that

M𝑣 = 𝜆𝑣 =⇒ (M − 𝜆I)𝑣 = 0

If the matrix (M − 𝜆I) has an inverse, then only the trivial vector 𝑣 = 0⃗ will

work. So, in order to have nontrivial eigenvalues and eigenvectors, we must

have

det(M − 𝜆I) = 0

Example B.1 (Finding Eigenvalues).

M =
[
4 1

3 6

]
=⇒ det(M − 𝜆I) = 𝜆2 − 10𝜆 + 21 = 0

=⇒ 𝜆 = 3, 𝜆 = 7

Using these values of 𝜆, it is easy to find two eigenvectors:

M𝑣1 =
[
4 1

3 6

] [
1

−1

]
= 3

[
1

−1

]
M𝑣2 =

[
4 1

3 6

] [
1

3

]
= 7

[
1

3

]
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Let V be a matrix with the eigenvectors as columns. Then M factors as M = CDC−1,
where D is a diagonal matrix with eigenvalues on the diagonal.[

4 1

3 6

]
=

[
1 1

−1 3

] [
3 0

0 7

]
1

4

[
3 −1
1 1

]
Not all square matrices can be diagonalized like this one, but the eigenvalues and

eigenvectors indicate the key characteristics of square matrices and their associated

linear transformations. ◽

B.3 VECTOR SPACES

A set V is a vector space if there is an addition and scalar multiplication defined and

the following axioms hold for all elements u⃗, 𝑣, �⃗� in V:

1. u⃗ + 𝑣 is in V , and u⃗ + 𝑣 = 𝑣 + u⃗.

2. (u⃗ + 𝑣) + �⃗� = u⃗ + (𝑣 + �⃗�).
3. There is a zero vector 0⃗ in V such that u⃗ + 0⃗ = u⃗.

4. For each u⃗, there is −u⃗ such that u⃗ + (−u⃗) = 0⃗.

5. For each real number a, au⃗ is in V and 1u⃗ = u⃗.

6. For real numbers a and b, a(bu⃗) = (ab)u⃗.
7. a(u⃗ + 𝑣) = au⃗ + a𝑣 and (a + b)u⃗ = au⃗ + bu⃗.

The set of column matrices can be considered a vector space, and consequently

vectors (as defined in an early chapter) form a vector space.

A subspace of a vector space V is a subset of vectors such that the addition of

any two is in the subset, the scalar multiplication of any element is in the subset, and

the zero vector is in the subset. For example, the set of all three-dimensional vectors

(3 × 1 matrices) with all three entries equal forms a subspace.

Given a set of vectors {𝑣1, 𝑣2, … , 𝑣n}, a linear combination of them is a vector

a1𝑣1 + a2𝑣2 + · · · + an𝑣n for real numbers ai. The set of all linear combinations of

the given vectors forms a subspace called the span of {𝑣1, 𝑣2, … , 𝑣n}.
The set of nonzero vectors {𝑣1, 𝑣2, … , 𝑣n} is said to be linearly independent if

the only scalar values that satisfy a1𝑣1 + a2𝑣2 + · · · + an𝑣n = 0⃗ are ai = 0 for i =
1, 2, … , n. A linearly independent set of vectors whose span is the subspace W is

said to be a basis for W, and the number of vectors in the basis is the dimension of W.

Multiplication by an n × m matrix is a linear transformation; it sends an n × 1

vector (𝑣) to the m × 1 vector M𝑣. All vectors 𝑣 such that M𝑣 = 0⃗ form a subspace

called the null space of M. The columns of M are vectors and their span is called the

column space of M.

Return to the system of linear equations MX = B and view the left-hand side as a

linear transformation of the vector X. The system has a solution if the transformed

vector equals B. In the case where the matrix M is n × n, the system has a unique
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solution for every B if and only if M has an inverse M−1. In the language of vector

spaces, there is an inverse if and only if the null space contains only the zero vector;

its dimension is zero. Continuing in this vein, the following fundamental theorem is

the first part of a larger fundamental theorem for linear algebra.

Theorem B.1 (Fundamental Theorem of Linear Algebra). Let M be an m × n
matrix. Then the dimension of the null space for M plus the dimension of the column
space for M equals n. Moreover, if M is a square matrix, it has an inverse if and only
if the dimension of the null space is zero.
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AABB (axis-aligned bounding box), 289

Adjugate matrix, 379

Affine

combination, 23, 36

invariance, 222, 256

mapping, 326–7

space, 37, 84

Affine transformations, 84, 103

triangles to triangles, 104

Alpha channel (or component), 302, 347

channel, 347

component, 302

premultiplied, 349

Altitude, 176, 370

Ambient light, 303–4

Angle

bisector, 371

exterior, 180

line and coordinate axes, 52–3

radian measure, 372

solid, 373

Anti-aliasing, 346

Arcsine, 375

Aspect ratio, 269

Associativity, 349
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B-splines, see also Uniform B-splines

basis, 233

closed, 245

degree, 232

knots, 232

local control, 233

order, 232

properties, 245–6

smoothness, 233

uniform, 232

Back face, 281

Barycentric coordinates, 158, 165

generalized, 205–6

Basis, 37, 86, 381

orthonormal, 126, 133, 153–4

vectors, 86

Baumgart, Bruce, 207

Basis vectors, 86

Bernstein polynomials, 224–6

Bèzier curves, 223

control polygon, 227

convex hull, 226

properties, 228

rational, 230

segments, 228

387



388 INDEX

Bèzier curves (Continued)
three dimensional, 229

variation diminishing, 227

Bèzier, Pierre, 223

Bicubic Bèzier patch, 254–6

Bidirectional Reflectance Distribution Function,

see BRDF

Bilinear map, 329–32

inverse, 331

Blending functions, 219

Blinn, Jim, 334

Bounding boxes, 289–91

axes, 295

intesection test, 290–291

Bounding spheres, 291–2

Bounding volume, 279

BRDF, 315–9

anisotropic, 318

isotropic, 318

properties, 317

Bresenham, Jack, 345

Bresenham’s line algorithm, 344–5

BSP tree, 285

depth, 286

Bump map, 334

C0, C1, C2 continuity, 218

Camera coordinate system, 125, 133

Centroid, 174, 371

Ceva’s theorem, 173

Cevians, 174

Circumcenter, 178, 371

Circumcircle, 372

Clipping, 269, 273–275

Commission Internationale de L’ Éclairage (CIE),

300

Complex numbers

algebra, 141–3

conjugate, 142

multiplication as rotation, 142

norm, 142

standard form, 142

Composite operation, 348

Conics, 214

parametric, 216

Control points, 223

multiple, 244–5

Control polygon, 227

Convex hull, 180

Convex polygon, 178

Convolution, 346

Cook-Torrance lighting model, 318–9

Coordinate system, 126

camera, 125, 133

Cartesian, 5

cylindrical, 156

local, 124, 130

non-perpendicular axes, 151

polar, 155

right-handed, 7

spherical, 156

transformation, 129

world, 124, 130

Coordinate vectors, 6, 29–31

Correlation coefficient, 354

Cosine function, 373

Covariance, 353

Cramer’s rule, 379

Cross product, 29

algebraic definition, 32

geometric definition, 33

Curve(s)

definition, 214

descriptions, 214

matrix form, 222–3

polynomial, 214

rational, 214

tangent, 217–8

three dimensional, 217

Cylindrical coordinates, 156

de Boor algorithm, 243

de Casteljau, Paul, 223

algorithm, 223

Delaunay triangulation, 190, 192

Density function, 351

Descartes, Rene, 35, 158

Determinant, 93–4, 378

Deterministic context-free L-system (DOL), 363

bracketed, 365

Diamond-square algorithm, 356

Diffuse reflection, 303–4

Digital differential analyzer (DDA), 345

Dihedral angle, 193, 373

Direction vector, 41

Distributions 351–5

expected value, 352

normal, 354–5

uniform, 354–5

variance, 352

Dodecahedron, 195

volume, 197–9

Dot product, 25–7

Dual polyhedra, 196
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Eigenvalue, 296, 380

Eigenvector, 296, 380

Elementary lighting model, 303–5

Euler angles, 140

Euler, Leonard, 137

Euler’s formula, 201

Euler’s rotation theorem, 137

Expected value, 352

Extruded surface, 257

Eye point, 108

Face table, 207

Far plane, 268

Fermat’s principle, 320

Flat shading, 307

Form factor, 339

Fractals, 28, 361

Fundamental Theorem of Linear Algebra, 382

Genus, 193

Gibbs, Josiah Willard, 35, 159

Gimbal lock, 141

Global illumination, 315, 319

Gouraud shading, 308–11

GPU, 2

Gram-Schmidt process, 154

Grammar(s), 362

Graphics pipeline, 2–4

Hamilton, Sir William Rowan, 35, 158–9

Heron’s formula, 210, 371

Homogeneous coordinates, 72–5, 77–9

definition, 72

line equation, 72

perspective geometry, 78

plane equation, 73

points at infinity, 77

HSV color space, 301, 335

Illumination

global, 315, 319

local, 315

Imaginary quantity i, 141
Implicit description, 41

Incenter, 175, 371

Interpolation, 213

Lagrange, 220

linear, 172

using barycentric coordinates, 171

z coordinate, 275–8

Intersecting medians, 68

Isometry, 84

Knot(s), 233

multiple, 247–8

nonuniform sequence, 246–7

uniform sequence, 233

L-systems, 362

growth function, 366

Lagrange interpolation, 220

properties, 221

Lambertian reflection, 304

Language, 362

Law of cosines, 10, 12

Law of sines 13

Light

ambient, 303–4

diffuse reflection, 303–4

Euclids’s theory, 303

measurement, 315–6

specular reflection, 303, 305

Lighting models

Cook-Torrance, 318–9

elementary, 303–5

Phong, 307

Lindenmayer, Aristid, 361

Line equation, 41

Line segments, 61

intersecting, 62–3

Linear combination, 126

Linear congruential generator, 350

Linear interpolation, 172

Linear transformation, 85, 88

associated matrix, 86

properties, 85

Lissajous, Jules, 266

Local coordinate system, 124, 130

Local illumination, 315

Matrix

determinant, 93–4, 378

inverse, 378–9

multiplication, 377

orthogonal, 111, 122

transpose, 379

Median, 371

Mipmaps, 333

Modeling, 2

Multiple knots, 247
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Near plane, 268

Noise, 358

Nonuniform rational B-spline, see NURBS

Normal distribution, 354–5

generating, 355

Normal vector, 42

transformation, 110–111

Normalized device coordinates (NDC),

270

NURBS, 246, 249

Cartesian Product, 256

circle, 249–250

properties, 256

OBB (oriented bounding box), 289

Orthocenter, 176, 370

Orthogonal matrix, 111, 122, 162

Orthonormal basis, 126, 133

Over operator, 348

Painter’s algorithm, 283–6

Parallelepiped, 67

volume, 68

Parametric description, 41, 213–4

Perlin, Ken, 358

Perlin’s noise method, 359–360

Perspective transformation, 108–9, 117–21

with view frustum, 269–72

Phong, Bui Tuong, 307

Phong lighting model, 307

Phong shading, 308–11

Pipeline, Graphics, 2

Pitch, roll, yaw, 141

Pixel(s), 1, 342

interpolation, 332–3

Planar shadows, 311–3, 336

Polar coordinates, 155

Polygon, 178

area, 180–183

convex, 178

inside and outside, 184–7

regular, 19, 181

Polyhedra, 192

Archimedean, 196

convex, 193

duals, 195

genus, 193

Platonic, 192

regular, 194

symmetries, 204, 205

vertex coordinates, 195

volume, 199

Premultiplied alpha, 349

Principal component analysis, 295

Procedural texture, 333

Production, 362

Projection(s), 3, 117

of vector on vector, 46

Projective invariance, 256

Pseudo-random numbers, 350–355

Pythagorean Theorem, 8–9, 11, 15

Pythagorean triple, 12, 15

Quadrics, 251

Quaternions, 35, 143

algebra, 143–4

conjugate, 144

rotation matrix, 151

rotation, 145–48, 159–61

slerp, 149–51

Radiance, 316, 337

Radian measure, 372

Radiosity, 323–5, 337

equation, 324, 339

Rasterize, 3

Ray casting, 288

Ray tracing, 287, 319, 323

Recursive tree, 367–8

Reflected rays, 305, 320

Reflection, 91

arbitrary 101–2, 113–5

Regular polygon, 181

Regular polyhedra, 194

Rotation(s), 88, 95–97

arbitrary, 98–100, 115–7

order, 97

orthogonal matrices, 139

Refracted rays, 320–323

Refractive index, 321

Regular polygon, 181

Regular polyhedron, 195

Rendering equation, 337

RGB color space, 300

conversion to HSV, 335

Ruled surface, 258

Scaling transformation, 85, 92, 102

Scalar triple product, see Triple scalar product

Scan line, 287

Schoenberg, Isaac, 232

Shadow

maps, 314

planar, 311–3, 336

rays, 288, 319

soft, 313–4
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volumes, 315

Shading

Flat, 307

Gouraud, 308–11

Phong, 308–11

Shear transformation, 94, 102

Similar triangles, 370

Sine, 373

Skew lines, 50–52

Smith, Alvy Ray, 301, 302, 347

Snowflake (Koch) curve, 28–9, 364

Soft shadows, 313–4

Solid angle, 373

Specular reflection, 303, 305

Spherical coordinates, 156

Spherical linear interpolation (SLERP), 149–151

Spherical map, 332

Splines, 232

Steradian, 373

Supersample technique, 346

Surface(s)

Cartesian product, 254, 256

extruded, 257

nonsingular, 252

normal, 253

of revolution, 258

parametric, 252

patch, 253

ruled, 258

swept, 257

Symmetry group, 202

cyclic, 204

dihedral, 204

icosahedral, 204

octahedral, 203

tetrahedral, 204

Tangent vectors, 217–8, 227

Taylor series approximation, 14

Tensor product, 114

Tetrahedron coordinates, 69–72, 195

Texture, 3

coordinates, 326–9

map, 325–6

procedural, 333

space, 325

Terrain, 187, 356

diamond-square algorithm, 356

Transformation, 2, 84

affine, 84, 103

fixed point, 89

invertible, 84

linear, 85

perspective, 108–9, 117–21, 279

projections, 117

reflection, 91, 101–2, 113–5

rotation, 88, 95–7, 115–7

scaling, 85, 92, 102

shear, 94, 102

translation, 103, 106

Triangle(s)

altitude, 176, 370

base, 370

centroid, 174, 371

circumcenter, 178, 371

incenter, 175, 371

median, 371

mesh, 187

orthocenter, 176, 370

similar, 370

strip, 210

visibility, 279–81

Triangular pyramid, 197

Triangulation, 187

Delaunay, 190, 192

order, 189

Trigonometric functions, 373

Triple scalar product, 68, 197

Turtle geometry, 363–4

Uniform B-splines, 232

basis pieces, 234

cubic blending functions, 240

linear blending functions, 234

quadratic blending functions, 236, 262–4

Uniform distribution, 354–5

Utah teapot, 256

Variance, 352

Variation diminishing, 227

Vector, 6, 16–18, 35

addition, 21

direction, 18

dot product, 25–7

history, 35

independence, 37

length, 18

normalization, 24

perpendicular, 26

properties, 24

scalar multiplication, 21

subtraction, 22

triple product, 39, 118

unit, 24
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Vector space, 25, 36, 381

basis, 37, 86

dimension, 381

span, 381

Vector subspace, 381

Column space, 381

Nullspace, 381

Vector triple product, 39, 118

Vertex figure, 195

Vertex table, 206–7

View frustum, 268

planes, 293–4

View plane, 132, 268

Viewing angle, 38, 269

White noise, 358

Winding number, 185

Winged edge data structure, 207

World coordinate system, 124, 130

Z-buffer, 286
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