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Preface

Biotechnology industrialization is the result of basic life science progress plus
engineering science contribution. Without doubt, without the good integration of
biology and engineering, it is unbelievable that today’s biotechnology becomes so
popular and important to our human beings and the whole society of the world. The
two special volumes entitled “Advances in Bioreactor Engineering Research and
Application: I. Cell Factories” and “Advances in Bioreactor Engineering Research
and Application: II. Bioreactors” are striving to reflect the recent advances in
biology and engineering related researches with their significant impact on aca-
demic and industrial R&D.

Microbial cell factories are the basis to establishment of economical biomanu-
facturing processes, which provide various kinds of antibiotics, enzymes, vitamins,
amino acids, pharmaceutical proteins, etc. With the progresses in metabolic engi-
neering, metabolism in wild-type microbial strains can be well altered and meta-
bolic flux can be effectively directed to target products, to meet the requirements for
efficient production of interested metabolites. This special volume on Cell Factories
is dedicated to establishment of bioconversion systems for efficient production of
chiral chemicals, organic acids, biofuels, and other useful metabolites.

The complicated metabolic network in microbial cells is highly ordered and
precisely regulated to adapt the changing environment and to survive under unfa-
vorable conditions. In the review by Shimizu [1], various regulations in cells are
presented. Understanding of these regulatory characteristics is very important to
construction of more efficient cell factories for metabolite production.

Chiral chemicals are important building blocks for the synthesis of many
pharmaceuticals, pesticides and food additives. Compared with chemical synthesis,
biochemical processes have the advantages of better selectivity, higher productivity,
and less environmental impact. The chapter by Zhang et al. [2] reviews the efficient
synthesis of chiral chemical blocks by enzyme-mediated reactions. With the
development of microbial genomics, efficient discovery of enzymes with special
stereoselectivity and robust performance can be realized by genome mining which
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is much more efficient than traditional strain selection and breeding from soil
samples. Many interesting case studies are presented.

With the constantly increasing consumption of huge amounts of fossil feedstock,
the supply of fossil resources will become limited, while continuous use of such
resources has caused serious environmental pollution. For sustainable development,
researchers all over the world have been exploring production of fuels and bulk
chemicals using microorganisms with renewable, alternative feedstocks as sub-
strates. Some organic acids and alcohols such as citrate, lactate, gluconate and
ethanol are commercially produced by fermentation, but some organic acids and
alcohols cannot be produced economically by microorganisms. The chapter by Liu
et al. [3] summarizes the principles of constructing efficient cell factories and
reviews the progresses of Escherichia coli cell factories for the production of organic
acids and alcohols. n-Butanol is an excellent biofuel whose performance is better
than ethanol as a transpotation fuel. Traditionally n-butanol is commercially pro-
duced by Clostridium in acetone-butanol-ethanol (ABE) fermentation, but the titer is
low and genetic manupilation is difficult. The chapter by Dong et al. [4] reviews the
researches on construction of E. coli cell factories for production of n-butanol and
methods of theoretical prediction. Diols have wide applications and microbial pro-
duction of such diols has attracted the interest of many researchers. The chapter by
Sabra et al. [5] shows the recent progress in construction of microbial cell factories
for production of low molecular weight diols including 1,3-propanediol,
1,2-propanediol, 2,3-butanediol, 1,3-butanediol and 1,4-butanediol.

Higher fungi are important sources of many secondary metabolites which have
excellent pharmaceutical and physiological properties or can be potential lead
compounds for new drug development. However, the production levels of such
metabolites are usually low due to the low content in cells. In the chapter by Qin
et al. [6], the methodology of genetic manipulation in higher fungi and omics
analysis are described, and various useful metabolites produced by higher fungi are
also summarized.

We hope this volume can provide some basic principles and current status in
construction of efficient microbial cell factories, especially in the field of industrial
biotechnology. Here, we would like to thank all the contributing authors and
referees for their superior collaboration, the Managing Editor Prof. Dr. Thomas
Scheper, and the publisher and the book-series editorial staffs at Springer for their
constructive suggestions, constant support and kind help during the entire process
for this special volume.

Shanghai Qin Ye
November 2015 Jie Bao

Jian-Jiang Zhong
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Metabolic Regulation and Coordination
of the Metabolism in Bacteria in Response
to a Variety of Growth Conditions

Kazuyuki Shimizu

Abstract Living organisms have sophisticated but well-organized regulation sys-
tem. It is important to understand the metabolic regulation mechanisms in relation to
growth environment for the efficient design of cell factories for biofuels and
biochemicals production. Here, an overview is given for carbon catabolite regulation,
nitrogen regulation, ion, sulfur, and phosphate regulations, stringent response under
nutrient starvation as well as oxidative stress regulation, redox state regulation, acid-
shock, heat- and cold-shock regulations, solvent stress regulation, osmoregulation,
and biofilm formation, and quorum sensing focusing on Escherichia colimetabolism
and others. The coordinated regulation mechanisms are of particular interest in
getting insight into the principle which governs the cell metabolism. The metabolism
is controlled by both enzyme-level regulation and transcriptional regulation via
transcription factors such as cAMP–Crp, Cra, Csr, Fis, PII(GlnB), NtrBC, CysB,
PhoR/B, SoxR/S, Fur, MarR, ArcA/B, Fnr, NarX/L, RpoS, and (p)ppGpp for
stringent response, where the timescales for enzyme-level and gene-level regulations
are different. Moreover, multiple regulations are coordinated by the intracellular
metabolites, where fructose 1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP),
and acetyl-CoA (AcCoA) play important roles for enzyme-level regulation as well as
transcriptional control, while α-ketoacids such as α-ketoglutaric acid (αKG), pyru-
vate (PYR), and oxaloacetate (OAA) play important roles for the coordinated
regulation between carbon source uptake rate and other nutrient uptake rate such as
nitrogen or sulfur uptake rate by modulation of cAMP via Cya.

Keywords Acetate overflow metabolism � Acid shock � Catabolite regulation �
Heat shock � Nitrogen regulation � Osmoregulation � Oxidative stress � Oxygen
limitation � Phosphate regulation � Redox regulation � Stringent response � Sulfur
regulation
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Abbreviations

Metabolites
CIT Citrate
E4P Erythrose-4-phosphate
FBP Fructose-1,6-bisphosphate
F1P Fructose 1-phosphate
F6P Fructose-6-phosphate
G6P Glucose-6-phosphate
GAP Glyceraldehyde-3-phosphate
GOX Glyoxylate
ICI Isocitrate
KDPG 2-keto-3-deoxy-6-phosphogluconate
αKG α-ketoglutarate
MAL Malate
OAA Oxaloacetate
PEP Phosphoenolpyruvate
6PG 6-phosphogluconate
PYR Pyruvate

Protein and enzymes
Ack Acetate kinase
Acs Acetyl-coenzyme A synthetase
Adk Adenylate kinase
CS Citrate synthase
Cya Adenylate cyclase
EI Enzyme I
EII Enzyme II
Fdp Fructose bisphosphatase
FDH Formate dehydrogenase
Fhl Formate hydrogen lyase
GAD Glutamate decarboxylase
G6PDH Glucose-6-phosphate dehydrogenase
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
GOGAT Glutamate synthase
GS Glutamine synthetase
HPr Histidine-phosphorylatable protein
Hyc Hydrogenase
ICDH Isocitrate dehydrogenase
Icl Isocitrate lyase
KGDH α-ketoglutaric acid dehydrogenase
LDH Lactate dehydrogenase
Mez Malic enzyme
MS Malate synthase
NOX NADH oxidase
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Pck Phosphoenolpyruvate carboxykinase
PDH Pyruvate dehydrogenase
Pfk Phosphofructokinase
PGDH 6-phosphogluconate dehydrogenase
Pgi Phosphoglucose isomerase
Pox Pyruvate oxidase
Ppc Phosphoenolpyruvate carboxylase
Pps Phosphoenolpyruvate synthase
Pta Phosphotransacetylase
Pyk Pyruvate kinase
SOD Superoxide dismutase

Others
ED pathway Entner–Doudoroff pathway
EMP pathway Embden–Meyerhof–Parnas pathway
PMF Proton motive force
PP pathway Pentose phosphate pathway
PTS Phosphotransferase system
ROS Reactive oxygen species
TCA cycle Tricarboxylic acid cycle
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1 Introduction

The living organisms on earth survive by manipulating the cell system in response
to the change in growth environment by sensing signals of both external and
internal states of the cell. The complex signaling networks interconvert signals or
stimuli for the cell to function properly. The transfer of information in signal
transduction pathways and cascades is evolved to respond to the variety of growth
environment. Metabolism is the core for energy generation (catabolism) and cell
synthesis (anabolism). Metabolic network, defined as the set and topology of
metabolic biochemical reactions within a cell, plays an essential role for the cell to
survive, where it is under organized control. The set of enzymes changes dynam-
ically in accordance with the change in growth environment and the cell’s state. The
enzymes that form the metabolic pathways are subject to multiple levels of regu-
lation, and it is becoming more and more important to deeply understand the overall
regulation mechanism. This may be made by integrating different levels of OMICS
information with the help of systems biology approach. Although huge amount of
information is embedded in genome, only a subset of the pathways among possible
topological networks is active at certain point in time under certain growth con-
dition. The keen interest is how it is managed by the cell with coordination of the
metabolism in response to the change in growth condition.

Recent investigation on the metabolism is widespread ranging from bacteria to
human, where much attention is focused on cancer cell metabolism [1–4]. The
metabolic capabilities allow various organisms to grow in various limiting condi-
tions and environmental niches in the ecological biosphere [5–7]. Many efforts have
been focused on the emerging challenges in sustainable energy, and green society,
as well as pharmaceuticals for human health by modifying the metabolic pathways
[8–15].

Deep understanding on the metabolic regulation mechanism is essential for all
these efforts for manipulating and redesigning the metabolism, and it is critical to
understand the basic principles which govern the cell metabolism [16–20]. Such
principles may be in common to various organisms, or some set of organisms, while
some are the specific to the organism of concern.

Biochemical logic of metabolic pathways may be determined based on key
biochemical constraints such as thermodynamic favorability, availability of enzy-
matic mechanisms, and physicochemical properties of pathway intermediates [16].
More specifically, there might be a connection between an organism’s growth
environment and thermodynamic and biochemical properties for the determination
of pathways [17]. How do organisms select the pathways among available path-
ways? For example, there are several glycolysis pathways such as Embden–Mey-
erhof–Parnas (EMP) pathway and Entner–Doudoroff (ED) pathway, but how is the
pathway selected among them? The glucose metabolism may reflect a trade-off
between a pathway’s energy (ATP) yield and the amount of enzymatic protein
required to catalyze the pathway flux. From this point of view, some microor-
ganisms such as Zymomonas mobilis and Pseudomonas sp. mainly utilize ED
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pathway instead of most popular energy-intensive EMP pathway due to less
requirement of enzymatic protein together with thermodynamic preference [17].

In fact, the decision may be made not only by the above consideration, but it is
also made by transcriptional regulation together with global regulators or tran-
scription factors. Moreover, some specific metabolites are also involved for the
coordinated regulation of the metabolism. Here, an overview is given for the
metabolic regulation of microbes with special interest on the coordination of
regulation systems.

2 Transport of Nutrient and Waste

The gram-negative bacteria such as Escherichia coli have two concentric mem-
branes called outer and inner (or cytosolic) membranes surrounding the cytoplasm
with the space called periplasm between these two membranes (Fig. 1). These
membranes constitute a hydrophobic barrier against polar compounds. The outer
membrane contains channel proteins, called porin proteins, where porins are sub-
strate-specific, ion-selective, or nonspecific channels that allow the influx of small
hydrophilic nutrient molecules and the efflux of waste products, antibiotics, and
inhibitors [21, 22]. Among porins, OmpC and OmpF are the most abundant porins
under typical growth condition. Their relative abundance changes depending on the
osmolarity, temperature, and growth phase. Glucose is transported through these
porins by diffusion when glucose concentration is higher above 0.2 mM [23, 24],
while under glucose limitation, another porin LamB is induced, where LamB has
high affinity to glucose [24].

The porin genes are under control of two-component system such as EnvZ–
OmpR system, where EnvZ is an inner membrane sensor kinase, and OmpR is the
cytoplasmic response regulator. In response to the environmental signals such as
osmolarity, pH, temperature, nutrients, and toxins, EnvZ phosphorylates OmpR
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(OmpR-P), and OmpR-P activates the expression of such porin genes as ompC and
ompF [21]. The outer membrane is important to protect the cell from harsh envi-
ronmental condition.

The first step in the metabolism of carbohydrates is the transport of these
molecules into the cytosol through inner or cytosolic membrane. Various carbo-
hydrates can be transported by several mechanisms in bacteria [25]. The CO2 and
ammonia (NH3)/ammonium (NH4

+) may be transported through membrane by
diffusion, where AmtB, which has the high affinity to ammonia, is induced and
plays an important role for ammonia uptake under ammonia limitation. Without
such a system, the important N-source, ammonia, is diffused out of the cell.

Primary transport of sugars is driven by ATP, while secondary transport is
driven by electrochemical gradients of the translocated molecules across the
membrane via symporters or anti-porters [26]. Sugar uptake by group translocation
is unique for bacteria and is involved in the phosphotransferase system (PTS) as
explained in the next section. So far, 21 PTSs have been identified in E. coli, while
others are transported by non-PTS transporters [27]. The transporters for acids are
rarely identified except formate (Foc) and acetate (ActP, YjcH), where other acids
may be transported by diffusion. It is of interest to recognize [16] that charged
compounds such as pyruvate, glycerate, and lactate may not be easily pass through
hydrophobic lipid membrane [28–30]. On the other hand, uncharged molecules
such as glucose, fructose, dihydroxyacetone, and glyceraldehydes can diffuse more
freely through membrane [30–32]. Thus, a charged moiety such as phosphate group
serves to reduce or prohibit their escape from the cell [33, 34]. From this point of
view, it is of interest to see the fact that all the glycolysis, pentose phosphate (PP)
pathway, and ED pathway metabolites are phosphorylated except pyruvate, while
TCA cycle metabolites are not phosphorylated.

3 PTS and Carbon Catabolite Regulation

In the metabolic regulation, carbon catabolite regulation (CCR) plays far important
roles from the points of view of energy acquisition and biomass synthesis, where
PTS pays an important role [35]. In PTS, the phosphate is transferred from phos-
phoenolpyruvate (PEP) via successive phosphorelay reactions in turn by EI, HPr,
EIIAGlc, and EIICBGlc to glucose (Fig. 1) [36]. Unphosphorylated EIIAGlc inhibits
the uptake of other carbohydrates by the so-called inducer exclusion [37, 38], while
phosphorylated EIIAGlc (EIIAGlc-P) activates adenylate cyclase (Cya), which gen-
erates cyclic AMP (cAMP) from ATP, and leads to an increase in the intracellular
cAMP level, where cAMP combines with the global regulator Crp (cAMP receptor
protein) yielding cAMP–Crp complex, and plays an essential role for catabolite
regulation. If the concentration ratio between PEP and pyruvate (PYR) (PEP/PYR)
is high, EIIAGlc is predominantly phosphorylated, while if this ratio is low, phos-
phorylated EIIAGlc (EIIAGlc-P) is dephosphorylated [39]. Catabolite repression
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occurs not only by PTS-oriented regulation, but also by such catabolites as α-
ketoacids as will be explained for the metabolic coordination.

Consider how the catabolite regulation affects the metabolism in response to the
change in glucose consumption rate or the perturbation in the glycolysis activity.
For this, it is useful to consider the continuous culture. In the continuous culture, as
the dilution rate or the specific growth rate was increased, the glycolytic flux or the
specific glucose consumption rate increases, and fructose 1,6-bisphosphate (FBP)
concentration increases [40, 41]. The increased FBP allosterically enhances the
activity of Pyk and Ppc by feed-forward control (Fig. 2a). Then, PEP concentration
tends to be decreased due to the activation of Pyk and Ppc. PEP molecule allos-
terically inhibits Pfk activity by feedback regulation, and thus, the decrease in PEP
concentration causes Pfk activity to be increased, and the glycolysis flux further
increases, and in turn, FBP concentration increases more. Roughly speaking, in
accordance with the increase in the glucose uptake rate, the intracellular metabolite
pools of the upper glycolysis from glucose 6-phosphate (G6P) to glyceraldehydes
3-phosphate (GAP) increase, while those lower glycolysis from GAP to PEP
decreases [40]. As stated above, there is a one-to-one relationship between the
upper glycolysis flux and the FBP concentration. Moreover, the fluxes of lower
glycolysis and the feed-forward activation of FBP on Pyk show the similar

(a)

(b)

Fig. 2 Catabolite regulation of the central metabolism: a enzyme-level regulation, b overall
enzyme-level and transcriptional regulations
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relationship in the case of wild-type strain, where the metabolic fluxes may be
considered to be sensed by molecular systems as “flux sensors” [41–43]. The
meaning of this notion is that instead of preparing many nutrient-specific receptors
for the cell to sense the variety of environmental signals, the flux-sensing system
simply recognizes the fluxes by the specific intracellular metabolite as integral
signal.

On the other hand, the decrease in PEP makes PEP/PYR ratio to be decreased.
This causes EIIAGlc-P to be dephosphorylated and in turn less activates Cya, and
thus, cAMP is less formed. As a result, cAMP–Crp level decreases, which
decreases the expression of ptsG (Table 1), and this causes the decrease in the
glucose uptake rate. This forms a negative feedback loop for the initial increase in
the glucose uptake rate [44, 45] (Fig. 2b). This indicates that PTS plays an essential
role from the robustness point of view. Moreover, the decrease in cAMP–Crp also
represses the expression of the TCA cycle genes (Table 1) (Fig. 2b).

In addition to cAMP–Crp, the catabolite repressor/activator protein (Cra) plays
also an important role in the control of carbon flow in E. coli [46], where the carbon
uptake and glycolysis genes are repressed, while gluconeogenic pathway genes are

Table 1 Effect of global regulators on the metabolic pathway gene expressions

Global
regulator

Metabolic pathway genes

Cra +: aceBAK, cydB, fbp, icdA, pckA, pgk, ppsA
−: acnB, adhE, eda, edd, pfkA, pykF, zwf

Crp (cAMP–
Crp)

+: aceEF, acnAB, acs, focA, fumA, gltA, lpdA, malT, manXYZ, mdh, mlc,
pckA, pdhR, pflB, pgk, ptsG, sdhCDAB, sucABCD, ugpABCEQ,
−: cyaA, lpdA, rpoS

ArcA/B +: cydAB, focA, pflB
−: aceBAK, aceEF, acnAB, cyoABCDE, fumAC, gltA, icdA, lpdA, mdh,
nuoABCDEFGHIJKLMN, pdhR, sdhCDAB, sodA, sucABCD

Mlc −: crr, manXYZ, malT, ptsG, ptsHI

PdhR −: aceEF, lpdA

CsrA +: eno, pfkA, pgi, pykF, tpiA
−: fbp, glgC, glgA, glgB, pgm, ppsA, pckA,

Fur −: entABCDEF, talB, sodA

RpoS +: acnA, acs, ada, appAR, appB, argH, aroM, dps, bolA, fbaB, fumC, gabP,
gadA, gadB, katE, katG, ldcC, narY, nuv, pfkB, osmE, osmY, poxB, sodC,
talA, tktB, ugpE, C, xthA, yhgY,
−: ompF

SoxR/S +: acnA, cat, fumC, fur, sodA, sox, zwf

OxyR +: ahpC, ahpF, katG:

PhoR/B +: phoBR, phoA-psiF, asr, pstSCAB-phoU
−: phoH, phnCHN, ugpA, argP

Fnr +: acs, focA, frdABCD, pflB, yfiD
−: acnA, cyoABCDE, cydAB, fumA, fnr, icdA, ndh,
nuoABCEFGHIJKLMN, sdhCDAB, sucABCD
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activated by Cra (Table 1). As mentioned above, the increase in the glucose uptake
rate causes an increase in FBP concentration, where FBP inhibits Cra activity [47].
This causes the increase of the expression of the glycolysis genes such as pfkA and
pykF, while it represses the expression of gluconeogenetic pathway genes such as
fbp, ppsA, and pckA (Table 1), which implies acceleration of the glycolytic fluxes
(Fig. 2b). The decrease in Cra activity also affects TCA cycle genes such that icdA
and aceA gene expression is repressed, and thus, TCA cycle is further repressed by
this mechanism (Fig. 2b). The increase in the glycolysis activity and the decrease in
the TCA cycle activity cause more acetate production (Fig. 2b). This is the
mechanism of acetate overflow metabolism in E. coli. The decrease in cAMP–Crp
level also represses acs expression (Table 1), and this also causes acetate
accumulation.

The question may arise as to why TCA cycle activity must be repressed in
accordance with the increased activity of glycolysis. The cell growth rate might be
more enhanced if the TCA cycle is not repressed, gaining more ATP from the
increased NADH production at the TCA cycle. In fact, although the TCA cycle
activity is repressed as mentioned above with the increase in glucose uptake rate
[48–50], the absolute TCA cycle fluxes on the mmol basis tend to increase because
the specific glucose consumption rate is increased [50]. This means that the res-
piration is activated with the increased production of NADH, and more reactive
oxygen species (ROS) are generated in the respiratory chain and cause damage to
the cell. This is the reason why the TCA cycle has to be repressed at higher glucose
consumption rate. Of course, the cell furnishes a detoxifying system for ROS,
where the transcription factors such as SoxR/S and OxyR play important roles for
such oxidative stress regulation as will be mentioned later. The reducing equivalent,
NADPH, plays an important role for detoxification of ROS as implied by the fact
that SoxS activates zwf gene expression (Table 1). In the case of yeast and higher
organisms, glutathione plays the similar role, where its production is enhanced by
NADPH. The 6PGDH and G6PDH activities have been known to be the growth
rate dependent [51], where the activation of the oxidative PP pathway is considered
to be due to NADPH requirement for biosynthesis. However, the oxidative stress
may also affect the activation of the oxidative PP pathway at higher cell growth rate.
Moreover, some microbes such as E. coli produce NADPH at ICDH as well
(instead of NADH) in the TCA cycle, where this is also related to the oxidative
stress regulation as will be mentioned later.

4 Acetate Overflow Metabolism and the Reduction
of Acetate Formation in E. coli

A major obstacle for the commercial scale production of useful recombinant pro-
teins is the undesirable by-products formation. Among them, acetate formation is
by far crucial in the case of E. coli, because it retards the cell growth, and it inhibits

Metabolic Regulation and Coordination … 9



protein formation. Moreover, such by-product formation causes a diversion of
carbon that might otherwise have generated biomass or protein product [52].

The living organisms utilize energy in a highly efficient manner. However, some
portion of energy is utilized for the cell maintenance, thus affecting the biomass
yield. Recent studies on exact carbon balance together with thermodynamic argu-
ments indicate that cells might have another avenue for energy utilization, where
such phenomenon is called “energy spilling” [53, 54]. Under aerobic condition,
E. coli mainly converts carbon source into biomass and CO2, where the production
of CO2 is the loss of carbon, which determines the cell yield. A notable amount of
carbon is also lost as acetate in particular at higher cell growth rate [49, 50, 55].
Another carbon wasting occurs toward pyrimidine pathway intermediates such as
dihydroorotate, carbamoylaspartate, and orotate [54].

In E. coli, acetate is formed from acetyl-coenzyme A (AcCoA) by phospho-
transacetylase (Pta) and acetate kinase (Ack) and from pyruvate by pyruvate oxi-
dase (Pox) [56]. Acetate can be metabolized to AcCoA either by the reversed
reactions of Pta–Ack or by acetyl-CoA synthetase (ACS) (Fig. 3a). Acetate for-
mation has been known to be due to metabolic imbalance, also known as overflow
metabolism as mentioned before, where the rate of acetyl-coenzyme A (AcCoA)
formation via glycolysis surpasses the capacity of the TCA cycle in E. coli [57].
The mechanism of reducing the accumulated AcCoA, thus reducing acetate for-
mation, is embedded in the cell metabolism. Namely, the anaplerotic pathway
enzyme Ppc is allosterically activated by FBP and AcCoA [58], where the accu-
mulated AcCoA activates Ppc, thus reducing PEP concentration, and in turn, the
incoming flux through Pyk–PDH reduces, while the outgoing flux through citrate
synthase (CS) increases caused by the increased OAA due to the activated Ppc

(a)

(b)

Fig. 3 Acetate metabolism: a acetate producing and consuming pathways, b homeostasis of
AcCoA
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(Fig. 3b). This means that AcCoA pool is in principle kept constant by such
homeostatic regulation.

Since recombinant protein production is related to biomass formation, much
attention has been paid on high cell density culture with reduced acetate formation
[59]. The conventional approach to avoid or reduce acetate formation and attain
high cell density culture is to reduce the glycolysis flux by keeping the substrate
concentration at low level by fed-batch operation. The similar approach has been
considered for baker’s yeast cultivation to avoid ethanol production caused by
Crabtree effect. The typical fed-batch culture is performed by employing feed-
forward-type exponential and constant feeding profile [60], or feedback type of DO-
stat [61, 62] and pH-stat [63]. In any case, feed-forward strategy must be com-
pensated by feedback control. However, DO-stat and pH-stat strategies are based on
the signals of substrate limitation, and the substrate-limited growth causes excessive
energy consumption for the cell maintenance [64]. Moreover, in large-scale fed-
batch culture, the substrate is distributed in space in the culture broth, and the
gradients of substrate concentrations affect the cell growth, product formation, and
cell viability [60, 65–67].

Another approach to reduce the glucose uptake rate is to modulate the substrate
uptake pathway such as PTS, where the PTS mutation together with activation of
other transporters can contribute for recombinant protein production with reduced
acetate formation [52]. However, the cell growth rate inherently decreases in such
mutants. Moreover, the regulation system as illustrated in Fig. 2b is not guaranteed
for the robustness.

Since the main reason of acetate overflow metabolism is the repression of the
TCA cycle caused by the increased substrate uptake rate as explained above, one
idea is to activate TCA cycle by the knockout of arcA gene which codes for ArcA,
and activate Acs by pka gene knockout [68]. However, the cell yield decreases and
the cell growth rate decreases as will be also mentioned later for the roles of redox
regulators such as ArcA/B.

5 Catabolite Regulation for the Uptake of Various Carbon
Sources

The metabolite regulation differs depending on the carbon sources used, and this
also affects acetate metabolism. Here, consider this for the typical carbon sources
often used for biofuels and biochemicals production such as glycerol, xylose,
fructose, and arabinose.

Glycerol, a rather “energy-poor” carbon source, has been paid recent attention for
the production of biofuels and biochemicals such as 1,3-propanediol, 2,3-butanediol,
ethanol, n-butanol, organic acids, and polyol, since it is a by-product of the biodiesel
production [69–73]. In E. coli, glycerol is transported and phosphorylated to produce
dihydroxy acetone phosphate (DHAP) of the central metabolism via the pathways
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encoded by glpF, glpK, and glpD, where ATP (or in certain cases PEP) is used for the
phosphorylation at GlpK reaction, while NADH is produced at GlpD reaction
(Fig. 4a). These genes are under catabolite regulation by cAMP–Crp, so that glycerol
is assimilated after glucose was depleted if glucose coexists. In the case of using
glycerol as a single carbon source, cAMP–Crp increases by the mechanism as
mentioned before due to the increase in the phosphorylated EIIAGlc, where cAMP–
Crp induces glpF, glpK, and glpD genes via glpR. Proteomic and enzymatic assay
studies for the case of using rich media, fructose bisphosphatase (Fdp), the gluco-
neogenesis enzyme in the upper glycolysis is activated for the fluxes toward PP
pathway, while glyoxylate shunt is repressed [74]. Since FBP concentration
decreases in the case of using glycerol as a carbon source, Cra is activated, and this
together with up-regulation of cAMP–Crp causes pckA gene expression as well as
TCA cycle gene expression to be up-regulated [75]. Moreover, pykA gene expression
is activated instead of pykF gene in the case of using glycerol [75], where pykF is
repressed by Cra, while pykA is activated by AMP.

The metabolism slightly changes depending on the strain. For example, in E. coli
JM101 cultivated in minimal medium using glycerol as a carbon source, co-con-
sumption of acetate and glycerol occurs, where the acetate produced via Pox is
utilized via Acs and glyoxylate shunt, and little acetate is produced [73]. This may
be caused by the higher levels of cAMP–Crp and Cra.

In the case of using glycerol as a carbon source, the glycerol uptake rate is low,
and thus, the cell growth rate is also low. This is the main drawback of using
glycerol as a carbon source in practice. The slow uptake rate of glycerol is due to
allosteric inhibition of GlpK by FBP, where this may be considered to avoid the
toxic methylglyoxal production caused by the accumulation of DHAP (Fig. 4a)
[76]. The glycerol uptake rate can be increased by modulating GlpK by evolutional
mutation with relaxing of feedback inhibition of GlpK by FBP [76]. However, as
the glycerol uptake rate is increased, and the cell growth rate is increased, the
phosphate of PEP or EI-P may be used for the phosphorylation at GlpK reaction,
and thus, the phosphorylation level of EIIAGlc decreases, and in turn, cAMP level
decreases and represses TCA cycle, causing acetate overflow metabolism [77].

In the case of using fructose, it is transported by fructose PTS, which has its own
HPr-like protein domain called FPr. Namely, the phosphate of PEP is first trans-
ferred to EI (as EI-P), but then, this phosphate is transferred to FPr instead of HPr,
and in turn, the phosphate is transferred via fructose-specific EIIAFrc and EIIBCFrc

to fructose, where phosphorylated fructose becomes fructose 1-phosphate (F1P),
where F1P inhibits Cra activity [47]. The fruBKA operon is under the control of
cAMP–Crp, and thus, glucose is preferentially consumed by glucose PTS when
glucose coexists, while this operon is repressed by Cra (Fig. 4b) [78]. Because of
this, Cra gene knockout enables co-consumption of glucose and fructose with
fructose to be consumed faster as compared to glucose (Fig. 5) [79]. Why was the
fructose consumed faster than glucose, although the glycolysis activity increases
upon Cra gene knockout [80, 81]? The possible scenario might be as follows:
Namely, the activated FPr in Cra mutant competes with HPr (for glucose phos-
phorylation) for the phosphate of EI-P. Since phosphorylation of EIIAGlc via HPr
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becomes lower [82], the glucose uptake rate decreases as compared to the wild-type
strain [79]. However, it is not still clear about the detailed mechanism on why
catabolite repression is relaxed by Cra gene knockout.

In the case of using xylose as a carbon source, it is transported either by an ATP-
dependent high-affinity ABC transporter encoded by xylFGH or by ATP-inde-
pendent low-affinity proton symporter encoded by xylE (Fig. 4b) [83, 84]. In the
case of xylose utilization, the transcription factor XylR regulates xylAB/xylFGH
[85], where xylR is under the control of cAMP–Crp, and thus, catabolite repression
occurs when glucose coexists, where glucose is preferentially consumed first. In the
case when fructose coexists, phosphorylation of fructose is made via FPr, reducing
the phosphorylation of HPr, and cAMP–Crp level becomes lower due to less
phosphorylation of EIIAGlc, and in turn, fructose is consumed faster as compared to
xylose consumption (Fig. 5) [79]. In the case of anaerobic fermentation, NADH
reoxidation and substrate-level phosphorylation for ATP generation are important,
and ATP generation by Ack pathway is critical for survival in the case of using only
xylose as a carbon source [86].

As for the assimilation of arabinose, the transporters are encoded by araE,
araFGH, and araJ [87–89], while araBAD encodes arabinose catabolic enzymes.
The arabinose system is under control of cAMP–Crp and AraC, where araC gene
expression is activated by L-arabinose [90, 91].

As mentioned previously, the selective carbon source assimilation among
available carbon sources forms a hierarchy, where glucose utilization is the highest
priority in E. coli. Among pentose sugars such as xylose and arabinose, arabinose is
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the preferred carbon source as compared to xylose [92, 93], where the transcription
factor AraC represses xylR, while araC is under control of cAMP–Crp (Fig. 4c)
[93]. This hierarchy changes by the specific gene knockout such as Cra gene
knockout as mentioned above.

6 Transition of the Metabolism During Batch Culture

Since most of the industrial fermentations are conducted in batch mode, it is
important to understand how the metabolism changes with respect to time, where
various nutrient limitation and environmental stresses change and affect the
metabolism [18, 19]. The 13C-metabolic flux analysis is useful to track the change
in the metabolic flux distribution during batch cultivation [94]. The typical growth
condition changes from glucose-rich to acetate-rich condition and changes further
to carbon-starved condition in the batch culture (Fig. 6). This requires a significant
reorganization of the central metabolism. Since it invokes network-wide metabolic
adaptation, it is one of the current targets of systems biology [42, 95].

Although the molecular mechanism underlying the metabolic transition from
glucose to acetate has been extensively investigated in E. coli [56], its dynamics
with respect to the sequence and timing of the molecular events have been poorly
understood. Recently, this has been clarified to some extent, where the timescales
for gene expression and enzyme regulation with metabolites are different [96].
Since it is critical for the cell to efficiently and quickly reprogram the metabolism
for efficiently assimilating the nutrients under ever-changing environmental con-
dition, the cell must have the elaborate managing system to cope with the envi-
ronmental changes. In particular, enzyme-level regulation plays an important role
for this, where Pyk and Ppc are allosterically activated by FBP as mentioned before.
After glucose depletion, FBP concentration decreases accordingly, and Ppc and Pyk
activities decrease by allosteric regulation, and PEP consumption is almost com-
pletely turned off. These make PEP concentration to be increased, and this buildup
of PEP is kept nearly constant during certain period, and this may serve to quickly
uptake the glucose by PTS if it becomes available again (Fig. 6b) [94, 97]. This
mechanism is important for the fed-batch culture compensated by DO-stat or pH-
stat, where carbon limitation often occurs periodically, and the uptake of carbon
source can be made quickly and efficiently without delay giving little damage to the
cell, while this may not be the case for the cells without having such regulation
mechanism.

During batch culture, several transcription factors such as cAMP–Crp, Cra, Fis,
Csr, RpoS, RpoD together with RelA and SpoT play important roles for catabolite
and nutrient regulation in coordination among them depending on the growth
phases. Considering the roles of such transcription factors, where cAMP–Crp and
Cra have already been explained, carbon storage regulator (Csr) is explained in the
next section.
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In E. coli, Fis (factor for inversion stimulation) is the most abundant during
exponential growth phase [98]. Fis levels peak during early growth phase and
thereafter decrease until they become very low during stationary phase [99], where
Fis transcription is repressed by the stringent response [100], and Fis is subject to
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growth rate control [101]. The stringent control and the growth control all require
the stringent response regulator DksA [101], where (p)ppGpp (guanosine 3′,5′-
bisphosphate including penta-phosphate pppGpp) and DksA interact with RNAP
[102]. Fis plays a widespread role in signaling conditions of high nutritional control
and outfitting the cells for efficient nutrient uptake and rapid growth [99]. Fis also
plays a role in signaling poor nutritional condition, where in response to amino acid
starvation, Fis is subject to severe and rapid negative control by the stringent
response [101].

Bacteria generally have distinct strategies for the starvation in different nutrient
sources. The individual hunger responses may be superimposed on a common
protective starvation response [103]. Carbon limitation occurs at the onset of the
stationary phase and leads to amino acid limitation, which requires the signaling
pathways via RelA and SpoT during carbon and amino acid limitation [60]. During
stringent response, nutrient limitation leads to the accumulation of ppGpp [104],
which may bind to RNA polymerase [105], where ribosomal RNA and proteins are
negatively regulated by ppGpp, which implies that protein biosynthesis declines,
and in turn, the cell growth rate decreases. During amino acid limitation, (p)ppGpp
is mediated by RelA. The accumulation of (p)ppGpp depends on the dual activity of
SpoT as (p)ppGpp-hydrolase or ppGpp synthetase (Fig. 7). SpoT is activated in
response to fatty acid starvation, carbon source starvation, diauxic shifts, phosphate
limitation, ion limitation, hyper-osmotic shock, and oxidative stress [106].

The alamone ppGpp is involved in the regulation of σS on the transcriptional and
posttranscriptional level [107], where ppGpp concentration increases with lower
growth rates and affects RpoS, and ppGpp accumulates immediately after onset of
nutrient starvation. The elevation of σS negatively regulates σD-dependent house-
keeping genes [108]. Moreover, ppGpp influences the competition between dif-
ferent stress-related sigma factors in the binding of RNA polymerase core enzyme
at the expense of σD [109] and RNA polymerase availability [60]. RpoS plays an
important role at the stationary phase or carbon-starved conditions as well as other
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stress conditions in E. coli [107, 110, 111]. Under normal situation with rich media,
RpoS is rapidly degraded by ClpXP proteases, and the proteolytic activity of this
enzyme is considerably reduced [107, 110, 111]. RpoS tends to increase as the
cultivation proceeds from late growth phase to the stationary phase of the batch
culture [112, 113].

After the stationary phase in the batch culture, the death phase and long-term
stationary phase follow [114]. During the stationary phase, nutrient becomes
exhausted, and waste products gradually accumulate, which may become a stress to
the cell, and this eventually leads to the death phase in which the number of viable
and culturable cells declines. Since majority of the cells in the death phase are
viable but nonculturable or dying, nutrients from a portion of such cells are released
into the medium. The released nutrients support the survival of the remaining
culturable cells, and viable and culturable cells can survive for months or years in
the long-term stationary phase [115, 116]. The σE-dependent cell lysis is to elim-
inate damaged cells in the stationary phase in E. coli [116], where the cell lysis
proceeds in the cascade of σE → expression of micA and rybB → reduction in Omp
proteins in the outer membrane → disintegration of outer membrane [117]. The cell
lysis cascade appears to be related to the oxidative stress in the early stationary
phase [118].

7 Carbon Storage Regulation

In the batch culture, the glycogen decreases during early growth phase or induction
phase and increases at the late growth phase (Fig. 6) [119]. In the typical batch
culture, glucose consumption rate is low during early growth phase or the induction
phase, which may be due to glycogen utilization during unbalanced nutrient con-
dition. Moreover, glycogen is accumulated at the late growth phase when the
carbon source is going to be limited, which may be due to the preparation of carbon
source as glycogen to be used under carbon source starvation. Csr plays an
important role for such phenomenon.

The Csr system influences a variety of physiological processes such as central
carbon metabolism, biofilm formation, motility, peptide uptake, virulence and
pathogenesis, quorum sensing, and oxidative stress response [120–123]. Csr is
controlled by the RNA binding protein CsrA, a posttranscriptional global regulator
that regulates mRNA stability and translation [123], where CsrA is regulated by two
sRNAs such as CsrB and CsrC [124–126]. CsrA regulates the central carbon
metabolism and glycogenesis such that glycogen synthesis pathway gene expres-
sion, as well as gluconeogenic pathway gene expression, is repressed, while gly-
colysis gene expression is activated [120, 127] (Table 1).

Two sigma factors such as σ70 and σS affect csrA gene expression [122, 128]. In
fact, the strong positive effects of ppGpp and DksA on csrB/C transcription and
negative effects of CsrA on RelA expression and (p)ppGpp accumulation during
stringent response [129]. This suggests that CsrB through CsrA directly regulates
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DksA, thereby forming a positive feedback loop, and also, DksA and ppGpp
activate the expression of csr genes [129], indicating the links between CsrA/B and
the stringent response [129, 130].

The csr gene knockout affects the central metabolism such that the glycolysis
activity is repressed (and the oxidative PP pathway is activated) together with
acetate formation in the case of using glucose as a carbon source [131]. In the case
of using gluconate as a carbon source, ED pathway is exclusively used for csrA
mutant [131]. In the above cases, FBP concentration decreases [131], and thus, Cra
may be activated and affects the metabolism by repressing glycolysis genes.

The csrA gene disruption also causes a significant increase in PEP concentration,
since CsrA activates pykF gene expression, while it represses pckA and ppsA genes.
The precursors of shikimate pathway for aromatic amino acids formation are a
single E4P and two PEP molecules, and thus, over-expression of tktA with csrA
gene disruption enhances phenylalanine biosynthesis [132].

Moreover, biofuels production can be improved by the over-expression of CsrB
by activating native fatty acid and heterologous n-butanol and isoprenoid pathways
[130]. In particular, CsrB-mediated degradation of CsrA drives over-expression of
glgCAP operon, which results in the accretion of the storage polysaccharide
glycogen.

8 Nitrogen Regulation

Next to carbon (C) source metabolism, nitrogen (N) metabolism is important to
understand the cell metabolism. The N-regulation is controlled by σ54 encoded by
rpoN. The main players in the hierarchical network for nitrogen metabolism and
regulation are the ammonia transporter AmtB and a glutamine transporter GlnHPQ,
metabolic pathways such as glutamate dehydrogenase (GDH) encoded by gdhA,
glutamine synthetase (GS) encoded by glnA, and glutamate synthase (GOGAT)
encoded by gltBD, the two bifunctional enzymes such as adenylyl transferase/
adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl removing
enzyme (UTase), the two-component regulatory system composed of the histidine
protein kinase, nitrogen regulator II (NRII) encoded by glnL and the response
regulator I (NRI) encoded by glnG, three global transcriptional regulators such as
nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein
(Lrp), and Crp, the glutaminases, and the nitrogen phosphotransferase system [133].

N-source such as ammonia (NH3)/ammonium (NH4
+) is predominantly assim-

ilated at glutamate dehydrogenase (GDH) reaction, where α-ketoglutarate (αKG) is
converted to glutamic acid (Glu), where NADPH is required for this reaction
(Fig. 8). Then, glutamate is converted to glutamine (Gln) at glutamate synthetase
(GS) reaction, where NH3/NH4

+ and ATP are required for this reaction. Thus, the
flux goes from αKG via Glu to Gln, and thus, Gln accumulates under excess
ammonia condition. Under N-limitation, the expression of gdhA, which encodes
GDH, is repressed by Nac, and thus, Gln concentration decreases, and αKG
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accumulates, where glutamate is formed from Gln by glutamate synthase (GOGAT)
reaction (Fig. 8). Namely, under N-limitation, GS/GOGAT cycle plays an important
role.

Intracellular ammonium is assimilated into biomass in two steps: Namely, it is
first captured in the form of glutamic acid using carbon skeleton of αKG via GS/
GOGAT cycle. Then, N-group in glutamate is transferred by aminotransferase
reactions to synthesize other amino acids thus incorporating into biomass, while
recycling the carbon skeleton back to αKG [134]. The αKG pool, which integrates
imbalance between the ammonium assimilation flux and the biomass incorporation
flux, activates AmtB [135–137] via GlnK. If ammonia level drops, then the rate of
ammonia assimilation will drop immediately, which results in αKG accumulation
[138]. When extracellular ammonia concentration is low around 5 μM or less,
ammonia is captured and transported into the cell via AmtB and is converted to
glutamine by GS, and UTase uridylylates both GlnK and GlnB [139] (Fig. 9).
When extracellular NH4

+ concentration is more than 50 μM, glutamine pool rises,
and UTase deuridylylates GlnK and GlnB. Then, GlnK complexes with AmtB,
thereby inhibiting the transport via AmtB, and ammonia may enter by diffusion. PII
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(GlnB) interacts with NtrB (NRII) and activates its phosphatase activity leading to
dephosphorylation of NtrC (NRI), and NtrC-dependent gene expression ceases
(Fig. 9) [139].

Lrp regulates the expression of such genes as involved in catabolism and
anabolism of amino acids (AAs). In particular, leucine indicates AA sufficiency,
and it is affected by Lrp, where Lrp does not restrict to leucine but the other AAs
such as isoleucine, histidine, and threonine. Lrp may activate gltBD and pyridine
nucleotide transhydrogenase [133].

When arginine is abundant, the transcription factor ArgR binds to arginine to
repress arginine biosynthesis enzymes [140] and activates arginine degradation
enzymes [141]. This regulation is also subject to the NtrC regulation.

The GlnHPQ enables active transport of glutamine into the cell with higher
specificity, where glnH is the structure gene for the periplasmic binding protein,
glnP gene codes for the membrane-bound glutamine permease, and glnQ codes for
the ATP hydrolyzing component of ABC transporter system [133].

Two of the major signal transduction systems of N and C metabolisms are
identified as PII (GlnB) and PTS. Because of the important roles in the regulatory
functions, PII and PTS can be regarded as the central processing units of N and C
metabolisms, respectively. The PII protein senses αKG and ATP and thus links the
state of central carbon and energy metabolism for the control of N assimilation
[142]. N assimilation is regulated by PII-Ntr system together with Crp, providing a
regulatory network between C and N assimilation in E. coli [143, 144]. The C and

ntr
genes

nac

Nac

(gdhA)

NtrC/NRI -P NtrC/NRI (glnG)

GlnB/PII -UMP GlnB/PII

UTP

NtrB/NRII(glnL) NtrB/NRII -P

GS (glnA)

GS - AMP

ATase (glnE) 

GlnK-UMP GlnK (glnK)

+

+

+

glnALG

Specific glucose 
consumption rate

+ + +

GDHα- KGcAMP

GS

Fig. 9 Overall nitrogen regulation mechanism under N-limitation

Metabolic Regulation and Coordination … 21



N metabolisms may be linked by energy metabolism, where PII controls N
assimilation by acting as a sensor of adenylate energy charge. Moreover, αKG serves
as a cellular signal of C and N status and strongly regulates PII functions [145]. Gln
and αKG are the signal metabolites for nitrogen and carbon status, respectively, and
these signals regulate GS adenylylation state and nitrogen regulator I (NRI or NtrC)
phosphorylation state [146]. Nitrogen shortage is reflected by the reduced Gln levels
and increased αKG level [138, 147]. This ratio is substantially constant under
C-limitation, where this constant ratio is the result of tight regulation of ammonia
assimilation to match exactly the carbon uptake rate. This ratio is insensitive to
variations in protein levels of the core circuit and to the N-utilization rate, and this
robustness depends on bifunctional enzyme adenylyl transferase [148].

During N-limitation, a sudden increase in nitrogen availability results in
immediate increase in glucose uptake, and αKG plays an important role for this,
where αKG directly reduces the glucose uptake under N-limitation by inhibiting EI
of PTS (Fig. 8) [149]. This implies the followings: (1) αKG inhibition of sugar
uptake is for all PTS sugars by inhibiting EI but not carbohydrate-specific EII; (2)
this is performed without perturbing the concentrations of the glycolytic interme-
diates such as G6P, PEP, and PYR; (3) inhibition of EI by αKG leads to reduced
amount of phosphorylated EIIAGlc and decreases cAMP level, where the effect of
αKG on cAMP production is caused by the difference in EIIAGlc phosphorylation
rather than a difference in substrate availability [149]. Not only αKG but also other
α-ketoacids such as OAA and PYR play also the similar roles and affect not only
PTS but also the cAMP level by Cya [150]. Moreover, αKG is a promiscuous
enzymatic regulator that competitively inhibits citrate synthase (CS) of the TCA
cycle and 3PG dehydrogenase for serine biosynthesis and further controls aspartate
production by product inhibition of transaminase under N-limitation [149]. αKG
noncompetitively inhibits EI and Pps, while PtsP (EI homolog in the nitrogen PTS)
is insensitive to αKG.

In addition to carbohydrate PTS, most proteobacteria possess a paralogous
system such as nitrogen phosphotransferase system PTSNtr, where it consists of
EINtr encoded by ptsP, NPr encoded by ptsO, and EIIANtr encoded by ptsN, which
are paralogues to the carbohydrate PTS components such as EI, HPr, and EIIA,
respectively [151–153]. E. coli PTSNtr plays a role in relation to K+ uptake, where
dephosphorylated EIIANtr binds to and regulates the low-affinity K+ transporter
TrkA [154] and the K+-dependent sensor kinase KdpD [153, 155]. K+ regulates
global gene expression involving both σ70- and σS-dependent promoters [156].
Moreover, dephosphorylated EIIANtr modulates the phosphate starvation response
through interaction with sensor kinase PhoR [157]. Dephosphorylated form of
PTSNtr interacts with and inhibits LpxD, which catalyzes biosynthesis of lipidA of
the lipopolysaccharide (LPS) layer [158].

Although the physiological role of PTSNtr has not been well known, glutamine
and αKG reciprocally regulate the phosphorylation state of the PTSNtr by direct
effects on EINtr autophosphorylation. This implies that PTSNtr senses nitrogen
availability [159].
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9 Sulfur Regulation

Under sulfur (S) limitation, at least three metabolites such as sulfide, the reduction
product of sulfate used for cysteine biosynthesis; N-acetylserine, the only precursor
of cysteine; and adenosine 5’-phosphosulphate (APS), the first intermediate in
sulfate assimilation, are involved for the metabolic regulation [160, 161]. Under S-
limitation, the concentrations of sulfide and APS decrease, while N-acetylserine
pool increases. The two regulators CysB and Cbl mediate homeostatic responses to
S-limitation, where these responses help E. coli to scavenge trace amounts of
cysteine and sulfate, preferred S sources, or the alternative S sources such as
glutathione and various alkaline sulfonate including taurine. S-limitation affects
methionine metabolism, synthesis of FeS clusters, and oxidative stress.

Like NtrC for N-regulation, CysB is the primary regulator for homeostatic
responses to S, and it is required for the synthesis of Cbl [162]. CysB is positively
controlled by N-acetylserine and negatively controlled by sulfide or thiosulfate
[161], and Cbl is negatively controlled by APS [160]. It is of interest that cbl gene is
transcribed from nac promoter under N-limitation [163]. The ddp operon is acti-
vated by NtrC, and there might be a cross-regulation between S-limitation and N-
limitation [164].

10 Phosphate Regulation

The phosphate (P) metabolism is also quite important from the energy generation
and phosphorelay regulation points of view. The phosphorous compounds serve as
major building blocks of many biomolecules and have important roles in signal
transduction [165]. Depending on the concentration of environmental phosphate,
E. coli controls phosphate metabolism through Pho regulon, which forms a global
regulatory circuit involved in a bacterial phosphate management [165, 166]. The
PhoR/PhoB two-component system plays important roles in detecting and
responding to the changes of the environmental phosphate concentration [167].
Namely, under phosphate limitation, the phosphate is transferred by an ABC
transporter composed of PstSCAB for the high-affinity capture of Pi, and the
phosphate is then transferred to PhoR (PhoR-P), and in turn, PhoB is phosphory-
lated by PhoR. The phosphorylated PhoB acts as the response regulator and reg-
ulates Pho Box genes such as eda, phnCDEFGHIJKLMNOP, phoA, phoR/B, phoE,
phoH, psiE, pstSCAB, phoU, and ugpBAECQ [168]. When Pi is rich or in excess, Pi
is taken up by the low-affinity transporter Pit, and PhoR, Pst, and PhoU together
turn off the Pho regulon by dephosphorylating PhoB. The sensor protein CreC
(PhoM) can phosphorylate PhoB, while acetyl phosphate can also directly phos-
phorylate PhoB [166]. The overall regulation mechanism is complex, and it is not
so clear how the phosphate limitation affects the metabolism [169].
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The promoters of the Pho genes are recognized by σD-associated RNA poly-
merase. A mutation in rpoS significantly increases the level of AP (alkaline
phosphatase) activity, and the over-expression of σS inhibits it [170]. The Pho
regulon is thus evolved to maintain a trade-off between cell nutrition and cell
survival during Pi starvation [170].

11 Metal Ion Regulation and Oxidative Stress Regulation

Iron is ubiquitous and the fourth most abundant element on earth and supports the
metabolism of living organisms on the planet [171]. Iron is involved in the for-
mation and destruction of ROS such as superoxide (O2

·−), peroxidase (H2O2 and
ROOH), and free radicals (·OH and ·OR) usually generated as toxic by-products of
aerobic metabolism in a cascade of monovalent reductions from molecular oxygen.
Although certain amounts of iron and ROS are required for the cell to survive, the
excess amounts cause stress to the cell leading to the cell death [172].

The metal ion levels are often sensed by metal-sensing regulatory RNA, which
encodes metal-sensing proteins involved in the transport and storage of intracellular
metals [173, 174]. In the native environment, the cell continuously faces iron
deficiency, where metal ion functions as cofactor in many of the cellular constit-
uents such as flavoproteins, and therefore, the cell furnishes the mechanism for iron
uptake and storage system [175, 176]. However, excess iron causes toxicity by
catalyzing the formation of reactive free radicals through Fenton/Haber–Weiss
reaction [177]. In combination with inability to convert NADH to NAD+ in the
respiration, a decrease in endogenous O2

− causes reductive stress and in turn
activates Fur (ferric uptake regulator) [178]. Fur generally represses ion transport
and ion siderophore biosynthetic genes when complexed with ferrous ion. Under
ion limitation, ion dissociates from Fur, where Fur requires binding to Fe2+ to
become active. O2

− deactivates Fur after its conversion to H2O2 by superoxide
dismutase (SOD) through Fenton reaction (H2O2 + Fe2+ → HO· + OH− + Fe3+)
[179]. Therefore, a decrease in endogenous O2

− increases the availability of Fe2+,
through a decrease in H2O2 level, and in effect activates Fur [180]. Namely, Fur
senses the reductive stress and protects Fe–S clusters to be safe from damage by
ROS. It is essential for the cell to use iron economically, and this is attained by
siderophore synthesis and iron transport regulation [181]. Iron transport and sid-
erophore (e.g. enterobactin) pathway genes such as talB and entF are repressed by
Fur [182–184], and enterobactin may be produced in fur mutant E. coli [185]. There
are functional interactions between carbon and ion utilization via Crp and Fur,
where many ion transport genes and several catabolic genes are subject to dual
control [186].

The widely conserved multiple antibiotic resistant regulator (MarR) family of
transcription factors modulates bacterial detoxification in response to antibiotics
such as fluoroquinolones and β-lactams such as ampicillin, tetracycline, and
chloramphenicol, as well as toxic chemicals and synthesis of virulence
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determinants. [187]. MarR senses copper (II) as a signal to cope with stress caused
by antibiotics, etc., where copper (II) oxidizes a cysteine residue on MarR to
generate disulfide bonds between two MarR dimers, thereby inducing tetramer
formation and dissociation of MarR from its cognate promoter DNA [188].

The microbial cell responds to oxidative stress by inducing antioxidant proteins
such as SOD and catalase, where those are regulated by OxyR and SoxR/S [189].
SoxR is a member of the MarR family of metal-binding transcription factors, and it
exists in solution as a homodimer with each subunit containing a [2Fe–2S] cluster.
These clusters are in the reduced state in inactivated SoxR, and their oxidation
activates SoxR as a powerful transcription factor [190]. The active form of SoxR
activates transcription of soxS gene, where SoxS belongs to the AraC/XylS family.

Although the respiration is universal among all aerobic organisms, inefficient
electron transfer via the respiratory complexes results in one electron reduction of
diatomic oxygen, a phenomenon known to generate toxic ROS [191]. Since
NADPH plays an important role for detoxification of ROS, some prokaryotic
microorganisms such as E. coli produce NADPH at ICDH in the TCA cycle
together with the reactions at G6PDH, 6PGDH, and possibly at Mez.

The αKG is a key participant in the detoxification of ROS with concomitant
formation of succinate, where succinate is a biomarker for oxidative stress [191].
Moreover, NADPH-producing ICDH is activated, while NADH-producing KGDH
is deactivated in Pseudomonas fluorescens [191]. This indicates that for both
prokaryotic and eukaryotic cells, the TCA cycle acts both as a scavenger and
generator of ROS, and its modulation is important for regulating ROS [191]. The
TCA cycle can both regulate their formation and decomposition, where the con-
comitant accumulation of succinate may act as a potent signal for this [191].

The proper understanding on the regulation of ROS homeostasis gives a way for
medical applications [172]. Namely, iron- and ROS-dependent cell death may be
considered for cancer treatment. As mentioned above for bacteria, high NADPH
production with low ROS levels is essential for tumor cell proliferation and survival
[192–194]. NADPH is required for glutathione homeostasis, which indicates that
tumor cells require a highly reduced environment for survival. Therefore, one idea
for pushing cancer cells to sentence or death is the decrease of the glutathione levels
and/or the increase of the oxidative stress levels [195].

12 Redox State Regulation

Global regulators such as Fnr (fumarate nitrate reduction), Arc (anoxic respiration
control) system, and Nar (nitrate reduction) are mainly responsible for the regula-
tion under oxygen limitation and other electron acceptors in the culture environ-
ment, where Fnr directly senses molecular oxygen and plays a role under anaerobic
condition [196], in coordination with ArcA/B system, where Fnr activates arcA
gene expression. Under oxygen limitation, Fnr binds a [4Fe–4S]2+ cluster and
becomes a transcriptionally active dimeric form. Molecular oxygen can oxidize the
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ion–sulfur cluster of the corresponding region, resulting in monomerization of the
protein and subsequent loss of its ability to bind DNA [197]. The ArcA/B system
plays a role under both anaerobic and micro-aerobic conditions [198, 199], where it
is composed of ArcA, the cytosolic response regulator, and ArcB, the membrane-
bound sensor kinase. The ArcA/B two-component system responds to the redox
state of the membrane-associated redox carriers such as quinones in the respiratory
chain [200, 201]. The quinone pool decreases under oxygen limitation and causes
ArcB to be self-phosphorylated (ArcB-P), and then, ArcB-P transphosphorylates
ArcA (Fig. 10) [202]. The ArcA-P then represses the expression of the TCA cycle
and the glyoxylate shunt genes (Table 1). Moreover, the genes that encode the
primary dehydrogenases such as glpD, lctPRD, aceE,F, and lpdA are also repressed
by ArcA (Table 1). The cyoABCDE operon is repressed by both ArcA and Fnr,
while cydAB operon is activated by ArcA and repressed by Fnr (Fig. 10) [203].

The expression of pfl genes which encode pyruvate formate lyase, Pfl, is acti-
vated by ArcA and Fnr, whereas aceE,F and lpdA which encode PDHc are
repressed by ArcA under oxygen limitation (Fig. 10). The formate can be excreted
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via Foc or converted to hydrogen via formate dehydrogenase, FDHH, and formate
hydrogen lyase, Fhl, and deletion of FocAB, FDHN, and hydrogenase Hyd (Fig. 10)
[204, 205]. Moreover, the flux from PYR to AcCoA is blocked in pfl mutants
(ΔpflA or ΔpflB), and pyruvate exclusively goes to lactate formation via LDH
reaction [206, 207]. Moreover, Fnr activates frd gene expression, while repressing
sdh gene expression, resulting in branched pathways for TCA cycle under anaer-
obic condition.

As mentioned before, the TCA cycle activity is repressed as the glucose con-
sumption rate was increased due to lower level of cAMP–Crp, which in turn causes
acetate overflow metabolism. This also occurs by the higher redox ratio [208]. This
phenomenon can be relaxed by activating TCA cycle by arcA/B genes knockout
[198, 204, 209]. The activated TCA cycle produces more NADH and allosterically
inhibits CS and ICDH activities [210]. Thus, the NADH oxidation by the expres-
sion of nox gene coding for NADH oxidase, NOX, in the arcA mutant further
reduces the acetate formation, resulting in the increased recombinant protein pro-
duction [211], while nicotinic acid and Na nitrate may also activate TCA cycle
[212]. The activation of the TCA cycle causes the decrease in the cell yield due to
higher production of CO2 in the TCA cycle.

Many bacteria utilize oxygen as the terminal electron acceptor, but they can
switch to other acceptors such as nitrate under oxygen limitation. The reducing
equivalents such as NADH are reoxidized in the respiratory chain, where oxygen,
nitrate, fumarate, and dimethyl sulfoxide can be the electron acceptors. Nar plays a
role when nitrate is present under oxygen limitation. Nar belongs to the two-
component redox regulation systems, where it comprises a membrane sensor
(NarX) that acts as a kinase causing phosphorylation of the regulator (NarL) under
certain conditions [202]. The Nar system activates such genes as nitrate reduction
encoding nitrate and nitrite reductases and represses such genes as frd genes for
fumarate reductase.

13 Acid-shock Response

The cell such as E. coli has the regulation systems in response to acidic condition
[213–216]. Some of these depend on the available extracellular amino acids such as
glutamate, arginine, and lysine, where the intracellular proton is consumed by the
reductive decarboxylation of the amino acid followed by the excretion of γ-amino
butyric acid (GABA) from cytoplasm to the periplasm by the anti-porter that also
imports the original amino acid [213]. E. coli is acid resistant by glutamate
decarboxylase system, where gadA and gadB encode glutamate decarboxylase
isozymes and gadC encodes glutamate/GABA anti-porter (Fig. 11). Glutamate
decarboxylase is activated in response to acid, osmotic, and stationary phase sig-
nals. The GADAB forms a glutamate-dependent acid response system, where the
process of decarboxylation consumes an intracellular proton and helps maintain pH
homeostasis. There are other similar acid-resistant systems for the case of using
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arginine instead of glutamate by arginine decarboxylase, where the anti-porter is
AdiC in this case [217, 218], and for the case of using lysine by lysine decar-
boxylase [218]. The cells grown in media rich with amino acids such as LB are acid
resistant because of the above mechanism [213].

Moreover, ATPase is involved in acid regulation system [216], where ATPase is
usually utilized for the protons in the periplasm move into the cytosol across the cell
membrane producing ATP from ADP and Pi by the negative proton motive force
(PMF). Since the basic problem of acid stress is the accumulated proton in the
cytosol, this proton may be pumped out through ATPase by hydrolyzing ATP with
reversed proton move due to positive PMF at low pH such as pH 2 or 3 [216].
Without amino acid in the media, this acid response system is activated by utilizing
ATPase [215, 219], where the positive PMF pumps out extra protons (H+) from the
cytoplasm using ATP (Fig. 11) [215]. This proton homeostasis by PMF is con-
served in large class of organisms.

RpoS that increases at the late growth phase and the stationary phase and Crp are
involved in acid resistance [213, 220]. As implied by the involvement of Crp, the
acid-resistant system is repressed when glucose is present. The acidic pH lowers
cAMP levels in exponentially growing cells in the minimal glucose medium. Since
cAMP–Crp represses RpoS, this may elevate RpoS and increases the expression of
gadX. The overall regulation system seems to be quite complex involving EvgS/A,
B1500, PhoQ/PhoP, GadX, GadW, etc. [221].
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Fig. 11 Acid-shock regulation by amino acid decarboxylase and reversed PMF
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OmpR may be a key regulator for acid adaptation, and thus, ompR mutant is
sensitive to acid exposure [222]. The acid-inducible asr gene is regulated by PhoR/
B, and thus, phoR/phoB deletion mutant fails to induce asr gene expression [223].

In order to keep pH constant, alkali such as NaOH is supplied during the cell
growth in practice, which results in the increase in sodium ion (Na+), where nhaA
gene encoding the Na+/H+ anti-porter membrane protein and nhaR gene encoding
the NhaA regulatory protein can be over-expressed in pflB mutant, showing per-
formance improvement for lactate fermentation [224].

14 Heat-shock Stress Response

The organisms respond to a sudden temperature upshift by increasing the synthesis
of a set of proteins. This phenomenon is called as heat-shock response, where this
does not restrict to the temperature upshift, but also other stresses such as solvent
stress. The heat-shock proteins play important roles in the assembly and disas-
sembly of macromolecular complex such as GroE, the intracellular transport such
as Hsp70, transcription such as σ70, proteolysis such as Lon, and translation such as
lysyl tRNA synthetase. The heat-shock response in E. coli is mediated by σ32

encoded by rpoH. Among them, groEL, dnaK, and htpG encode major chaperones
such as Hsp 60, Hsp 70, and Hsp 90. ClpP, Lon, and HtrC are involved in the
proteolysis. DnaK, DnaJ, GrpE, and RpoH are involved in the autoregulation of
heat-shock response. DnaK prevents the formation of inclusion bodies by reducing
aggregation and promotion of proteolysis of misfolded proteins. A bichaperone
system involving DnaK and ClpB mediates the solubilization or disaggregation of
proteins. GroEL operates protein transit between soluble and insoluble protein
fractions and participates positively in disaggregation and inclusion body forma-
tion. Small heat-shock proteins such as IbpA and IbpB protect heat-denatured
proteins from irreversible changes in association with inclusion bodies [225, 226].

Hoffmann et al. [227] investigated the metabolic adaptation of E. coli during
temperature-induced recombinant protein production and showed that cAMP–Crp-
controlled LpdA of pyruvate dehydrogenase complex (PDHc) and SdhA in the TCA
cycle are highly induced. Namely, the TCA cycle is activated due to increased level
of cAMP–Crp at higher temperature. In E. coli, heat-shock protein synthesis rates
peak at about 5–10min after the temperature upshift and then decline to a new steady-
state level [228]. The σ70 is itself a heat-shock protein, and the increase in its con-
centration after heat shock may contribute to its decline in heat-shock protein syn-
thesis. DnaK contributes to the shutoff of the high-level synthesis of heat-shock
proteins [229]. The heat shock activates crp gene expression, and in turn, Crp acti-
vates mlc gene which codes for Mlc [230], and thus, the glucose consumption rate
decreases (Fig. 12) [231]. This also causes cAMP level to be increased (Fig. 12).

Acetate production is affected by higher temperature. Transcription of acs gene
occurs from two σ70-dependent promoters such as distal promoter acs P1 and
proximal promoter acs P2 [232, 233]. The cAMP–Crp binds two sites within the acs
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regulatory region. However, Fis and Ihf independently modulate Crp-dependent
activation of acs P2 transcription [234, 235].

The respiration is activated during the temperature upshift [227], and sod is
induced in response to the oxidative stress imposed by dioxygen or by the redox-
active compounds such as viologens or quinones caused by the temperature upshift
[236]. This phenomenon may be also caused by the activated TCA cycle.

15 Cold-shock Response

Upon temperature downshift from 37 to 15 °C, the major cold-shock proteins such
as CspA, CspB, and CspG are induced, where cold-shock proteins are able to
bypass the inhibitory effect of the antibiotics such as kanamycin and chloram-
phenicol [237]. Although thermoregulatory mechanism is not well understood, the
adaptation of the cell to low temperature such as 20–23 °C requires coordinated and
multifunctional response, where RpoS and the small regulatory RNA DsrA are
involved in both cold-shock and biofilm formation genes [238] as well as flagella
biosynthesis and motility genes [239].
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16 Solvent Stress Regulation

The biofuels production by microorganisms has been paid recent attention. How-
ever, many biofuels are toxic to microorganisms and reduce the cell viability
through damage to the cell membrane and interference with essential physiological
processes. Several attempts have been made to improve the tolerance to biofuels,
where biofuel export systems, heat-shock proteins, and membrane modifications
have been considered [240]. The effect of biofuels on the cell is through hydro-
phobicity of the cytoplasmic membrane, where the accumulation of solvent in the
cytoplasmic membrane increases permeability of membrane, diminishes energy
transduction, interferes with membrane protein function, and increases fluidity
[240–243]. This may cause the release of ATP, ions, phospholipids, RNA, and
proteins, and thus, the cell growth is depressed due to disturbances on ATP pro-
duction by diminished PMF. Moreover, the increase in fluidity affects the nutrient
transport as well as energy transduction.

Toxicity levels vary depending on the microbes and the types of biofuels and
biochemicals. In general, longer chain alcohols are more toxic than short-chain
alcohols. Efflux pumps are membrane transporters that recognize and export toxic
compounds from the cell by PMF, where this is important for the cell to survive by
exporting bile salts, antimicrobial drugs, and solvents. The acrAB–tolC pump in
E. coli provides tolerance to hexane, heptanes, octane, and nonane [244]. Efflux
pumps are effective for increasing tolerance and production of biofuels, in partic-
ular, for long-chain alcohols, but those are not effective for exporting short-chain
alcohols such as 1-propanol and isobutanol [245].

The heat-shock proteins are up-regulated in response to short-chain alcohols
[180, 246], and heat-shock protein refolding genes such as rpoH, dnaJ, htpG, and
ibpAB are up-regulated [247], while groESL, dnaKJ, hsp18, and hsp90 are up-
regulated in Chrostridium acetobutylicum [248]. Over-expression of heat-shock
proteins may increase tolerance against biofuels [249, 250].

In general, solvents disrupt the cell membrane structure and have a strong impact
on physiological function and eventually leading to the cell death [251]. To
overcome this problem, solvent-tolerant microbes change the composition of the
fatty acids from cis to trans unsaturated fatty acids catalyzed by cis–trans isomerase
(cti), thus decreasing membrane fluidity, preventing the entry of solvents into the
cell [252, 253]. In addition, modifications to phospholipid headgroups or phos-
pholipid chain length increase solvent tolerance [246].

In relation to solvent stresses caused by the accumulation of biofuels in the
culture broth, the primary role to protect the cell from such stress is made by outer
membrane porin proteins. Since cytosolic membrane is also under stress condition,
respiration and membrane proteins as well as general stress response mechanism are
affected [243]. ROS highly increase in response to the stress caused by n-butanol in
E. coli [247].
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17 Osmoregulation

The bacterial cell is surrounded by the cell envelope, where the plasma membrane is
responsible for the transport of ions such as H+, Na+, and K+, and various substrates
or nutrients, and metabolites to maintain homeostasis. The bacterial cells exchange
such components together with energy and information with their surroundings by
the appropriate sensing and responding mechanisms [254]. Under osmotic stress
condition, a number of transport systems for ions such as K+, and compatible
solutes such as proline betaine and the precursor choline are activated [255]. The
typical two-component histidine kinase/response regulator system such as KdpD/
KdpE is ubiquitous in various bacteria [256], where it regulates kdpFABCDE
operon including the Kdp ATPase and active K+ uptake system. Namely, KdpD/
KdpE system responds to K+ limitation and salt stress [257–259]. As also men-
tioned before, EnvZ/OmpR two-component system regulates the expression of the
porin genes such as ompC and ompF encoding outer membrane porins in relation to
osmolarity.

The cytoplasmic or inner membrane is impermeable to most large and poler
solutes, while these are compensated for by freely diffusing water molecules, and
thus, the transmembrane concentration gradients are developed for such com-
pounds. The resulting changes in cellular volume and turgor pressure exert strong
mechanical force on the cytoplasmic membrane and associated proteins and pre-
clude the cell growth [260]. To cope with osmotic stress, bacteria adapt their
intracellular osmolarity [254] or increase the cell wall stability [261]. The salt stress
tolerance is mediated by flux control of water across the cell membrane, adjust-
ments of intracellular potassium levels, synthesis of disaccharide trehalose, and/or
transport of small molecule osmoprotectants [262].

In principle, bacterial cells respond to environmental or growth conditions by
immediate protein or enzyme-level regulation, and by slow gene transcriptional
regulation via transcription factors. In summary [260], in response to sudden
changes in osmotic pressure, E. coli controls in- and outflux of water and other
small molecules by activating aquaporins as an immediate response [263]. It reg-
ulates intracellular potassium concentrations by adjusting the potassium transport-
ers such as Kup, KdpFABC, or TrkA for transient adaptation to short-term osmotic
stress [264]. In the case of prolonged osmotic stress, E. coli takes up the osmo-
tolerants such as glycine betaine and proline from the environment via ABC
transporter encoded by proVWX or synthesizes glycine betaine from the extracel-
lular precursor choline [265–267]. If no extracellular compatible solutes are
available, E. coli induces expression of trehalose 6-phosphate synthase (OtsA) and
phosphatase (OtsB) to produce high intracellular concentrations of the nonreducing
disaccharide trehalose from the precursors such as UDP-glucose and G6P in
response to long-term resistance to sustained osmotic stress [268–270].

There is indeed an interaction between trehalose and membrane lipid head
groups, but this effect is insufficient to fully account for the resistance of membrane
against strong osmotic stress. Upon osmotic stress, bacteria adjust their intracellular
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osmolarity and modify their cell wall structure [260]. For this, polyisoprene lipids
may also contribute to osmoprotection by increasing resistance to high-salt condi-
tions in the cytoplasmic membrane and in the membrane bilayers of liposomes in
E. coli [260]. Coenzyme Q functions as an electron and proton carrier in aerobic
respiration and has an additional crucial role as a chain-breaking antioxidant [271].
The long polyisoprenyl tail of CoQn functions to anchor this lipid in the membranes
of cells (Fig. 13), where n designates the number offive carbon isoprene units such as
CoQ6 in S. cerevisiae, CoQ8 in E. coli, and CoQ10 in human [262]. In E. coli, CoQ8

level becomes significantly high in response to high-salt condition (Fig. 13) [260].

18 Biofilm, Motility by Flagella, and Quorum Sensing

Biofilm formation is one of the important microbial survival strategies, where
biofilm development involves attachment of bacteria to surfaces and cell–cell
adhesion to form microcolonies. This is useful for the cell to protect against

Fig. 13 Electron transport carrier quinone and quinol in the respiratory chain and the role of
osmoprotection
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predators and antibiotics [272]. The attachment of bacteria to abiotic and biotic
surfaces is made by motility, proteinaceous adhesion, and a cell-bound polysac-
charide such as PGA (poly-β-1,6-N-acetyl-D-glucosamine), where PGA is a cell-
bound exopolysaccharide adhesion [272]. As mentioned before, Csr plays impor-
tant roles for biofilm formation, where pga operon involved in PGA formation and
excretion is negatively regulated by CsrA. CsrA also negatively regulates c-di-
GMP, a second messenger involved in biofilm formation and motility [273]. Curli
are extracellular proteinaceous structures extending from the cell surface for
attachment during biofilm development [274]. Curli filaments are activated by
CsgD, where it is inversely correlated with flagella synthesis. The master regulator
of flagella synthesis is FlhD2C2, which activates the genes involved in motility and
chemotaxis [275]. McaS (multicellular adhesion sRNA) represses CsgD expression,
while activates FlhD and PgaA [275], and thus regulates the synthesis of curli
flagella and polysaccharide. Moreover, biofilm formation is under catabolite
repression by cAMP and Crp [276].

Quorum sensing is a cell-to-cell communication [277], where the signal mole-
cules are homoserine lactones (AHL) synthesized by LuxI-type enzyme. At high
cell density cultivations, LuxR-type regulator plays a role for the positive feedback
in association with AHL when its concentration exceeds a threshold level [120].
The quorum sensing is the sensing of cell density, where in E. coli, CyaR represses
luxS gene which encodes autoinducer-2 synthase [278].

19 Systems Biology Approach

In order to deepen our knowledge on metabolic regulation and for the efficient
metabolic engineering, it is quite useful to develop the appropriate metabolic
models which describe the dynamic behavior of the intracellular metabolite con-
centration [279, 280]. Although kinetic models for the glycolysis and the PP
pathways have been developed for E. coli [281], it is better to include TCA cycle,
thus covering the whole main metabolism, which enables the simulation of the
aerobic batch and continuous cultivations. Since the fluxes of the main metabolic
pathways can be computed with respect to time by such a model, the cell growth
rate may be reasonably predicted by taking into account the experimental obser-
vation that the cell growth rate is correlated with the specific ATP production rate
[282]. More importantly, it is highly desirable to incorporate the effects of tran-
scription factors on the enzymatic reactions to simulate the transition of the
metabolism during the batch culture [42, 283, 284]. This type of model can be used
to simulate acetate overflow metabolism and co-consumption of multiple sugars in
relation to catabolite regulation [285]. As shown in Fig. 14, the trend of the tran-
scription factors such as cAMP–Crp and Cra, and the pathway activities can be well
predicted with such a model for the case of continuous culture as mentioned in
Sect. 3, and it is quite useful to understand the complicated metabolic regulation
mechanism [285].
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20 Concluding Remarks

As seen above, the global regulators are responsive to the specific stimuli. Exam-
ples of such pleiotropic TFs in E. coli are Crp, a primary sensor for C-availability;
NtrBC, a sensor for N-availability; PstSCAB and PhoR, the sensor for P-avail-
ability; CysB, the sensor for S-availability; and Fur, the sensor for ion availability.
Functional interactions among such regulators must coordinate the activities of the
metabolon so that the supply of one type of nutrient matches the supply of other
nutrients [286]. Thus, multiple links between C and N metabolism have been
identified [287]. Other functional links between C and S metabolism [288], and
between C and ion metabolism [289, 290] have been identified. Moreover, the links
between S and N limitations have been also identified [291].

In general, bacteria in nature live far away from the optimal growth condition,
where multiple stresses are imposed on the cell. Therefore, the cell must have the
ability to sense, integrate, and respond to the variety of stresses for survival.
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Although little is known about “cross-stress” protection, cross-stress dependencies
are ubiquitous, highly interconnected and may emerge within short time frames
[292]. In fact, high degree of overlap was observed in the transcriptional profiling
for different stresses such as starvation, osmotic, and acidic stresses [293], as well as
starvation and heat-shock or oxidative stress [294, 295], where high osmolarity and
high temperature induce the oxidative stress regulons such as SoxRS and OxyR
[296, 297]. The responses to n-butanol share the same high overlap with those in
heat-shock, oxidative, and acidic stresses [298].

As mentioned in this article, the specific metabolites such as FBP, PEP, PYR,
OAA, AcCoA, and αKG in the main metabolic pathways play important roles for
metabolic regulation. This implies that these metabolites play roles for the coor-
dinated and integrated metabolic regulation. The regulation system ranges from
relatively rapid interactions such as enzyme-level regulation by allosteric binding of
the specific molecules or posttranslational modification to slow interactions such as
transcriptional regulation via transcription factors. It is important to get deep insight
into the whole cellular metabolic systems not only by molecular biology and bio-
chemistry, but also by systems biology approach, and apply this for the efficient
metabolic engineering.

Among intracellular metabolites, α-ketoacids such as αKG, OAA, and PYR turn
to be mater regulators for catabolite regulation and coordination of different regu-
lations [299]. Namely, when favoured carbon sources are depleted, α-ketoacid
levels fall, and cAMP increases to stimulate other carbon catabolite machinery.
When preferred nutrients are abundant, the cell growth rate becomes higher with
lower cAMP level, while if they are scarce, the cell growth rate declines with higher
cAMP level. This change in growth rate is accompanied by a change in cellular
composition, where ribosomes are needed for rapid protein production at higher
growth rate, while more metabolic enzymes for nutrient assimilation (catabolism)
are needed at lower cell growth rate [300, 301]. There is a linear relationship
between the total protein composition of a cell and its growth rate, where this can be
extended beyond ribosomes to metabolic enzymes [150]. Under N- or S-limitation
or other nutrient limitation, α-ketoacids such as αKG accumulate and inhibit carbon
assimilation, where there is less need for carbon catabolic enzymes and more
demand for those involved in such nutrient assimilation. When anabolic nutrients
are in excess, αKG concentration decreases, cAMP level increases, and carbon
catabolic enzymes increase to accelerate carbon assimilation. In the end, the
physiological function of cAMP signaling goes beyond simply enabling hierar-
chical utilization of carbon sources, but also controls the function of the proteome
[150, 299]. The energy level also affects carbon uptake rate [20, 302].

As mentioned before, cAMP–Crp and Cra play important roles for carbon
catabolite regulation in E. coli, where either PTS or non-PTS sugars are ranked for
assimilation in a hierarchy [303–305]. This may be caused by the cAMP–Crp level
and the promoter activities of the corresponding promoters of the transporters
[303–305].

The roles of cAMP–Crp are not only limited to carbon catabolite regulation.
Among many transcription factors, Crp plays significantly important roles in the
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wide range of regulations such as osmoregulation [306], osmotolerance [307],
oxidative stress [308], acid tolerance [309], acetate tolerance [310], ethanol toler-
ance [311], and butanol tolerance [312] as well as catabolite regulation. Therefore,
it may be of interest to modulate such transcription factors [313, 314] for the
development of next-generation cell factories.

It is of surmount interest to understand how the cell growth rate is regulated,
since such information gives us a hint for improving the cell growth rate, and thus
increasing the protein or metabolic production. For this, it is important to recognize
at which regulation levels affect the cell growth rate, where posttranscriptional
control of protein abundances and posttranslational control of flux rates are domi-
nated [315].

Moreover, it is also important to understand the effect of the specific pathway
gene mutation on the metabolic regulation in addition to the effect of growth
condition. In fact, 13C-metabolic flux analysis has been extensively employed for
the metabolic flux distributions of pathogens such as Mycobacterium tuberculosis
[316] and the specific gene knockout mutant E. coli [48, 317, 318], where the flux
information is located on top of different levels of information, manifested as the
result of metabolic regulation, and central to understanding the metabolism. It is,
therefore, of interest to investigate the effect of the specific gene knockout on the
metabolism as well in view of metabolic regulation for the design of next-gener-
ation cell factories.
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Efficient Biocatalytic Synthesis of Chiral
Chemicals

Zhi-Jun Zhang, Jiang Pan, Bao-Di Ma and Jian-He Xu

Abstract Chiral chemicals are a group of important chiral synthons for the
synthesis of a series of pharmaceuticals, agrochemicals, and fine chemicals. In past
decades, a number of biocatalytic approaches have been developed for the green
and effective synthesis of various chiral chemicals. However, the practical appli-
cation of these biocatalytic processes is still hindered by the lack of highly efficient
and robust biocatalysts, which usually results in the low volumetric productivity
and high cost of the bioprocesses. Further step forward of biocatalysis in industrial
application strongly requires the development of versatile and highly efficient
biocatalysts, aiming to increase the process efficiency and facilitate the downstream
processing. Recently, the fast growth of genome sequences in the database in post-
genomic era offers great opportunities for accessing numerous biocatalysts with
practical application potential, and the so-called genome mining approach provides
time-effective and highly specific strategy for the fast identification of target
enzymes with desired properties and outperforms the traditional screening of soil
samples for microbial enzyme producers of interest. A number of biocatalytic
processes with industrial application potential were developed thereafter. Further
development of protein engineering strategies, process optimization, and coopera-
tive work between biologists, organic chemists, and engineers is expected to make
biocatalysis technology the first choice approach for the eco-friendly, highly
efficient, and cost-effective synthesis of chiral chemicals in the near future.
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1 Introduction

Chiral chemicals are usually required as key intermediates for the synthesis of a
variety of pharmaceuticals, agrochemicals, food ingredients, flavors, and fine
chemicals. Traditional chemical routes to chiral chemicals usually require harsh
reaction conditions (e.g., elevated temperature, high pressure, strongly acidic, or
basic condition etc.) and expensive metal-based catalysts, which have led to severe
environmental problems. In the transformation of compounds bearing labile groups,
tedious protection/deprotection steps are required, thereof leading to relatively low
yields of the final products. Therefore, there is an urgent need for the development
of green and cost-effective processes for the preparation of chiral chemicals. In past
decades, there has been a significant rise in the application of biocatalysis for
industrial settings since biocatalysts offer cheap, environmentally benign, excel-
lently selective, and highly efficient alternatives to chemical routes [1–7].

56 Z.-J. Zhang et al.



However, the widespread industrial application of biocatalysis is still hindered
by low volumetric productivity, unsatisfactory selectivity, and limited availability
of robust biocatalyst [6]. The development of novel and robust biocatalysts still
remains a great challenge in both academia and industry [8]. Great effort has been
paid to develop powerful biocatalyst for biocatalytic processes with high substrate
concentration in order to achieve cost-efficiency and competitiveness in practical
biotransformation [6]. Traditional biocatalyst discovery is based on screening
soil samples from various sources for microorganisms producing desired enzyme
activity [9, 10]; however, this strategy is always time-consuming (typically 1–
2 years), and the enzyme expression level in the original host strain is usually very
low resulting in insufficient catalytic efficiency. Therefore, the cloning and over-
expression of the target enzyme in a suitable host organism and even further protein
engineering of the enzyme to meet specific application requirement is always
necessary [11, 12]. Most importantly, only less than 1 % of microbes in the
environment are culturable, limiting the versatility of biocatalysts explored. Due to
the exponential growth of genome sequences in the database in post-genomic era,
and most of them are uncharacterized for their definite biological functions, data
mining offers an unprecedented opportunity for accessing novel and useful bio-
catalysts with industrial application potential [13, 14].

For data mining, the gene sequences of the already-known enzymes with best
performance in the specific reaction are preferentially used as templates for BLAST in
GenBank or SWISS-PROT database, then a series of gene sequences (preferentially
uncharacterized before) with moderate sequence similarity to known enzymes are
considered to be possible candidates. Multiple sequence alignment of the candidate
sequences with known enzyme sequences with respect to key motifs, conserved
regions, and catalytically important residues can further increase the successful rate of
hits. If possible, three-dimensional structure analysis might be applied. Since the
chosen candidate sequences only shows moderate similarity to known enzymes
(usually lower than 80 %), they are considered to be relatively novel enzymes. The
finally picked target genes are then obtained through PCR amplification from the
genome DNA of the target strain or through gene synthesis, cloned into suitable
expression vectors, and transformed into host strains. After protein expression and
functional screening, one can get the suitable biocatalysts with desired properties.

In this chapter, efficient biocatalytic synthesis of a series of chiral pharmaceutical
intermediates including carboxylic acids, epoxides, and alcohols will be discussed
focusing on the newly developed biocatalytic processes using biocatalysts.

2 Bioresolution with Esterases and Lipases

Carboxylic ester-hydrolyzing enzymes, which are ubiquitous in animals, plants, and
microorganisms, can catalyze the hydrolysis or formation of the ester bonds. Of
them, lipases (EC 3.1.1.1, triacylglycerol hydrolases) and esterases (EC 3.1.1.3,
carboxyl ester hydrolases) are two groups of biocatalysts that are widely used in

Efficient Biocatalytic Synthesis of Chiral Chemicals 57



industry [15–18]. Esterase and lipase can be distinguished by substrate specificity
and interfacial activation [19]. The esterases hydrolyze soluble substrates such as
triglycerides with fatty acids shorter than C6, while the water-insoluble triglycerides
with long-chain fatty acids are typical substrates for lipases. Furthermore, a mini-
mum substrate concentration was needed for high activity of lipase because of the
hydrophobic “lid” covering the active site of lipase.

The interests in esterase and lipase from academia and industry mainly reside in
their desirable properties for practical application, such as high enantioselectivity
toward a variety of substrates, robustness, and cofactor independence. They have
been successfully applied in numerous industrial processes [20–23], including
detergents, oils and fats, cheese making, and pharmaceutical industry. Enantiose-
lective hydrolysis, transesterification, or synthesis of the single enantiomer ester
from the racemic mixtures by esterase or lipase provides an attractive approach for
the production of chiral chemicals. The intrinsic disadvantage of a maximum the-
oretical yield of 50 % in kinetic resolution can be overcome by the dynamic kinetic
resolution (DKR) or stereoinversion of the unwanted enantiomer [24–27]. DKR
combines the enzymatic resolution and racemization of the substrate in situ and has
attracted great interest [28–30]. Therefore, the synthetic potential of esterase and
lipase was pushed forward to a certain extent and the synthetic applications of these
groups of biocatalyst are well reviewed [15, 18, 21–23]. Herein, we focus on the
synthesis of important chiral chemicals by the recently exploited esterase or lipase.

2.1 Optically Pure Alcohols

2.1.1 l-Menthol

l-Menthol is one of the most important flavor components and widely used in the
confectionary goods, pharmaceuticals, oral healthcare products, cosmetics, etc.
Enzymatic resolution via enantioselective esterification/transesterification of race-
mic menthol in organic solvents [31, 32] or enantioselective hydrolysis of racemic
menthol esters in aqueous medium [33, 34] is an extensively investigated approach
to optically pure l-menthol. A prominent biocatalyst for the efficient preparation of
l-menthol is the high substrate concentration-tolerable esterase from Bacillus subtilis
ECU0554 (BSE), which was newly isolated from soil [35]. The low activity and
poor stability of B. subtilis whole cells under operational conditions were overcome
by overexpression of the B. subtilis esterase in E. coli BL21(DE3) [36] and
immobilization by cross-linked enzyme aggregates [37], respectively. The cross-
linked enzyme aggregates of BSE were recycled for the enantioselective hydrolysis
of dl-menthol acetate with high substrate load (200 g/L, ca. 1.0 M) for 10 rounds,
giving l-menthol with >94 % ee at conversion of >40 % (Fig. 1). In further work, the
versatile BSE was also successfully employed for the production of (S)-1-phenyl-
1,2-ethanediol [38] and m-substituted 1-phenylethanol acetates [39], which are
valuable intermediates for pharmaceuticals and other fine chemicals.
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2.1.2 (S)-1,2-O-Isopropylideneglycerol

(S)-1,2-O-Isopropylideneglycerol (IPG) is an important primary alcohol and serves
as a starting material for the synthesis of β-adrenoceptor antagonists, prostaglandins,
or leukotrienes. (R,S)-IPG could be selectively esterified with butyric acid in
n-heptane by dry mycelia of Rhizopus oryzae and Aspergillus oryzae, with low
enantiomeric ratio (E-value) of 3.4 and 8.0, respectively [40]. The yeast Kluyver-
omyces marxianus exhibited preference for the hydrolysis of (S)-IPG esters with
moderate enantioselectivity (E = 28). The hydrolysis of (R,S)-IPG acetate by whole
cells of the yeast was conducted in a membrane reactor, in which an ultrafiltration
membrane (cut-off 10,000 Da) was used to recover the cells and released enzymes
when the ees reached 100 %. The repeated-batch operation in the membrane reactor
was run for 20 cycles, and enantiomerically pure (R)-IPG acetate of 19.2 g/L was
recovered from 60 g/L of racemic mixture [41]. However, most of the esterases or
lipases involved in the resolution of IPG ester preferred to hydrolyze (R)-IPG esters
leaving the (S)-IPG esters untouched and this biocatalytic process has been exten-
sively studied for the preparation of (S)-IPG (Fig. 2) [42–44]. An interesting
investigation was the enantioselective hydrolysis of benzoyl-l,2-O-isopropylidene-
glycerol by Bacillus coagulans NCIB 9365, 1.50 g of (S)-IPG with 88 % ee was
obtained from 5 g/L of benzoyl-l,2-O-isopropylideneglycerol at 1-L scale under
the optimized reaction conditions [45]. Enzyme purification study revealed that
the insufficient enantioselectivity of B. coagulans resting cells was attributed to the
existence of two different enzymes: The partially purified enzyme A is thermostable
and enantioselective toward IPG ester, while the thermolabile enzyme B is not
enantioselective [46]. A simple heat treatment of the whole cells at 65 °C for 1 h
remarkably increased the enantioselectivity (E = 80−100 for (R)-benzoyl-l,2-O-IPG,
95–96 % eep). Repeated-batch reaction was performed in the aforementioned
membrane reactor for the preparation of enantiopure IPG by the heat-treated cells of
B. coagulans, and no obvious activity loss was observed for 11 cycles. (S)-1,2-O-
Isopropylideneglycerol benzoate of 9.55 g/L could be recovered from 24.0 g/L of
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Fig. 1 Enzymatic resolution of dl-menthol acetate using BSE
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Fig. 2 Esterase-catalyzed resolutions of IPG esters
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racemic substrate [47]. Another promising candidate catalyst, E. coli esterase YbfF,
which shows 124/9.3 U/mg for (R)/(S)-IPG butyrate and 31/1.3 U/mg for (R)/(S)-IPG
caprylate was reported in 2011 [48]. The moderate enantioselectivity of YbfF was
improved by site-directed saturation mutagenesis and resulted in a mutant, W235I,
with E-values of 38 and 77 for IPG butyrate and IPG caprylate, respectively [49].

2.1.3 Optically Pure Tertiary Alcohols

Optically pure tertiary alcohols (TAs) represent a group of important building
blocks for the synthesis of various chiral chemicals and valuable pharmaceuticals.
Enzymatic preparation of the enantiopure TAs has gained great interest due to the
harsh reaction conditions of the chemical methods [50, 51]. It is still a great
challenge for the resolution of sterically hindered TAs [52–54] even though the
esterase- or lipase-catalyzed kinetic resolution is the most practical approach and a
standard procedure for the synthesis of enantiopure secondary and primary alco-
hols. Furthermore, there is no corresponding ketone to be reduced to a tertiary
alcohol although asymmetric reduction represents a complementary route to
enzymatic resolution for the preparation of optically active secondary alcohols [6].
Thus, enzymatic kinetic resolution of TAs is of particular importance and gains
great attention. The observation that the GGGX motif in the oxyanion hole is
crucial for enzyme activity toward TAs [53, 55] facilitated the discovery of several
GGGX-type α/β-hydrolases with hydrolytic activity toward esters of TAs [56–58].
However, the GGGX-type α/β-hydrolases exhibited low-to-moderate enantiose-
lectivity. Modern protein engineering strategies have substantially expanded the
toolbox available for the preparation of enantiopure TAs. Rational design and site-
directed saturation mutagenesis have yielded several mutants of the esterase BS2
from B. subtilis including the G105A [55] and E188D [59] with excellent

+

+
Buffer, DMSO, 4 oC

BS2 WT ER=42
BS2 G105A ER>100
BS2 E188D ER>100

BS2 E188W/M193C ES=64

CF3AcO

CF3HO CF3AcO

CF3HO CF3AcO

Fig. 3 Kinetic resolution of 1,1,1-trifluoro-2-phenyl-but-3-yn-1-yl acetate using the wild-type
esterase and its mutants
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R enantioselectivity (E > 100) toward 1,1,1-trifluoro-2-phenyl-but-3-yn-1-yl acetate
(Fig. 3). A double-mutant, E188W/M193C, with inversed enantioselectivity
(ES = 64) was created by focused directed evolution approach thereafter [60].
Another synthetically useful biocatalyst (mutant EstA-AGA) with excellent
enantioselectivity was provided by engineering of the Paenibacillus barcinonensis
esterase (EstA) based on the structure-guided alignment [61]. The EstA–AGA was
used to resolve the racemic 1,1,1-trifluoro-2-phenyl-but-3-yn-1-yl acetate in pre-
parative scale with 91 % ees and 99 % eep, demonstrating the feasibility of the
EstA-AGA-catalyzed kinetic resolution for the synthesis of chiral TAs.

2.2 Optically Pure Carboxylic Acids

2.2.1 (S)-(+)-2,2-Dimethylcyclopropane Carboxylic Acid

(S)-(+)-2,2-Dimethylcyclopropane carboxylic acid [(S)-(+)-DMCPA] is a key pre-
cursor for cilastatin, an excellent renal dehydropeptidase-I inhibitor. Several
approaches, including the chemical asymmetric synthesis, chemical, or enzymatic
resolution, have been developed to prepare (S)-(+)-DMCPA [62–64]. Of these
methods, the esterase- or lipase-catalyzed enantioselective hydrolysis of 2,2-dim-
ethylcarboxylate ester represents an effective and environmentally benign approach.
The commercially available Novozyme 435 was utilized for the enantioselective
hydrolysis of ethyl-2,2-dimethylcyclopropanecarboxylate at substrate concentration
of 60 mM. In repeated-batch operations, glutaraldehyde-modified Novozyme 435
retained 76 % of its original activity after 10 repeated cycles and the eep was kept
above 98 % throughout the process [65]. Recently, a new bacterial strain Rhodo-
coccus sp. ECU1013 [66] was isolated from soil for the enantioselective hydrolysis
of (S)-DMCPA esters from their racemic counterparts, providing an alternative
useful biocatalyst for the production of (S)-DMCPA. By using the resting cells of
Rhodococcus sp. ECU1013 as catalyst, up to 400 mM (±)-DMCPM was enanti-
oselectively hydrolyzed into (S)-(+)-DMCPA in an organic–aqueous biphasic
system (Fig. 4), with an isolated yield of 38 and 99 % eep. Further, heterogeneous
overexpression and activity improvement of this newly discovered esterase by
protein engineering are under progress in our laboratory.

2.2.2 (2S,3R)-3-Phenylglycidate Methyl Ester

(2S,3R)-3-Phenylglycidate methyl ester (PGM) is a key intermediate for the synthesis
of a potent anticancer drug Taxol®. Low-to-moderate enantioselectivity and the
difficulty in separation of the desired product restricted the resolution of PGM via
transesterification [67, 68]. The whole cells of Pseudomonas putida have
been reported for the enantioselective hydrolysis of (±)-PGM at substrate concen-
tration of 50–60 mM, furnishing (2S,3R)-PGM with 99 % ee [69]. Recently,
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Zhou et al. reported a newly isolated bacterial strain, Enterobacter sp. ECU1107 for
the enantioselective hydrolysis of (2R,3S)-PGM with substrate concentration of
600 mM [70]. The recovery of the desired (2S,3R)-PGM in this process could
be facilitated through the decomposition of the unstable product, (2R,3S)-3-
phenylglycidic acid (Fig. 5). The great potential of Enterobacter sp. ECU1107 for
industrial production of the key precursor of pharmaceutically important Taxol was
further demonstrated by the reaction on a scale of 1.0 L, yielding 11.6 g (2S,3R)-PGM
with >99 % ee.

2.2.3 Key Intermediates to Pregabalin

Pregabalin, a marketed GABA analog, is used for the treatment of neuropathic pain
and partial seizures [169] and has been launched by Pfizer as Lyrica®. The che-
moenzymatic process involving biocatalytic resolution of rac-2-carboxyethyl-3-
cyano-5-methylhexanoic acid ethyl ester (CNDE) has been considered to be the
most cost-effective and greenest route for pregabalin [71]. The enzymatic resolution
process adopted a commercially available lipase from Thermomyces lanuginosus

O
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O

OH
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+

(S)-DMCPM (R)-DMCPM

Rhodococcus sp. ECU1013 Aqueous phase

Organic phase

(S)-DMCPA

38% Yield
99% eep
E > 100

Fig. 4 Enzymatic resolution
of (±)-DMCPM in organic–
aqueous biphasic system

O

COOMe

O
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O

COOH
CHO

Esterase

Spontaneous

Fig. 5 Enantioselective hydrolysis of racemic methyl trans-3-phenylglycidate [(±)-PGM] using
whole cells of Enterobacter sp. ECU1107 for the production of optically pure (2S,3R)-PGM
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(Lipolase) to prepare the key enantiopure intermediate (S)-3-cyano-2-(ethoxycar-
bonyl)-5-methylhexanoic acid (ee > 98 %) with high yields and unprecedented high
substrate load (765 g/L, 3.0 M) (Fig. 6). The undesired (R)-CNDE could readily be
racemized using sodium ethoxide in ethanol at 80 °C. The enzymatic resolution was
also tried for pilot runs at 900 kg scale and manufactured at 3.5 tons to demonstrate
the scalability and consistency in performance. Besides the commercial lipase
Lipolase, a newly isolated strain, Morgarella morganii ZJB-09203, could also be
used for the resolution of CNDE [72]. Recently, an efficient route to pregabalin with
higher atom economy was developed through the preparation of (S)-3-cyano-5-
methylhexanoic acid ethyl ester [73]. The commercial lipase PS (Amano) from
Pseudomonas cepacia was demonstrated to be the best enzyme for the hydrolytic
resolution (Fig. 7). The substrate load was as high as 2.0 M (366 g/L), and (S)-3-
cyano-5-methylhexanoic acid ethyl ester was produced in 99 % ee and 44.5 % yield.

2.3 Optically Pure Hydroxy Acids

Because of the dual functionality, optically pure hydroxy acids are versatile chiral
synthons of particular interest in pharmaceutical industries. Optically active
2-hydroxy-phenyl acetic acid and its derivatives are the most important hydroxy
acids. For example, (R)-2-hydroxy-2-(2′-chlorophenyl) acetic acid is the key chiral
intermediate for the synthesis of (S)-clopidogrel, a platelet aggregation inhibitor. The
enzymatic resolution catalyzed by esterase or lipase is a competitive method among
the enzymatic routes to enantiomerically pure aromatic α-hydroxy acids [74].

COOEt

COOEt

CN

COOEt

COOEt

CN

COOH

COOEt

CN

+
Enzymatic

 
kinetic resolution

COOH

NH2

Pregabalin

Recycling

Fig. 6 Lipolase-catalyzed resolution of rac-2-carboxyethyl-3-cyano-5-methylhexanoic acid ethyl
ester

COOR
CN

COOH
CN

COOR
CN

+
lipase PS

Fig. 7 Lipase-mediated resolution of rac-3-cyano-5-methylhexanoic acid ester
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Chiral 2-hydroxy-phenyl acetic acid and its derivatives can be prepared through
the enantioselective synthesis or hydrolysis of hydroxy esters or O-acetylated
hydroxy acids (Fig. 8). The ester group can be hydrolyzed directly from racemic
hydroxy esters [75, 76] or the O-protected hydroxy esters [77]. The enantioselective
synthesis or hydrolysis of O-acetylated hydroxy acids receives more interest and
several promising catalysts including the P. putida esterase [78, 79], and com-
mercially available lipases [80, 81] have been reported for this bioprocess in last
decades. A series of substituted mandelic acids were enantioselectively acetylated
by lipase PS (Amano) using vinyl acetate as acyl donor [81]. A thermostable
P. putida esterase, rPPE01, which was screened and cloned for the resolution of
2-acetoxy-phenyl acetic acid and its derivatives, exhibited excellent enantioselec-
tivity (E > 200) to a series of acetylated aromatic α-hydroxy acids at a substrate
concentration of 100 mM [79]. In further work, the low activity was improved by
semi-rational design, giving a single-point variant (rPPE01-W187H) with remark-
ably increased activity and excellent enantioselectivity [82]. Meanwhile, the
biocatalyst deactivation was alleviated by carefully selection of suitable substrate
counterion, among the five counterions tested, K+ showed the best stabilization
effect. Finally, the resolution of 500 mM racemic potassium 2-acetoxy-2-(2′-chlo-
rophenyl)acetic acid was successfully carried out with merely 0.5 g/L of lyophilized
cells, and the conversion reached 49.9 % after 15 h with >99 % eep and 98.7 % ees
(Fig. 9).
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Fig. 8 Enzymatic resolution of 2-hydroxy-phenyl acetic acid and its derivatives
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3 Chiral Synthesis with Epoxide Hydrolases

Enantiopure epoxides, as well as their corresponding vicinal diols are important
chiral building blocks in organic synthesis. Epoxide hydrolase (EH)-catalyzed
stereoselective hydrolysis of racemic or meso-epoxides are important methods for
the preparation of enantiopure epoxides or corresponding vicinal diols.

Epoxides have two adjacent oxirane carbon atoms, and EH-catalyzed nucleo-
philic attack can occur on both carbon atoms, thereof EHs show not only enanti-
oselectivity but also regioselectivity. According to the reaction mechanism, EHs
catalyze the ring-opening via a nucleophilic SN2 attack by an aspartate residue that
forms a transient covalent intermediate, and then, an activated water molecule
attacks the carbonyl moiety of the ester-intermediate and releases the product diol.
Therefore, inversion of configuration could happen when the attack was performed
on a more substituted position.

Accordingly, besides the conventional kinetic resolution, EHs can also catalyze
the enantioconvergent hydrolysis of racemic epoxides [83–85], once the two
epoxide enantiomers are attacked at different positions as shown in Scheme 1. In
contrast to traditional kinetic resolution, in which only 50 % theoretical yield is
available, 100 % theoretical yield could be obtained in an enantioconvergent
process.

3.1 Styrene Oxide and Its Derivatives

Enantiopure styrene oxide and its derivatives are precursors of various pharma-
ceuticals and liquid crystal materials. They possess a benzylic carbon atom, which
facilitates the formation of a carbo-cation stabilized by the adjacent aromatic ring.
As a result, attack at the benzylic carbon is electronically, though sterically
impeded. Thus, mixed regiochemical pathways (i.e., attack at both oxirane carbon
atoms) are particularly easy within this group of substrates, and an enantiocon-
vergent process could be expected.

R
OH

OH

R
OH

OH
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Scheme 1 Enantioconvergent hydrolysis of racemic epoxides
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3.1.1 (R)-1-Phenyl-1,2-ethanediol

Recombinant Pichia pastoris expressing Rhodotorula glutinis EH shows high
hydrolytic activity toward (R)-styrene oxide. Kinetic resolution of styrene oxide was
conducted in a styrene oxide–aqueous biphasic system with a substrate load of
526 mM using whole cells of recombinant P. pastoris. Optically pure (S)-styrene
oxide (>98 % ee) was obtained with 36 % yield [86]. After reaction optimization,
(S)-styrene oxide of 98 % ee was formed with 41 % yield from 1.8 M rac-styrene
oxide at pH 8.0, 4 °C in the presence of 40 % (v/v) Tween-20 and 5 % (v/v) glycerol
[87].

Several enantioconvergent processes have been developed for the preparation of
(R)-phenyl-1,2-ethanediol, including the combination of EHs from Aspergillus niger
and Bacillus sulfurescens [88]; Agrobacterium radiobacter and Solanum tuberosum
[89]; A. niger or R. glutinis and Caulobacter crescentus [90]; C. crescentus, and
marine fish Mugil cephalus [91]. In these processes, the EHs from A. niger,
A. radiobacter, R. glutinis, andM. cephalus preferentially attack the terminal carbon
of the oxirane ring with retention of the stereochemistry, and (R)-diol was formed.
On the other hand, the EHs from B. sulfurescens and C. crescentus attack the
benzylic carbon of the (S)-enantiomer, which also leads to the formation of (R)-diol.

3.1.2 (R)-p-Nitro Styrene Oxide

(R)-p-Nitro styrene oxide [(R)-pNSO] and its corresponding diol are important
precursors of (R)-Nifenalol, a β-adrenergic blocker with antianginal and antiar-
rhythmic properties.

A. niger EH (AnEH) can catalyze the kinetic resolution of pNSO, affording (S)-
pNSO (96 % ee, 38 % yield) and (R)-diol (66 % ee, 49 % yield). After recrystal-
lization, enantiopure (R)-diol was obtained with 32 % yield. In order to overcome
the limitation of 50 % theoretical yield in the resolution process, acid hydrolysis of
the remaining (S)-pNSO was investigated for the preparation of the corresponding
(R)-diol with inversion of configuration at the stereogenic benzylic carbon atom and
realized the desymmetric transformation of rac-pNSO into (R)-diol [92]. The
produced (R)-diol was cyclized to (R)-pNSO and then condensated with isopro-
pylamine, affording (R)-Nifenalol. The reaction details are shown in Fig. 10.

To obtain the (R)-diol with high optical purity, accurate tuning of these two
consecutive reactions was necessary since the final ee of the diol was directly
dependent upon the conversion ratio. According to calculation results based on the
enantiomeric ratio, the acid hydrolysis of the remaining (S)-pNSO was initiated
when ees reached 95 %, and (R)-diol was formed in 90 % yield with 83 % ee, and
after recrystallization, optically pure (R)-diol with 73 % yield was afforded.

Two EHs which could catalyze the enantioconvergent hydrolysis of pNSO were
discovered from mung bean. Interestingly, these two EHs showed complementary
enantioselectivities but with identical regioselectivity. Both EHs can catalyze the
complete conversion of pNSO to (R)-diol. By using the mung bean crude powder as
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biocatalyst, optically active (R)-diol was produced with 82.4 % ee and 83.5 % yield,
and after recrystallization, enantiopure (R)-diol was obtained with an overall yield
of 68.7 % [93]. The crude EH was then immobilized by diatomite adsorption, and
Tween-80 was introduced for better substrate dispersion. After process optimiza-
tion, the ee of (R)-diol was increased to 84.7 % [94]. An enantioconvergent EH
(VrEH1) has been cloned from mung bean, which shows opposite regioselectivity
toward (S)-pNSO (83 % to Cα) in contrast to (R)-pNSO (87 % to Cβ) [95].

3.1.3 Chlorostyrene Oxides

Enantiopure chlorostyrene oxides (CSOs) and their corresponding diols are
important building blocks for the synthesis of a series of biologically active mol-
ecules, including β3-adrenergic receptor agonists SR 58611A or AJ-9677, and an
effective N-methyl-D-aspartic acid receptor antagonist eliprodil, as shown in
Fig. 11.

Recombinant S. tuberosum EH (StEH) showed high enantioselectivity and
complementary regioselectivity to the enantiomers of 3- and 4-CSO. For both
epoxides, the (S)-enantiomer was preferentially attacked at the (benzylic) more
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substituted carbon atom (97 %), whereas the (R)-antipode was attacked at the (ter-
minal) less substituted carbon atom (94 %), as exemplified in Fig. 12. Enantio-
convergent hydrolysis of 3- and 4-CSOs was performed, giving the corresponding
(R)-diols with 91 and 74 % ee, respectively, after complete conversion of the
substrates.

A preparative-scale biohydrolysis of rac-3-CSO was performed. For the purpose
of minimizing the spontaneous hydrolysis of the 3-CSO and favor the stability of
StEH, the reaction was performed at 20 °C. After complete conversion of the
substrate, the homogeneous reaction mixture was filtered through an ultrafiltration
membrane, and the recovered enzyme was reused. Totally, nine batches were
performed at a substrate concentration of 10 g/L, the product was pooled, affording
(R)-diol with 97 % ee and an isolated yield of 88 % [96].

AnEH also shows high enantioselectivity to the 4-CSO and preferentially
hydrolyzes the (R)-4-CSO, providing (R)-diols. Hydrolytic kinetic resolution of
rac-4-chlorostyrene oxide was performed in heptane with an initial aw of 0.9 [97].
Both the hydrolytic kinetic resolution efficiency and operational stability of AnEH
were found to be modest to excellent in various binary organic solvent mixtures of
heptane and dioxane [98].

Since StEH and AnEH showed complementary enantioselectivities, an enantio-
convergent process for the enzymatic hydrolysis of 4-chlorostyrene oxide using a
sequential bienzymatic strategy was adopted to realize the ideal 100 % yield of (R)-
diol. In order to prevent the significant spontaneous hydrolysis, the enzymatic
hydrolysis was conducted at 0 °C. E-value of about 100 was observed for both
enzymes in a kinetic resolution process. As high as 2 M substrate could be effi-
ciently resolved by AnEH, while for StEH, substrate concentration above 200 mM
was deleterious to the enzyme activity. Considering the StEH was an enantiocon-
vergent EH and appeared to be more sensitive to inhibition by the (R)-diol formed,
StEH was added first to completely transformed (S)-4-CSO before the addition of
AnEH. By this way, 0.2 M 4-chlorostyrene oxide was converted to (R)-diol with
96 % ee and 93 % yield [99]. The formed (R)-diol was a precursor for the prep-
aration of (R)-eliprodil, as shown in Fig. 13.
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3.2 Pyridyloxirane

Enantiopure 2-, 3-, 4-pyridyloxirane are valuable chiral synthons, but they cannot
be produced with high optical purity and yield using the conventional metal-based
catalysts.

Among 14 EH collections, AnEH was found to be the best choice for the
preparative-scale resolution of 2-pyridyloxirane [100]. Enantiopure (S)-2-pyridy-
loxirane (>99 % ee) was obtained in 43 % yield [101]. Gram-scale preparation of
(S)-2-, 3-, and 4-pyridyloxirane was carried out by hydrolytic kinetic resolution
with AnEH at a substrate concentration of 10 g/L (82 mM) in plain water, and
(S)-pyridyloxiranes were afforded in a nearly enantiopure form (ee > 98 %) [102].

A. radiobacter EH (ArEH) can also catalyze the resolution of 2-, 3- and 4-py-
ridyloxiranes. An active-site mutation (Tyr215Phe) was introduced into the ArEH
yielding a more suitable catalyst for kinetic resolution, and 127 mM (15.4 g/L) of
(S)-2-pyridyloxirane was obtained in a preparative scale from 300 mM racemic
substrate by the ArEH mutant [103].

3.3 Glycidyl Azide

Glycidyl azide is a key chiral C3 epoxide, wherein oxirane carbon atoms are highly
active to many nucleophiles and azide is a precursor of amine. The optically pure
glycidyl azides are important synthons for the synthesis of vicinal amino alcohols
such as (S)-atenolol, (R)-carnitine, and synthetic antibiotic linezolid, as shown in
Fig. 14. EH from A. niger showed high enantioselectivity toward rac-glycidyl azide
and (R)-glycidyl azide was produced with 98 % ee and 40 % yield (E = 21) [104].
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Fig. 13 Chemobienzymatic preparation of (R)-eliprodil
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3.4 Epichlorohydrin and Aryl Glycidyl Ether

3.4.1 Epichlorohydrin

Enantiopure epichlorohydrins (ECHs) are important C3 chiral building blocks for
the synthesis of pharmaceuticals, pesticides, and many other chemicals. For
example, (R)‐ECH serves as a key chiral intermediate for the synthesis of β-blocker
drugs, such as metoprolol and alprenolol [105]. While (S)‐ECH can be used as a
precursor for atorvastatins, which is the top-selling cholesterol‐lowering drug with
global sales of 10 billion US dollars.

EHs with high enantioselectivity to epichlorohydrin are scarce. EHs from
A. niger [106–108], Rhodosporidium tortiloides [109], and Novosphingobium
aromaticivorans [110] prefer to hydrolyze the (R)-ECH, affording (S)-ECH, while
EHs from R. glutinis [111, 112] and A. radiobacter [113, 114] prefer the (S)-ECH.

ECH is unstable in the aqueous medium. To overcome the spontaneous
hydrolysis of ECH in aqueous buffer, organic solvents with little water [107, 108]
and biphasic system [113, 114] were employed for the reaction. By using the
recombinant E. coli whole cells expressing EH from A. radiobacter AD1 as bio-
catalyst, isooctane–aqueous (7:3) biphasic system was used for the reaction and
574 mM ECH was converted, producing (R)-ECH with 99.3 % ee and 37.5 % yield
(analytical yield) [113].

3.4.2 Aryl Glycidyl Ether

Aryl glycidyl ethers are important precursors for the preparation of many β-blocker
drugs with a suffix of “lol,” including propranolol, metoprolol, and atenolol, as
shown in Fig. 15.

Due to the flexible property of the chiral center in aryl glycidyl ethers, few EHs
show high enantioselectivity toward these substrates, and most of them are
(S)-preferred, such as those from A. niger [115], A. radiobacter [116], and Tri-
chosporon loubierii [117, 118]. Protein engineering was employed to increase the
enantioselectivity of EH for the enantioselective hydrolysis of aryl glycidyl ethers.
After one round of error-prone polymerase chain reaction (epPCR), the E-value of
AnEH was increased from 4.6 to 10.8. The improved variant contained three amino
acid substitutions, and two of them were spatially far away from the catalytically
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active center [119]. Moreover, the EH was evolved by iterative combinatorial
active-site saturation test (CAST), leading to significantly improved enantioselec-
tivity (enantiomeric ratio E from 4.6 to 115) for phenyl glycidyl ether (PGE) [120].
The enantioselectivity of EH from A. radiobacter was enhanced using epPCR and
DNA shuffling, eight mutants showed significantly improved enantioselectivity (up
to 13-fold) toward p-nitro-PGE and three other epoxides [121].

A bacterial strain, Bacillus megaterium ECU1001, was isolated from soil samples
by using PGE as sole carbon and energy source [122], which preferentially hydrolyze
the (R)-PGE, affording (S)-epoxide and (R)-diol with high enantioselectivity
(E = 47.8) [123]. The E-value (enantiomeric ratio) was increased to 69.3 by using
surfactant tween-80 as additive to help disperse the water-insoluble substrate [124].
Isooctane–aqueous biphasic systemwas employed to overcome the low solubility and
instability of PGE in the aqueous phase, and E-value was further increased to 94.
Resolution of 90.1 g/L PGE (based on isooctane phase) was carried out, affording
enantiopure (S)-PGE with a yield (analytical yield) of 44.5 % [125, 126].

An (R)-enantioselective epoxide hydrolase (BmEH) was cloned from B. mega-
terium ECU1001 [127], high-to-excellent enantioselectivities (E > 200) were
achieved in the bioresolution of PGE, ortho-substituted PGEs, and meso-nitro PGEs
using the recombinant BmEH. The crystal structure of BmEH was resolved recently.
By analyzing the active site of BmEH, two residues (Met145 and Phe128) were
identified as potential hot spots for enhancing the BmEH activity toward the bulky
substrates. After site-directed mutation of the two predicted hot spots, the activity of
the BmEH was improved by 6–430-folds toward nine typical β-blocker precursors
[128].

3.4.3 Benzyl Glycidyl Ether

Optically pure benzyl glycidyl ether (BGE) plays an important role in the synthesis
of numerous drugs and natural products. For example, (S)-BGE is an intermediate
of (+)-cryptocarya diacetate, a natural product used in the treatment of headaches,
morning sickness, and cancer pulmonary diseases. (R)-BGE is an intermediate for
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the synthesis of the anti-tumor and anti-leukemic drug, Synargentoide A. Optically
active derivatives of BGE, such as methylbenzyl glycidyl ethers (MBGE) and
dimethoxylbenzyl glycidyl ethers (DMBGE), are important intermediates for the
synthesis of more complex compounds [129] (Fig. 16). As a result, synthesis of
optically pure BGE and its derivatives has received considerable interest.

Due to the linear structure adjacent to the chiral center, EHs with high enanti-
oselectivity to these compounds are quite limited. EHs from Rhodotorula sp. and
A. niger preferred (S)-BGE [130–132], while the EH from Rhodococcus fascians
M022 preferred the (R)-enantiomer [131], the E-values of these EHs were lower
than 10. Talaromyces flavus containing a constitutive EH showed relatively high
enantioselectivity to BGE, with an E-value of 13. By using the whole cells as
biocatalyst, (R)-BGE (96 % ee) was obtained [133].

The enantioselectivity of enzymatic resolution of BGE could be significantly
enhanced with a methyl substitution at the 2-position of BGE. For example, whole
cells of Rhodococcus ruber SM 1789 showed high enantioselectivity (E > 200) to
rac-2-methyl-BGE, and (R)-2-methyl-BGE was obtained with 98 % ee and 43 %
yield, and the (R)-diol was produced with 97 % ee and 44 % yield [134]. Further-
more, an enantioconvergent process was performed via a tandem reaction of Rho-
dococcus sp. CBS 717.73 EH-catalyzed kinetic resolution of 2-methyl-BGE and an
acid-catalyzed hydrolysis of the remaining (R)-2-methyl-BGE with inversion of the
configuration, furnishing (R)-diols as the sole product in 97 % ee and 78 % yield.

3.5 Cascade Reactions

Cascade reactions are green and promising process for organic synthesis since it can
avoid the usually metal catalysts involved protecting and deprotecting steps and
costly intermediate isolation process, thus making the process cost-effective for
target molecule synthesis [135]. Recombinant E. coli cells coexpressing styrene
monooxygenase and enantioconvergent EH have been constructed for efficient
enantioselective dihydroxylation of various terminal aryl olefins [136]. Using sty-
rene and its phenyl-substituted derivatives as substrates, (S)-vicinal diols were
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Fig. 16 Application of optically active BGE and its derivates in the synthesis of complex
compounds

72 Z.-J. Zhang et al.



produced with medium-to-excellent enantiopurities by the monooxygenase coex-
pressed with Sphingomonas sp. EH, while (R)-vicinal diols were formed with the
monooxygenase coexpressed with StEH. This type of cascade biocatalysis provides
an attractive alternative to Sharpless dihydroxylation, accepting cis-alkene and
offering enantioselective trans-dihydroxylation.

Recently, the recombinant E. coli cells expressing A. radiobacter halohydrin
dehalogenase (HHDH) and ArEH, respectively, were immobilized by adsorption
onto perlite and used for the preparation of (R)-epichlorohydrin from 1,3-dichloro-
2-propanol in a cascade reaction. In the first step, racemic epichlorohydrin was
produced with 73 % yield, and the final yield of enantiopure (R)-epichlorohydrin
reached 25.1 % from 10 mM 1,3-dichloro-2-propanol [137].

4 Deracemization with Nitrilases

Nitrile compounds are ubiquitous in nature mainly in the form of cyanoglycosides,
cyanolipids, ricinine, and phenylacetonitrile, etc. [138]. They can be used for the
manufacture of a series of polymers or as feedstock, solvents, and extractants in
chemical industry or pesticides in agriculture. They are also very important inter-
mediates for the synthesis of a variety of pharmaceuticals, agrochemicals, and fine
chemicals because of their broad chemical versatility [139].

Nitrilases (EC 3.5.5.1) and nitrile hydratases (EC 4.2.1.84) are two classes of
important nitrile-converting enzymes, the former directly hydrolyze nitriles into the
corresponding carboxylic acids and NH3 in a single step, while the later first convert
nitriles into amides, which are then transformed into carboxylic acids and NH3 by
amidases (EC 3.5.1.4) (Scheme 2) [140]. In recent years, nitrilase-mediated bio-
catalysis has attracted substantial interest from both academia and industry since it
can be performed under mild reaction conditions combined with excellent selec-
tivity (chemoselectivity, regioselectivity, and enantioselectivity). The enzymatic
approach is significantly superior to traditional chemical methods that usually
require harsh reaction conditions such as high temperatures, strongly acidic, or
basic environment [141–143].

This section attempts to describe the use of nitrilase for the synthesis of phar-
maceuticals, agrochemicals, fine chemicals, and their building blocks.

R C N R C NH2

O
R C OH

O
+ NH3

Nitrile hydratase

H2O

Amidase

H2O

Nitrilase

2H2O

Scheme 2 Pathways for nitrile hydrolysis
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4.1 Optically Pure α-Hydroxy Carboxylic Acid and Its
Derivatives

4.1.1 Optically Pure Mandelic Acid

Enantiopure α-hydroxy acid and its derivatives serve as important chiral synthons
for the synthesis of various pharmaceuticals, a chiral determination reagent, and a
resolving reagent, for example, (R)-mandelic acid, is a key intermediate for the
synthesis of semisynthetic penicillin, cephalosporin, antitumor agent, and antiobe-
sity drugs [144], while (S)-mandelic acid can be used to synthesize the nonsteroidal
anti-inflammatory drugs celecoxib and deracoxib [145]. Great effort has been paid
on the development of nitrilase-catalyzed synthesis of optically pure mandelic acid
from racemic mandelonitrile recently. The reaction is usually performed at slightly
alkaline pH conditions, in which (R)-selective nitrilase preferentially hydrolyzes
(R)-mandelonitrile to (R)-mandelic acid, whereas the unreacted (S)-mandelonitrile is
spontaneously racemized in situ under the alkaline conditions and the newly formed
(R)-mandelonitrile is used for the hydrolysis over again, thereby allowing the
reaction to be proceeded in a DKR manner and affording 100 % theoretical yield
(Fig. 17) [144].

Recently, a nitrilase producing strain Alcaligenes sp. ECU0401 was isolated from
soil samples in our laboratory, which showed excellent enantioselectivity (>99.9 %
ee) toward R-mandelonitrile [146]. The nitrilase gene was then cloned and over-
expressed in E. coli, resulting in about 160-fold enhancement in nitrilase expression
[147], and the enzyme production was further increased up to 19,000 U/L (50-fold
improvement) by optimization of culture conditions and glycerol feeding [148].
Using the recombinant E. coli cells as catalyst, totally 520 mM (79 g/L) (R)-man-
delic acid could be produced from 600 mM mandelonitrile in a fed-batch reaction
and the space time yield (STY) reached 108 g (product) L−1 d−1 [149]. To relieve
substrate inhibition, a toluene–water biphasic reaction system was adopted and the
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COOH

OH

+ NH3+
Nitrilase

(R, S)-Mandelonitrile (S)-Mandelonitrile (R)-Mandelic acid

CHO

+ HCN

Benzaldehyde

Alkaline pH

2H2O

Fig. 17 Nitrilase-catalyzed synthesis of (R)-mandelic acid from racemic mandelonitrile in a
dynamic kinetic resolution manner
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STY was increased to 352 g (product) L−1 d−1. Furthermore, the recombinant E. coli
cells were immobilized in calcium alginate to facilitate product isolation and bio-
catalyst recovery; finally, 110.7 g (R)-mandelic acid was obtained by recycling the
immobilized biocatalyst in a 2-L-stirred tank reactor, giving a catalyst productivity of
13.8 g (product) g−1 (cells) [150]. Xue et al. developed an integrated bioprocess for
the efficient production of (R)-mandelic acid with the immobilized Alcaligenes fae-
calis ZJUTB10 in a packed bed bioreactor which was incorporated with an in situ
product recovery system to overcome product inhibition. This reaction system was
very stable and gave a productivity of 8.87 mM/h in 16 h of reaction; totally,
550 mmol of (R)-mandelic acid with excellent enantiomeric excess (>99 %) was
accumulated after 80 h of reaction [151]. Currently, BASF and Mitsubishi are pro-
ducing (R)-mandelic acid from racemic mandelonitrile at several tons per year [74].

Since most mandelonitrile hydrolases are R-selective, it is not applicable to
synthesize (S)-mandelic acid directly from racemic mandelonitrile. To overcome
this limitation, Baum et al. developed a bienzymatic cascade reaction system
including an (S)-hydroxynitrile lyase from Manihot esculenta and a non-selective
arylacetonitrilase from Pseudomonas fluorescens EBC191 for the synthesis of
(S)-mandelic acid from benzaldehyde and cyanide (Fig. 18). An aqueous–ionic
liquid biphasic system was adopted to alleviate the inhibitory effect of benzalde-
hyde on nitrilase activity; this system allowed to convert up to 700 mM benzal-
dehyde in the ionic liquid phase with a product yield of 87–100 %. Unfortunately,
the nitrilase also showed nitrile hydratase activity; therefore, (S)-mandeloamide was
formed as a by-product in about 50 % of the total product [152]. A third enzyme, an
amidase from Rhodococcus erythopolis, was then incorporated to the bienzymatic
cascade system, and all three enzymes were co-immobilized in cross-linked enzyme
aggregates, allowing the production of (S)-mandelic acid in 90 % yield and >99 %
enantiomeric purity without any by-product [153].

4.1.2 Optically Pure o-Chloromandelic Acid

(R)-o-Chloromandelic acid is a key chiral precursor for the synthesis of the platelet
aggregation inhibitor, (S)-clopidogrel, which is sold under the commercial name of
Plavix®. Plavix® is a very important drug in reducing the risk of stroke, heart attack,
and death in patients with a previous stroke, unstable angina, heart attack, or
peripheral arterial disease caused by blood clots. In 2009, Plavix® has become the
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Fig. 18 Enzymatic cascade procedure for the synthesis of (S)-mandelic acid using S-selective
hydroxynitrile lyase (MeHNL) and non-selective nitrilase in tandem
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second top-selling drug in the world with global sales of over 10 billion US dollars
per year. Several enzymatic methods have been developed for the synthesis of
(R)-o-chloromandelic acid; of them, the nitrilase-catalyzed DKE of o-chloro-
mandelonitrile represents one of the most promising approaches since under slightly
alkaline conditions the unreacted (S)-o-chloromandelonitrile is spontaneously
racemized to its racemate similar to nitrilase-mediated mandelonitrile hydrolysis,
thereby affording 100 % theoretical yield (Fig. 19).

In order to explore new nitrilase for o-chloromandelonitrile hydrolysis, the data
mining strategy based on BLAST was employed using the nitrilase sequence of
Alcaligenes sp. ECU0401 as the template. Totally, seven nitrilases showing 40–60 %
amino acid identities with the template were cloned and expressed in E. coli, after
screening based on activity and enantioselectivity, a new nitrilase from Labrenzia
aggregata (LaN) was discovered, which could catalyze the enantioselective hydro-
lysis of o-chloromandelonitrile to (R)-o-chloromandelic acid with 96.5 % ee. To
enhance the process efficiency, a toluene–water biphasic reaction system was used
to relieve substrate inhibition, in which up to 300 mM o-chloromandelonitrile could
be completely transformed, giving an isolated yield of 94.5 %, and a space time yield
of 154 g (product) L−1 d−1, respectively [154].

4.2 Enantiomerically Pure β-Hydroxy Carboxylic Acids

Optically pure β-hydroxy carboxylic acids are key building blocks for the synthesis
of natural products, antibiotics, and chiral auxiliaries. Meanwhile, they can also be
used for the manufacture of copolyesters in the film, fiber, molding, and coating
industry [155]. The versatile application of chiral β-hydroxy carboxylic acids as
important synthons has triggered the development of efficient and eco-friendly
methodologies for the preparation of enantiomerically pure β-hydroxy carboxylic
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Fig. 19 Synthesis of (R)-o-chloromandelic acid from o-chloromandelonitrile by nitrilase-
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acids, including enzymatic reduction of β-ketoesters [156], enzymatic resolution of
racemic acylated β-hydroxyesters [157], or kinetic resolution of racemic β-hydroxy
carboxylic acid esters [158]. Optically pure β-hydroxy carboxylic acids can also be
accessed by enantioselective hydrolysis of the easily available β-hydroxy nitriles.
However, conventional chemical hydrolysis of nitriles usually requires harsh
reaction conditions and elevated temperatures, which in turn result in the unde-
sirable elimination of the functional group carried by the nitriles and lead to by-
product formation. Nitrilase-mediated hydrolysis of nitriles represents an attracting
alternative since the reaction can be carried out at environmental benign conditions,
avoiding the protection and deprotection of functional groups, and most impor-
tantly, nitrilases are always highly selective.

4.2.1 Optically Pure 3-Hydroxy-3-phenylpropionate and Its Derivatives

In an attempt to explore the synthetic applicability of nitrilases obtained by genome
mining, β-hydroxy nitriles were subjected to hydrolysis by these nitrilases. Both
nitrilases (NIT6803 from cyanobacterium Synechocystis sp. strain PCC 6803 and
bll6402 from Bradyrhizobium japonicum strain USDA110) could catalyze the
enantioselective hydrolysis of β-hydroxy nitriles to give enantioenriched β-hydroxy
carboxylic acids, NIT6803 produced (S)-enriched β-hydroxy carboxylic acids,
while bll6402 produced (R)-enriched β-hydroxy carboxylic acids, but both with
low-to-moderate enantioselectivity [159, 160]. To address the enantioselectivity
issue, a two-step one-pot process involving carbonyl reductase and nitrilase was
developed, in which β-ketonitriles were stereoselectively reduced by carbonyl
reductase to afford (R)- or (S)-β-hydroxy nitriles, which were then hydrolyzed by
nitrilase to produce optically active β-hydroxy carboxylic acids in high yields
(Fig. 20). Another advantage of this bienzymatic cascade reaction process is that the
isolation of the intermediates β-hydroxy nitriles could be avoided, thereby lowering
the process cost and minimizing the environmental impact [161].

4.2.2 (R)-4-Cyano-3-hydroxybutyric Acid

Lipitor®, the world’s top-selling drug, is a cholesterol-lowering drug, and a member
of the statin family of HMG-CoA (HMG = 3-hydroxy-3-methylglutaryl) reductase
inhibitors. It contains a (3R,5S)-dihydroxyhexanoate side chain with two chiral
centers. The huge market requirement of cholesterol-lowering drugs has stimulated
great efforts invested on the efficient and economic synthesis of the chiral side
chain, including ketoreductase-catalyzed asymmetric reduction of carbonyl pre-
cursors, lipase-promoted kinetic resolution of respective esters, aldolase-mediated
carbon–carbon bond-forming reaction of aldehydes, and nitrilase-based desym-
metrization of prochiral 3-hydroxyglutaronitrile. Among these methods reported,
the nitrilase-catalyzed desymmetrization of 3-hydroxyglutaronitrile to afford
(R)-4-cyano-3-hydroxybutyric acid shows great advantage since it can be carried
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out in 100 % theoretical yield; furthermore, nitrilase is a cofactor-free enzyme,
thereby avoiding the supplement of expensive cofactor in the bioreaction process.
DeSantis et al. created a nitrilase tool box containing more than 200 new nitrilases
by extracting DNA directly from environmental samples collected from different
locations of the world [162]. By screening the nitrilase tool box, four enzymes were
found to be able to produce (R)-4-cyano-3-hydroxybutyric acid from 3-hydroxy-
glutaronitrile with high conversion (>95 %) and ee (>90 %). One of them was
then chosen to perform gram-scale (1 g, 240 mM substrate) preparation, affording
(R)-4-cyano-3-hydroxybutyric acid in 98 % yield and 95 % ee, the ethyl ester of
which is an important intermediate for the manufacture of cholesterol-lowering
drug Lipitor® (Fig. 21).

Unfortunately, the enantioselectivity of the nitrilase dramatically decreased
as the substrate concentration increased for the cost-effective production of
(R)-4-cyano-3-hydroxybutyric acid. To address this problem, a novel directed
evolution technology named as the gene site saturation mutagenesis (GSSM) was
employed aiming to obtain a nitrilase variant that could convert 3-hydroxyglutaro-
nitrile to (R)-4-cyano-3-hydroxybutyric acid with high enantioselectivity at high
substrate concentration (3 M). Combined with a high-throughput screening method,
they were able to identify a best variant (A190H) which could efficiently transformed
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3 M 3-hydroxyglutaronitrile to (R)-4-cyano-3-hydroxybutyric acid (96 % isolated
yield, 98.5 % ee) in 15 h with a space time yield of 619 g (product) L−1 d−1 [163].

Based on the above results, Bergeron et al. developed a three-step process for the
synthesis of (R)-4-cyano-3-hydroxybutyric acid starting from the low-cost epi-
chlorohydrin, in which the epichlorohydrin was first cyanided by sodium cyanide to
give 3-hydroxyglutaronitrile, which was then subjected to hydrolysis by nitrilase.
After 16-h reaction, (R)-4-cyano-3-hydroxybutyric acid was produced with 100 %
conversion and 99 % ee [164].

4.2.3 (S)-3-Hydroxybutyric Acid

Lennon et al. devised a strategy that combines toxicity, starvation, and induction
studies together with subsequent high-throughput screening method based on a
96-well plate system to rapid identification of bacterial isolates showing nitrilase
activity [165]. This strategy enabled the fast screening of 256 novel nitrilase pro-
ducing bacterial strains toward β-hydroxy nitriles. One of the bacterial strains,
which was identified as Rhodococcus erythropolis SET1, was found to catalyze
deracemization of 3-hydroxybutyronitrile with excellent enantioselectivity. In a
preparative-scale reaction, optically pure (S)-3-hydroxybutyric acid was success-
fully produced from 3-hydroxybutyronitrile with 42 % yield and >99.9 % ee
(Fig. 22).

4.2.4 Ethyl (R)-3-Hydroxyglutarate

Optically active (R)-ethyl-3-hydroxyglutarate is a key precursor for the synthesis of
a potent statin drug Rosuvastatin, which has received great interest in the therapy of
patients with coronary artery disease because of its great potential in lowering the
level of low-density lipoprotein cholesterol and medical security as compared to
other statins. In order to develop a highly efficient and cost-effective method for the
synthesis of enantiopure (R)-ethyl-3-hydroxyglutarate, a β-hydroxy aliphatic nitriles
hydrolase-producing strain, identified as R. erythropolis ZJB-0910, was isolated by
a colorimetric screening method [166]. Under the optimal reaction conditions using
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Fig. 22 Enantioselective hydrolysis of 3-hydroxybutyronitrile for the synthesis of optically pure
(S)-3-hydroxybutyric acid
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the whole cells of R. erythropolis ZJB-0910 as biocatalyst, enantiomerically pure
(R)-ethyl-3-hydroxyglutarate was produced from racemic ethyl 4-cyano-3-
hydroxybutyrate with 46.2 % yield and >99 % ee (Fig. 23).

4.3 Enantiomerically Pure γ-Hydroxy Carboxylic Acids

γ-Butyrolactones serve as important intermediates for the synthesis of natural
products and pharmaceuticals, and they are also main components of flavors, fra-
grance, and insect pheromones [167]. γ-Butyrolactones can be produced directly
from γ-hydroxy carboxylic acids via lactonization, while γ-hydroxy carboxylic
acids can be accessed by nitrilase-catalyzed hydrolysis of γ-hydroxynitriles under
mild reaction conditions (Fig. 24). A series of optically active γ-hydroxy carboxylic
acids with different side-chain lengths and structures were prepared from their
respective γ-hydroxynitriles by commercial nitrilases with moderate-to-high
enantioselectivity. The formed γ-hydroxy carboxylic acids can then be transformed
into optically pure lactones through lactonization [168].
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Fig. 23 Enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyrate for the synthesis
of optically active (R)-ethyl-3-hydroxyglutarate
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4.4 Important Enantioenriched Cyano Acids

4.4.1 (S)-2-Cyano-2-methylpentanoic Acid

(S)-2-Cyano-2-methylpentanoic acid can be converted to β-amino acids by chem-
ical reduction of the cyano group, while β-amino acids are key building blocks for
the synthesis of a series of biologically active compounds. Therefore, the pre-
requisite to access the biologically active compounds is the development of an
efficient and green synthetic route to produce (S)-2-cyano-2-methylpentanoic acid.
The well-studied nitriles converting bacterium Rhodococcus rhodochrous J1, which
produces both nitrilase and nitrile hydratase activity, were chosen as the potential
biocatalyst. To prevent potential influence of nitrile hydratase activity on the
reaction, the nitrile hydratase activity was removed by cloning the nitrilase gene
responsible for the target reaction alone from R. rhodochrous J1 and expressing it in
E. coli JM109. The recombinant E. coli cells could enantioselectively hydrolyze
2-methyl-2-propylmalononitrile to form (S)-2-cyano-2-methylpentanoic acid
(Fig. 25). In a scale-up reaction, 80 g (S)-2-cyano-2-methylpentanoic acid was
successfully produced from 2-methyl-2-propylmalononitrile with 97 % molar yield
and 96 % ee after 24-h transformation without any by-product [169].

4.4.2 (3S)-3-Cyano-5-methyl Hexanoic Acid

(3S)-3-Cyano-5-methyl hexanoic acid is a key precursor for the preparation of a
marketed GABA analog, pregabalin (Lyrica® API), which is used for the treatment
of neuropathic pain and partial seizures [170]. One approach to synthesize (3S)-3-
cyano-5-methyl hexanoic acid is the (S)-selective nitrilase-mediated regio- and
enantioselective hydrolysis of racemic isobutylsuccinonitrile, and the untouched
enantiomer (3R)-isobutylsuccinonitrile could readily be racemized under basic
conditions, allowing to afford (3S)-3-cyano-5-methyl hexanoic acid in 100 %
theoretical yield (Fig. 26). Ten plant and bacterial nitrilases were cloned from
GenBank and their ability to catalyze the target reaction was preliminarily exam-
ined by a fluorescent assay based on the NH3 product and further verified by chiral
GC analysis. Five nitrilases showed activity toward isobutylsuccinonitrile with the
best one AtNit 1 giving 45 % conversion and 98 % ee, while the others are very
poor nitrilase toward the target substrate. However, from the view point of synthetic
application, the specific activity of AtNit 1 was still too low to serve as an efficient
catalyst. Therefore, protein engineering based on error-prone PCR was then

H3C CH3
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Fig. 25 Enantioselective hydrolysis of 2-methyl-2-propylmalononitrile to produce (S)-2-cyano-2-
methylpentanoic acid by recombinant Rhodococcus rhodochrous J1 nitrilase
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performed to engineer the AtNit 1 aiming to improve its catalytic efficiency. After
screening of about 9,962 mutant clones (1 % of the mutant library), a single-mutant
C236S was found to show about threefold increase in the activity for the hydrolysis
of isobutylsuccinonitrile without affecting its enantioselectivity.

5 Asymmetric Synthesis with Keto Reductases

Chiral alcohols are key building blocks for the synthesis of a variety of biologically
active molecules and active pharmaceutical ingredients. Numerous biocatalytic
processes, including ketoreductase-catalyzed asymmetric reduction of prochiral
carbonyl compounds, EH-mediated hydrolysis of epoxides, lipase-promoted kinetic
resolution of esters, HHDH-catalyzed ring-opening of epoxides, and aldolase-based
aldehyde condensation, have been developed for the efficient and eco-friendly
synthesis of optically pure alcohols [6, 171, 172]. Of these methods, the ketore-
ductase-catalyzed asymmetric reduction of prochiral ketones represents a promising
approach for the synthesis of chiral alcohols since it can be performed under mild
reaction conditions with a theoretical yield of 100 % and excellent stereoselectivity.
From the view point of industrial application, a promising biocatalytic process is
expected to meet the criteria of high substrate concentration (≥100 g/L), low cat-
alyst usage (≤5 g/L), excellent enantioselectivity (>99.5 %), and high volumetric
productivity (≥100 g L−1 d−1) combined with no or little amount of cofactor
consumption (<0.5 g/L) [173].

In this section, the efficient and cost-effective synthesis of chiral alcohols by
ketoreductase-catalyzed asymmetric reduction will be discussed.
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Fig. 26 Nitrilase-catalyzed synthesis of (3S)-3-cyano-5-methyl hexanoic acid from racemic
isobutylsuccinonitrile
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5.1 Optically Active Ethyl 4-chloro-3-hydroxybutyrate

5.1.1 Ethyl (S)-4-chloro-3-hydroxybutyrate

Ethyl (S)-4-chloro-3-hydroxybutyrate is an important chiral building block for the
synthesis of HMG-CoA reductase inhibitor, which is the active component of the
cholesterol-lowering drug Lipitor. An impressive contribution for the synthesis of
ethyl (R)-4-cyano-3-hydroxybutyrate is presented by Codexis, which involves a
two-step process: At first, a ketoreductase coupled with a glucose dehydrogenase
(GDH) for cofactor regeneration was employed to asymmetrically reduce ethyl
4-chloroacetoacetate resulting in the formation of ethyl (S)-4-chloro-3-hydroxy-
butyrate, which was then transformed into ethyl (R)-4-cyano-3-hydroxybutyrate by
HHDH via the formation of an epoxide intermediate (Fig. 27). Protein engineering
was adopted to improve the catalyst efficiency and the process is now running at
2,000 L scale [174]. This pioneer work was assigned the Presidential Green
Chemistry Challenge Award in 2006.

Besides the work of Codexis, great effort has also been paid on the development
of an efficient process to produce ethyl (S)-4-chloro-3-hydroxybutyrate based on
ketoreductase-catalyzed asymmetric reductions by several different research groups.
An acetoacetyl-CoA reductase was discovered from Ralstonia eutropha by a
bioinformatic-based enzyme-screening method, which could catalyze the highly
stereoselective reduction of ethyl 4-chloroacetoacetate to ethyl (S)-4-chloro-3-
hydroxybutyrate. By using the recombinant E. coli cells coexpressing the reductase
from R. eutropha and a glucose dehydrogenase from B. subtilis for the regeneration
of NADPH as catalyst, 48.7 g/L ethyl (S)-4-chloro-3-hydroxybutyrate was suc-
cessfully produced from ethyl 4-chloroacetoacetate with an optical purity of 99.8 %
ee [175]. Recently, Wang et al. reported the cloning and expression of a highly
active and stereoselective NADH-dependent reductase from Streptomyces coeli-
color by genome mining [176]. In a water–toluene biphasic reaction system, up to
600 g/L (3.6 M) ethyl 4-chloro-3-oxobutyrate was asymmetrically reduced to ethyl
(S)-4-chloro-3-hydroxybutyrate by the recombinant E. coli cells using isopropanol
as co-substrate for cofactor regeneration, giving a product yield of 93 and >99 %
ee. The volumetric productivity of the process reached as high as 609 g L−1 d−1 and
a total turnover number of more than 12,000, indicating the great potential of this
reductase for industrial application.
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Fig. 27 A two-step biocatalytic process for the synthesis of ethyl (R)-4-cyano-3-hydroxybutyrate
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5.1.2 Ethyl (R)-4-chloro-3-hydroxybutyrate

Optically pure ethyl (R)-4-chloro-3-hydroxybutyrate is an intermediate for
L-carnitine, and several biocatalytic methods have been developed to produce ethyl
(R)-4-chloro-3-hydroxybutyrate [177–180]. Nevertheless, the substrate loading
used in these processes was relatively low, and the enantioselectivity was unsat-
isfactory, thereby hindering their practical application. Therefore, there is still an
urgent need for novel and highly efficient biocatalyst for the cost-effective pro-
duction of ethyl (R)-4-chloro-3-hydroxybutyrate. A carbonyl reductase gene (yueD)
was identified from the genome sequence of Bacillus sp. ECU0013 and overex-
pressed in E. coli. The recombinant reductase showed activity toward a series of
substrates including aromatic ketones, α- and β-keto esters, especially ethyl
4-chloro-3-oxobutyrate. In an aqueous–toluene biphasic system using the recom-
binant E. coli cells coexpressing carbonyl reductase (yueD) and glucose dehydro-
genase as catalyst, 215 g/L (1.3 M) ethyl 4-chloro-3-oxobutyrate was transformed
into ethyl (R)-4-chloro-3-hydroxybutyrate by a fed-batch strategy with a product
yield of 91.7 and 99.6 % ee (Fig. 28) [181].

5.2 Methyl (R)-o-Chloromandelate

As the key intermediate for the synthesis of the top-second selling drug Plavix®

(clopidogrel bisulfate), methyl (R)-o-chloromandelate has attracted great interest
from both academy and industry. A variety of synthetic methods have been reported
for the synthesis of this chiral intermediate, including ketoreductase-catalyzed
asymmetric reduction of methyl o-chlorobenzoylformate, nitrilase-mediated DKR
of o-chloromandelonitrile, hydroxynitrile lyase-based hydrocyanation of o-chloro-
benzaldehyde followed by hydrolysis with nitrilase, lipase/esterase-promoted
kinetic resolution of o-chloromandelic acid esters, or α-acetoxy-o-chlorophenyl
acetic acid. Among these methods, the ketoreductase-based asymmetric reduction
of methyl o-chlorobenzoylformate represents an attractive approach, since the
reaction can be carried out at 100 % theoretical yield, and most importantly, the
expensive cofactor can readily be regenerated in situ by coupling a glucose
dehydrogenase (Fig. 29).
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Fig. 28 Ketoreductase-catalyzed asymmetric synthesis of (R)-4-chloro-3-hydroxybutyrate
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An efficient biocatalytic reduction process for the synthesis of methyl (R)-o-
chloromandelate was developed by Ema et al., in which a recombinant E. coli cell
coexpressing a carbonyl reductase (Gre2p) from Saccharomyces cerevisiae and a
glucose dehydrogenase from B. megaterium was utilized for the reduction of
methyl o-chlorobenzoylformate with externally added NADP+, affording methyl
(R)-o-chloromandelate at 198 g/L [182]. A new carbonyl reductase, CgKR1, which
shows high activity and excellent stereoselectivity toward methyl o-chloro-
benzoylformate, was discovered from Candida glabrata by in silico data mining
based on sequence homology using Gre2p as the template. Using the crude enzyme
of CgKR1 together with glucose dehydrogenase as catalyst, as much as 300 g/L of
methyl o-chlorobenzoylformate could be stoichiometrically reduced to methyl
(R)-o-chloromandelate with a product yield of 87 and 98.7 % ee. The volumetric
productivity of this process reached as high as 700 g L−1 d−1, suggesting a great
potential for practical application [183]. Recently, a more efficient carbonyl
reductase, YtbE, was identified from a tool box of carbonyl reductases cloned from
Bacillus sp. ECU0013 and coexpressed with a glucose dehydrogenase in E. coli. Up
to 500 g/L of methyl o-chlorobenzoylformate could be completely converted to
optically pure methyl (R)-o-chloromandelate in an aqueous–ethyl caprylate biphasic
reaction system by the recombinant E. coli cells with an isolated yield of 88 and
>99 % ee, affording a volumetric productivity of 812 g L−1 d−1. It is noteworthy
that no any external cofactor was added during the biocatalytic process, which will
significantly reduce the production cost [184].

5.3 Ethyl 2-hydroxy-4-phenylbutyrate

5.3.1 Ethyl (R)-2-hydroxy-4-phenylbutyrate

Ethyl (R)-2-hydroxy-4-phenylbutyrate is a key chiral synthon for the preparation of
a variety of angiotensin-converting enzyme (ACE) inhibitors, while the latter is
widely used for the treatment of hypertension and congestive heart failure.
Although a number of methods for the preparation of ethyl (R)-2-hydroxy-4-
phenylbutyrate have been investigated [185–187], the ketoreductase-catalyzed
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Fig. 29 Stereoselective reduction of methyl o-chlorobenzoylformate to methyl (R)-o-chloro-
mandelate by ketoreductase coupled with glucose dehydrogenase
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asymmetric synthesis from ethyl 2-oxo-4-phenylburyrate represents an attractive
alternative due to its high theoretical product yield, excellent stereoselectivity, and
environmental friendliness (Fig. 30). Therefore, several microorganisms including
Candida boidinii CIOC21, Candida krusei SW2026, Pichia angusta, and
S. cerevisiae, have been employed for the synthesis of ethyl (R)-2-hydroxy-4-
phenylbutyrate [188–191]. However, they share some common limitations such as
low substrate loading, the requirement of external cofactor addition, and/or inad-
equate stereoselectivity that hinder their industrial application.

To discover more efficient catalyst for the practical synthesis of ethyl (R)-2-
hydroxy-4-phenylbutyrate, a new reductase, CgKR2, was identified as the most
promising catalyst candidate from 13 recombinant reductases obtained by genome
mining due to its highest activity and stereoselectivity. Using the recombinant E. coli
cells expressing CgKR2 and glucose dehydrogenase as catalyst, as much as 206 g/L
(1 M) of ethyl 2-oxo-4-phenylbutyrate was completely reduced to ethyl (R)-2-
hydroxy-4-phenylbutyrate with 84 % isolated yield and >99 % ee, the volumetric
productivity reached 700 g L−1 d−1, which is significantly higher than the highest
value reported so far in literature. It should be noted that during the biocatalytic
process, no cofactor was externally added, thereby greatly lowering the production
cost [192]. The reductase, CgKR1, discovered by Ma et al. also showed very high
activity in the reduction of ethyl 2-oxo-4-phenylbutyrate, and up to 412 g/L (2 M) of
substrate could be stoichiometrically converted to the target product but with a little
lower enantioselectivity (98.1 % ee) [183]. Recently, an aqueous–octanol biphasic
reaction system combined with fed-batch strategy was developed by Ni et al., in
which 330 g/L (1.6 M) ethyl 2-oxo-4-phenylbutyrate was successfully reduced to
ethyl (R)-2-hydroxy-4-phenylbutyrate with 99.5 % ee using the recombinant E. coli
cells coexpressing a reductase gene and a glucose dehydrogenase gene from
B. subtilis as catalyst [193].

5.3.2 Ethyl (S)-2-hydroxy-4-phenylbutyrate

Similar to the synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate, its (S)-enantiomer
can also be accessed through asymmetric reduction of ethyl 2-oxo-4-phenylbutyrate
by reductases with reverse enantioselectivity. An impressive work on the efficient
production of ethyl (S)-2-hydroxy-4-phenylbutyrate was presented by Ni et al., in
which an extremely high substrate concentration (620 g L−1, equal to 3 M) could be
completely transformed by the recombinant E. coli cells coexpressing a reductase
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Fig. 30 Synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate by asymmetric reduction of ethyl 2-
oxo-4-phenylbutyrate with reductase
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(FabG) identified from Bacillus sp. by genome mining and a glucose dehydroge-
nase in the absence of expensive cofactor, affording ethyl (S)-2-hydroxy-4-phen-
ylbutyrate with 91 % isolated yield and >99 % ee (Fig. 31) [194].

5.4 Optically Active β-Hydroxynitriles

Optically pure β-hydroxynitriles find widespread application in the synthesis of
various biologically active compounds and pharmaceuticals. For example, they are
important precursors of the popular serotonin/norepinephrine reuptake inhibitors
under the commercial name of fluoxetine, atomoxetine, and nisoxetine, which are
widely used for the treatment of inception and disorders, including anxiety, alco-
holism, bulimia, chronic pain, migraine headaches, sleep and memory disorders,
and urinary incontinence [195]. A number of methods have been utilized for the
synthesis of chiral β-hydroxynitriles including chemical routes and enzymatic
approaches; however, the chemical methods usually require expensive heavy metals
as catalyst, which will result in environmental pollution and toxicity issues, and the
enantioselectivity is also unsatisfactory [196, 197]. While the enzymatic kinetic
resolution approaches are limited by the low theoretical yield of 50 % [198, 199].
Therefore, the ketoreductase-catalyzed asymmetric reduction of β-ketonitriles offers
an interesting alternative, in which both enantiomers are accessible in 100 % the-
oretical yield using biocatalysts with reverse enantioselectivity (Fig. 32).
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Fig. 31 Preparation of ethyl (R)-2-hydroxy-4-phenylbutyrate by asymmetric reduction of ethyl 2-
oxo-4-phenylburyrate by reductase coupled with glucose dehydrogenase for cofactor regeneation
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Fig. 32 Synthesis of (R)- or (S)-β-hydroxynitriles by asymmetric reduction of benzoylacetonitrile
using reductase with reverse enantioselectivity
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Optically active (R)- or (S)-β-hydroxynitriles were produced with excellent
enantioselectivity and yield from β-ketonitriles by using a carbonyl reductase
(CMCR) from Candida magnoliae or an alcohol dehydrogenase (Ymr226c) from
S. cerevisiae in its isolated form, respectively, without any α-ethylated by-product,
which is often observed in the whole cell biocatalysis [161]. Recently, Xu et al.
reported the development of a biphasic system, in which recombinant E. coli cells
coexpressing a data-mined carbonyl reductase DhCR from Debaryomyces hansenii
or CgCR from C. glabrata, and a glucose dehydrogenase for in situ cofactor
regeneration were employed for the asymmetric reduction of benzoylacetonitrile, as
much as 145 g/L substrate based on the organic phase was completely transformed
into (R)- or (S)-β-hydroxynitriles with >99 % ee, and no any α-ethylated by-product
was detected [200].

5.5 Optically Active Aryl Halohydrins

Optically pure aryl halohydrins play an important role in the synthesis of a variety
of pharmaceutical relevant compounds, such as β-blockers, β-lactam antibiotics,
and chiral biphosphines. [201]. To date, numerous work on the synthesis of
enantioenriched aryl halohydrins especially those with biocatalyst have been
extensively investigated (Fig. 33). For example, Xie et al. demonstrated the prep-
aration of (R)-aryl halohydrin in >99 % ee from α-chloroacetophenone using crude
enzyme of Adzuki bean with a space time yield of 61.6 g L−1 d−1 [202], while the
(S)-aryl halohydrin was produced from α-chloroacetophenone at a substrate con-
centration of 144 g/L using the alcohol dehydrogenase (LsADH) from Leifsonia
sp. strain S749 with a space time yield of 104 g L−1 d−1 and a total turn over
number of 935 [203]. Recently, a carbonyl reductase tool box was developed by
genome data mining, after screening based on specific activity and substrate tol-
erance using α-chloroacetophenone as a model substrate, a robust carbonyl
reductase (KtCR) from Kluyveromyces thermotolerans was discovered. In a bio-
catalytic reduction process using the recombinant E. coli cells expressing KtCR as
biocatalyst, up to 154 g/L (1 M) of α-chloroacetophenone was asymmetrically
reduced to (S)-aryl halohydrin, giving an isolated yield of 92 and >99 % ee [204].
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Fig. 33 Synthesis of (R)- or (S)-2-chloro-1-phenylethanol via asymmetric reduction of
α-chloroacetophenone using reductase with reverse enantioselectivity
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To further explore the synthetic potential of this reductase tool box, a series of
aryl-halogenated ketones were subjected to reduction using the reductases from this
tool box. Another reductase, PgCR from Pichia guilliermondii NRRL Y-324, was
found to show broad substrate spectrum, including aryl ketones, aliphatic ketones,
and ketoesters. Four aryl-halogenated ketones were then asymmetrically reduced by
the isolated reductase coupled with a NADPH regeneration system in a semi-
preparative scale (Fig. 34). All of the four aryl halohydrins were produced with
excellent enantioselectivity (>99 %) and isolated yields (>80 %) [205].

5.6 (R)-3-Quinuclidinol

Enantiomerically pure 3-quinuclidinol is an important chiral intermediate with
widespread applications, for example, (R)-3-quinuclidinol is a precursor for the
synthesis of talsaclidine, revatropate, and cevimeline [206], while (S)-3-quinu-
clidinol is a very promising chiral synthon for serotonin receptor antagonist drugs
and new anticholinergic drugs [207]. Therefore, a number of methods including
chemical routes and enzymatic approaches have been developed for the preparation
of optically pure 3-quinuclidinol. Of these methods reported, the ketoreductase-
catalyzed asymmetric reduction of 3-quinuclidinone has attracted most attention
since it can be carried out in 100 % theoretical yield, and by coupling a glucose
dehydrogenase for in situ cofactor regeneration, the process cost could be signifi-
cantly reduced (Fig. 35).

R1 R2

O

R1 R2

OHKetoreductase (PgCR)

NAD(P)H

Cl
O

Cl

O

F3C
CF3

O

Cl
Cl

Cl
O

S1 S2 S3 S4

Fig. 34 Asymmetric reduction of aryl-halogenated ketones with ketoreductase (PgCR)
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A recombinant E. coli cells coexpressing the reductase from Rhodotorula rubra
and a glucose dehydrogenase were employed by Uzura et al. for the conversion of
100 g/L (618 mM) of 3-quinuclidinone to (R)-3-quinuclidinol in 98.6 % yield and
>99.9 % ee [208]. (S)-3-Quinuclidinol in 92 % yield and >99 % ee was formed by
asymmetric reduction of 3-quinuclidinone using an S-selective reductase producing
strain R. erythropolis WY1406 [209]. A promising process for the efficient prep-
aration of (R)-3-quinuclidinol was demonstrated by Zhang et al. recently [210]. In
this process, a new reductase (ArQR) was identified from A. radiobacter ECU2556
by screening the laboratory stock microorganisms, which showed high activity and
excellent stereoselectivity in the asymmetric reduction of 3-quinuclidinone. For the
cofactor regeneration, the reductase and a glucose dehydrogenase from B. mega-
terium was then coexpressed in E. coli, and the resultant recombinant E. coli cells
were utilized for the synthesis of (R)-3-quinuclidinol from 3-quinuclidinone. Up to
242 g/L of substrate could be stoichiometrically reduced to the target product with
>99 % ee and a space–time yield of 916 g L−1 d−1, indicating its great potential for
practical application.

6 Chiral Amine Synthesis with Amine Transaminases

Optically pure amines and amino acids are usually used as active pharmaceutical
ingredients, and also as resolving agents to obtain enantiomerically pure carboxylic
acids. Traditional chemical methods to prepare chiral amines or amino acids usually
require the involvement of expensive transition metal catalysts and unavoidably
result in environmental pollutions, while the eco-friendly enzymatic routes repre-
sent a promising alternative [211–213]. Till date, several enzymatic approaches for
the preparation of optically active amines and amino acids including lipase, ami-
dase, monoamine oxidase, amine dehydrogenase, and amine transaminase have
been developed; among these methods reported, the amine transaminase-catalyzed
kinetic resolution of racemic amines or asymmetric synthesis from the corre-
sponding prochiral ketones represents one of the most promising approaches.
Especially, the amine transaminase-mediated asymmetric synthesis seems more
advantageous, since it can afford 100 % theoretical yield.

In this section, the asymmetric synthesis of chiral amines catalyzed by amine
transaminases will be discussed.

6.1 Sitagliptin

So far the most successful application of amine transaminase for organic synthesis
is the large-scale manufacture of antidiabetic compound sitagliptin developed by
Codexis and Merck & Co together (Fig. 36) [214]. A substrate walking, modeling,
site saturation mutagenesis, and directed evolution strategy were adopted to tailor
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an amine transaminase (ATA-117) originally inactive toward prositagliptin ketone
for practical application in a manufacturing setting. Structural homology model
analysis and docking studies revealed that the enzyme could not bind the target
substrate due to steric hindrance in the small binding pocket and potentially
unfavorable interactions in the large binding pocket. Therefore, a truncated methyl
ketone analog of prositagliptin ketone was applied to the screening of the site
saturation libraries of residues lining the large pocket of the active site, resulting in
a variant (S223P) with 11-fold activity improvement toward the methyl ketone
analog. In the second library construction, residues potentially interact with the
trifluorophenyl group and those selected from structural considerations were sub-
jected to saturation mutagenesis based on S223P, which gave the first detectable
transaminase activity toward the target substrate. The variant active toward the
target substrate was then used for the second round of evolution, in which beneficial
mutations from both small and large binding pockets were combined. A variant
with 75-fold increased activity toward prositagliptin ketone was found after
screening of the library. In order to tolerate the harsh reaction conditions such as
high substrate/co-substrate loading, high organic solvent concentration, and high
reaction temperatures, the best variant from the second round was subjected to
another 9 rounds of evolution, and process-like conditions were applied to the
screening steps; specifically, the substrate concentration was increased from 2 to
100 g/L, the iPrNH2 concentration from 0.5 to 1 M, DMSO from 5 to 50 %, the pH
from 7.5 to 8.5, and the temperature from 22 to 45 °C. Finally, a best variant
containing 27 mutations was obtained, which met the required process target and
could converted 200 g/L prositagliptin ketone to sitagliptin with >99.95 % ee and
92 % yield.

Interestingly, the engineered amine transaminase also showed broad substrate
specificity, and some chiral amines including various trifluoromethyl-substituted
amines as well as phenylethylamines with electron-rich substituents and pyrrol-
idines that cannot be prepared via traditional reduction amination previously can
now be produced by the amine transaminase variant with excellent stereoselectivity
(Fig. 37).

Fig. 36 Biocatalytic synthesis of sitagliptin mediated by an amine transaminase (ATA-117)
variant
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6.2 sec-Butylamine

To obtain optically active (R)-sec-butylamine, a biocatalytic resolution process was
developed, in which whole cells of recombinant E. coli expressing an (S)-selective
amine transaminase from B. megaterium SC6394 were employed for the resolution
of racemic sec-butylamine using pyruvate as amino acceptor and pyridoxal phos-
phate as a cofactor (Fig. 38) [215]. This process was performed in 15-L scale, in
which 750 g of racemic substrate was resolved to afford 585 g (R)-sec-butylamine·1/
2H2SO4 salt (46.6 % isolated yield, 99.2 % ee).

The bottleneck of the above-mentioned resolution process is the theoretical yield
of 50 %; thereof, an asymmetric synthesis process would be a useful alternative for
practical application. The ω-transaminase (ATA-117)-catalyzed asymmetric syn-
thesis of optically pure (R)-sec-butylamine from 2-butanone using D- or L-alanine
as amino donor (ATA-117) was developed by Kroutil et al. [216]. In order to shift
the reaction equilibrium to full conversion, lactate dehydrogenase was applied to
remove the by-product pyruvate. Under the optimized reaction conditions, 50 mM
2-butanone could be converted with 98 % conversion and >99 % ee (Fig. 39).

6.3 Other Chiral Amines

Although amine transaminase-catalyzed asymmetric synthesis theoretically pro-
vides a 100 % yield of the product, the existence of the reaction equilibrium that
favors the substrate over the product will result in incomplete conversion. One
solution for the problem is the use of excess amino donor; the other strategy is the
introduction of a second reaction to further transform the by-product. For example,
Hohne et al. reported the use of lactate dehydrogenase and pyruvate decarboxylase
for the removal of the by-product pyruvate in the asymmetric synthesis of several
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optically active amines, both resulted in significantly higher conversation rate and
pyruvate decarboxylase showed slightly better results (Fig. 40) [217]. Recently, an
efficient single-enzymatic cascade for the asymmetric synthesis of chiral 1-phen-
ylethylamine and its derivatives employing 3-aminocyclohexa-1,5-dienecarboxylic
acid as the amino donor was developed by Berglund et al. [218], in which the
by-product ketone was spontaneously transformed into 3-hydroxybenzoic acid,
pushing the equilibrium to the desired direction, allowing a theoretical yield of
100 % (Fig. 41).

Unlike various (S)-selective amine transaminases reported, the number of
(R)-selective enzymes are relatively scarce. To find more (R)-selective amine
transaminases for (R)-amines synthesis, an in silico strategy for enzyme identifi-
cation was developed [13]. They first analyzed the structural information of
respective enzymes to assess the possibility for the evolution of an (R)-selective
amine transaminases; then, a prediction of key amino acids need to be changed was
made; an annotation algorithm based on key motifs was adopted to exclude
unwanted enzyme activities; after database search, protein sequences fulfilled the
predicted criteria were identified and cloned from synthetic genes; at the last step,
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Fig. 39 Asymmetric synthesis of sec-butylamine with ω-transaminase. Lactate dehydrogenase
was employed to remove the by-product pyruvate and shifted the equilibrium to the product
direction
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after protein expression of respective genes, the resultant enzymes were subjected
to activity and selectivity investigation. Finally, up to 17 (R)-selective amine
transaminases that could catalyze the synthesis of several (R)-amines with excellent
optical purity were discovered by this in silico approach (Fig. 42). This is also a
nice example for the data mining of novel enzymes.

7 Perspectives

In the past years, we have seen a big step forward in the application of biocatalysis
for the synthesis of a series of optically pure chiral chemicals both in laboratory and
industry with the fast growth of various powerful biocatalysts discovered. Although
the genomic database offers a large pool of potential biocatalyst resources and
provides great opportunities for the discovery of novel and robust biocatalyst,
protein engineering including rational design, semi-rational design, random muta-
genesis, and de novo enzyme design combined with reliable high-throughput
screening strategy is required to further tailor the enzyme to meet specific
requirement for industrial application. The development of suitable expression
vectors and host strains is an important factor influencing the availability of robust
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biocatalyst in large quantity with acceptable cost. Furthermore, immobilization of
biocatalyst on appropriate carrier using proper methods or supplement of suitable
additives is crucial for enzyme storage, transportation, and application in large-scale
transformation. Additionally, process engineering such as the use of aqueous–
organic biphasic reaction system, designing of suitable bioreactors, in situ product
recovery, and continuous operations is beneficial for process efficiency and volu-
metric productivity.

It is also noteworthy that cascade reactions involving two or more enzymatic
reaction steps or chemoenzymatic process in one pot have emerged as a promising
strategy for the preparation of chiral pharmaceutical building blocks without the
need for intermediate isolation, thus making the process cost-effective for target
molecular synthesis. Finally, collaboration between biologists, organic chemists,
and engineers is expected to promote the biocatalysis technology to be a first choice
approach for the eco-friendly, highly efficient and cost-effective synthesis of various
chiral chemicals in large scale in the near future.
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Construction of Escherichia Coli Cell
Factories for Production of Organic Acids
and Alcohols

Pingping Liu, Xinna Zhu, Zaigao Tan, Xueli Zhang and Yanhe Ma

Abstract Production of bulk chemicals from renewable biomass has been proved
to be sustainable and environmentally friendly. Escherichia coli is the most com-
monly used host strain for constructing cell factories for production of bulk
chemicals since it has clear physiological and genetic characteristics, grows fast in
minimal salts medium, uses a wide range of substrates, and can be genetically
modified easily. With the development of metabolic engineering, systems biology,
and synthetic biology, a technology platform has been established to construct
E. coli cell factories for bulk chemicals production. In this chapter, we will intro-
duce this technology platform, as well as E. coli cell factories successfully con-
structed for production of organic acids and alcohols.

Keywords Escherichia coli � Bulk chemicals � Cell factories � Metabolic
engineering � Synthetic biology
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1 Introduction

Bulk chemicals are produced at high volume and relatively low cost, which can be
either directly used or used as platform chemicals for production of derivatives in
the chemical industry [1, 2]. The annual production volumes of bulk chemicals are
usually in the range of 1–100 million tons, and their selling prices are less than
2,000 dollars per ton [2]. Traditionally, bulk chemicals are predominantly produced
from non-renewable fossil resources via the petrochemical routes [1, 3]. Because of
the decrease of global storage, fluctuations of petroleum prices, trade imbalances,
and political considerations, the cost for production of bulk chemicals through
petrochemical process is increasing [1, 4–10]. In addition, petrochemical processes
always consume a lot of energy and cause serious environmental pollutions [9–15].

Production of bulk chemicals from biomass resources by microbial cell factories
is an alternative route, which is renewable and environment friendly compared to
petrochemical route [11, 16–18]. However, only a few bulk chemicals can be
produced by microbial cell factories. On the other hand, although some bulk
chemicals can be synthesized by engineered microorganism, the producing capa-
bilities, including titer, yield, productivity, and physiological characteristics, are not
good enough to compete with petrochemical routes. Thus, it is important to expand
the product range, as well as to improve producing capabilities of cell factories to
decrease producing cost for commercialization.

The rapid development of metabolic engineering, systems biology, and synthetic
biology has facilitated construction of microbial cell factories for producing
bulk chemicals [1, 16, 19, 20]. Escherichia coli is the most commonly used host
strain for cell factories construction since it has clear physiological and genetic
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characteristics and can be genetically modified easily [3, 21]. E. coli also grows fast
in minimal salt medium and can utilize both hexose and pentose in the biomass.
Currently, bio-based bulk chemicals produced by E. coli include not only those
formed by E. coli native metabolic pathways such as lactate [22–25] and succinate
[26–29], but also those produced by heterologous pathways or totally new synthetic
pathways, such as 3-hydroxypropionic acid [30–33], 1,3-propanediol [2], isobuta-
nol [13, 34–36], butanol [13], 1,4-butanediol [37], and alkanes [38, 39]. In this
review, we will summarize the technology platforms for construction and optimi-
zation of E. coli cell factories, as well as representative cases of constructing E. coli
cell factories for production of organic acids and alcohols.

2 Technology Platform for Construction of E. coli Cell
Factories

With the developments of systems biology and synthetic biology, a technology
platform has been established for the construction of E. coli cell factories for bulk
chemicals production. This platform includes (1) design of the optimal synthetic
pathway, (2) construction of the synthetic pathway, (3) optimization of the synthetic
pathway, (4) optimization of the producing capability at the whole cell level, and
(5) characterization of the genetic mechanisms (Fig. 1). An initial cell factory can
be obtained after the first four steps. The genetic mechanisms identified for high
production can be used to further improve the producing capabilities to construct
the next-generation cell factories.

Wild type

5. Characterization of the genetic mechanisms 

New round of
engineering

1. Design of optimal synthetic pathway

2. Construction of synthetic pathway

Cell factories

3. Optimization of synthetic pathway

4. Optimization of producing capability at the 
whole cell level

Next-generation 
Cell factories

Fig. 1 The technology platform for the construction of E. coli cell factories
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2.1 Design of the Optimal Synthetic Pathway

E. coli produces mixed acids during the glucose metabolism. In order to produce
the target compound, other competitive pathways need to be inactivated. Enough
energy supply is necessary to maintain cell growth and metabolism, while appro-
priate reducing equivalent supply is required to keep redox balanced, especially
under anaerobic conditions. On the other hand, most synthetic pathways that
convert the designated substrate to target product do not exist in E. coli, and
sometimes are even not present in nature. Thus, designing the novel synthetic
pathway is very important for construction of cell factories. With the development
of bioinformatics tools, several genome-scale metabolic network models have been
reconstructed for E. coli [40–43]. These models can help design the optimal
synthetic pathway, discover new engineering target to improve production of target
compound, and predict the cellular phenotypes [41]. There have been several
reviews describing the developments of metabolic network models and their
applications in constructing E. coli cell factories [44–49].

With the help of metabolic network models, the optimal synthetic pathway can
be designed based on modification of the native metabolic pathways (such as
succinate or D-lactate), integration of exogenous reactions by software predication
(such as 1,4-Butanediol [12]), genome mining (such as alkanes [20]), and modi-
fication of the natural pathway to catalyze unnatural reactions (such as higher-chain
alcohols [50, 51]). Different tools used for predication of novel biosynthetic path-
ways have been reported [52–55]. These tools can not only propose candidate
pathways but also supply ranking of the pathways based on different factors
employed in the process (such as thermodynamics [56]) to reduce the numbers of
pathways to be a reasonable scope for experimental validation [16].

2.2 Construction of the Synthetic Pathway

Gene resources and DNA assembly method are two key factors for construction of
synthetic pathway. It is desirable to obtain genes in an easy, quick, and inexpensive
way, and to assemble different genes into a complete synthetic pathway with effi-
cient and standard methods.

PCR has been commonly used to obtain target genes. However, original cells
having the target genes need to be collected first, which is time-consuming. In
addition, many heterologous genes cannot be expressed and translated efficiently in
the host strain. With the rapid development of high-throughput chemical synthesis of
DNA, achieving gene resources has become independent on original cells. It is also
possible to optimize the transcriptional efficiency of target genes by codon optimi-
zation. The Church’s group developed a microchip-based technology for synthesis
of genes and reduced the error rate by ninefold [57]. Using this technology, all 21
genes encoding the proteins of E. coli 30S ribosomal subunit were synthesized and
the translation efficiency in vitro was optimized through alteration of codon bias. An
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on-chip gene synthesis technology, including ink-jet printing, isothermal oligonu-
cleotide amplification, and parallel gene assembly, was integrated on a single
microchip [58]. By using a mismatch-specific endonuclease for error correction, the
error rate was reduced to about 0.19 errors per kb.

Standardized DNA assembly is another limiting technology for construction of
the synthetic pathway. Several BioBrick assembly standards [59] have been
developed. The DNA unit is flanked by standardized sequences, and the assembly
can be achieved by a simple and standardized restriction/ligation method [60, 61].
However, the BioBrick approach still has several disadvantages, such as the
remaining of 6-bp scars resulting from each binary BioBrick assembly and the
limitation of rearrangement of every intermediate part [62]. Several new technol-
ogies, such as sequence- and ligation-independent cloning (SLIC), Gibson iso-
thermal assembly, and circular polymerase extension cloning (CPEC), have been
designed, which can supply standardized, scarless, sequence-independent, and
multi-part DNA assembly [62–65]. All these technologies are dependent on the 5′
homology sequence flanked at the two ends of DNA part. The biological charac-
teristics and mechanisms for these methods have been reviewed [61].

All methods mentioned above are carried out in vitro. The Zhao group at the
University of Illinois at Urbana-Champaign developed a DNA assembly method
in vivo [66, 67]. DNA parts with homologous sequences were transformed into
Saccharomyces cerevisiae and assembled based on the high homologous recom-
bination efficiency of the yeast. The assembled DNA devices were then extracted
and transformed into E. coli for evaluation or expression. This method is efficient
and independent on enzymes in vitro.

DNA integration into chromosome has also been developed to construct a
genetically stable strain for industrial production. Homologous recombination
based on the λ Red recombinase has been developed [68–70]. The one-step
homologous recombination method uses an antibiotic marker for selection, which is
flanked by two FLP recognition target (FRT) fragments. The antibiotic marker can
be removed by the FLP recombinase, facilitating multiple rounds of genetic engi-
neering. This method can integrate or delete genes quickly but leave a 68-bp FRT
scar on chromosome each time, and repeated use of this system has the potential to
result in large unintended chromosomal deletions [68, 69, 71]. To facilitate
sequential gene manipulations, a two-stage recombination strategy was developed,
which was based on the sensitivity of E. coli to sucrose when levansucrase (sacB) is
expressed in cell. In the first recombination, the target chromosomal genes are
replaced by a DNA cassette containing an antibiotic marker and the sacB gene. In
the second recombination step, the antibiotic marker and the sacB gene are removed
by selection for the resistance to sucrose [69, 72–74].

2.3 Optimization of the Synthetic Pathway

The native and new constructed synthetic pathways are always not efficient. Some
enzymes might have low activities and become the rate-limiting steps for the whole
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pathway. Some toxic intermediates might accumulate in the cell, thus leading to
decreased cell growth and flux imbalances. In order to improve the producing
capability, several strategies have been developed to optimize the synthetic pathway
in three levels.

2.3.1 Optimization of the Synthetic Pathway in a Single Gene Level

Gene overexpression was commonly used to increase the activities of rate-limiting
enzymes among the synthetic pathway for the purpose of modulating metabolic
fluxes. However, this simple overexpression strategy rarely reached the optimal
transcript level and appeared to be unsuccessful in most cases to improve producing
capability [75]. Promoter library has been developed as a solution to this all-or-
nothing expression strategy, which could provide variable promoters with a wide
range of strength for fine-tuning of gene expression [76–80]. Two methods have
been developed for creating promoter library. One type was obtained by keeping
the conserved −35 and −10 sequences intact and randomizing the surrounding
nucleotides [78, 79]. The other type was obtained by mutating the sequence of an
existing promoter using error-prone PCR [76, 77].

However, plasmid-based gene expression has several disadvantages for the
engineering of genetically stable strains [69]. Plasmid maintenance is a metabolic
burden on the host cell, especially for high-copy number plasmids [81], and only
few natural unit-copy plasmids have the desirable genetic stability [82]. In addition,
only low-copy number plasmids have replication that is timed with the cell cycle,
and thus, it is difficult to maintain a consistent copy number in all cells [82]. It is
thus desirable to integrate the target genes into chromosome followed by fine-
tuning of their expression. With the aid of Red recombination technology [68],
promoter libraries were recently constructed directly in the chromosome [83–85],
which might be more suitable for modulation of gene expression directly in the
chromosome.

Different promoters with varied strengths can be used to control gene tran-
scription precisely to obtain a specific cellular phenotype. One example is the
divergence of biomass yield by modulation of phosphoenolpyruvate carboxylase
(ppc) gene transcription level. When the wild-type promoter of ppc was replaced by
promoters with varied strengths, there was a positive correlation between the ppc
transcription level and the biomass yield when the ppc transcription level was
within a certain range. Excessive ppc transcription level led to decreased biomass
yield. The promoter library facilitated identifying the optimum transcription level of
ppc for biomass yield. Another example is the use of promoter library to investigate
the relationship between succinate production and PPC or phosphoenolpyruvate
carboxykinase (PCK) activity. There was a positive correlation between PCK
activity and succinate production. In contrast, there was a positive correlation
between PPC activity and succinate production only when PPC activity was within
a certain range. Excessive PPC activity decreased the rates of both cell growth and
succinate formation [29]. In contrast, plasmid overexpression of ppc gene always
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led to increased succinate production [86], which would mislead our understanding
of the relationship between succinate production and PPC activity.

2.3.2 Optimization of the Synthetic Pathway in Multiple Gene Levels

The efficiencies of most synthetic pathways are always not limited by a single rate-
limiting reaction [87]. A more broadly accepted opinion is to realize the coordinated
expression of multiple genes involved in the synthetic pathway to increase the
overall metabolic flux.

A technology for tuning the expression of multiple genes by employing
post-transcriptional mechanisms was developed by the Keasling group at the
University of California, Berkeley [88]. Libraries of tunable intergenic regions
(TIGRs) consisting of several control elements composed by mRNA secondary
structures, RNase cleavage sites, and the RBS sequence were constructed and used
to differentially change the processes of transcription termination, mRNA stability,
and translation initiation [87, 88]. When using this strategy to balance expression of
three genes in an operon encoding a heterologous mevalonate biosynthetic path-
way, a sevenfold increase of mevalonate production was achieved. Another tech-
nology for fine-tuning pathway flux was developed by the same group in 2009 [89].
Synthetic protein scaffolds was built to spatially recruit metabolic enzymes in a
specific manner to increase the valid concentration of metabolic intermediates and
avoid their accumulation to toxic level. Also, the production levels can be
optimized by balancing relative quantities of individual enzymes via changing the
number of interaction-domain repeats that locate different enzymes to the synthetic
complex. Using this technology, a 77-fold improvement was achieved for the
mevalonate biosynthesis.

The Church group at Harvard Medical School developed a powerful tool termed
multiple automated genome engineering (MAGE), which can modify many genes
in the E. coli genome in parallel. This technique was used to optimize the 1-deoxy-
D-xylulose-5-phosphate (DXP) synthetic pathway in E. coli for improving lycopene
production. Twenty-four genes in the DXP pathway were modified simultaneously,
and over 4.3 billion variants were created per day. E. coli variants with more than
fivefold increase in lycopene production were isolated within 3 days [90, 91].

Instead of repeating multiple rounds of gene knockout, synthetic regulatory
small RNAs (sRNAs) were designed to finely control gene expression in E. coli by
the Lee group at Korea Advanced Institute of Science and Technology. Customized
synthetic sRNAs were consisted by a scaffold and a target-binding sequence. With
utilization of the plasmid-based synthetic sRNA system, one can study the effects of
multiple knockdowns on the cell’s producing capability in a high-throughput way
and simultaneously screen target genes in different E. coli strains [92].
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2.3.3 Optimization of the Synthetic Pathway Using
the Sensor–Regulator System

To precisely control and regulate the heterologous pathway expression due to the
change of environment or intracellular conditions, an efficient strategy is to use the
sensor–regulator system which can respond to a particular intermediate and stim-
ulate the desired cellular response to enable the cell to efficiently use the cellular
resources and improve the producing capability while decrease the accumulation of
toxic metabolite [93]. Malonyl-CoA is the rate-limiting precursor involved in the
synthetic pathway of several value-added pharmaceuticals and biofuels. By incor-
porating the trans-regulatory protein FapR and the cis-regulatory element fapO of
Bacillus subtilis, a hybrid promoter–regulator system was constructed and could
respond to a wide range of intracellular malonyl-CoA concentrations in E. coli [93].
In another study, the Liao’s group designed and engineered a regulatory circuit by
recruiting and altering the Ntr regulon which is a global regulatory system to
control the pathway expression for lycopene synthesis in E. coli. The artificially
engineered regulon controlled the gene expression in the lycopene synthetic path-
way by sensing the concentration of acetyl phosphate which is the glycolytic
pathway hallmark metabolite [94]. Recently, a dynamic sensor–regulator system
(DSRS) was developed to dynamically regulate the gene expression in biodiesel
biosynthetic pathway by responding to the key intermediate fatty acyl-CoA in
E. coli. Using this strategy, the fatty acid ethyl ester production was increased
threefold compared to that of using constitutive promoters in E. coli [95].

2.4 Optimization of Producing Capability at the Whole
Cell Level

After optimization of the synthetic pathway, the producing capability of the engi-
neered cell, such as titer, yield, productivity, and physiological characteristics,
might still be not good enough for industrial application. The desired cell pheno-
types may be affected by factors which are not directly related to the synthetic
pathway [96]. In order to obtain an efficient cell factory, the producing capability
needs to be optimized further at the whole cell level.

Metabolic evolution was developed by the Ingram group at the University of
Florida and has been demonstrated to be an excellent strategy for strain improve-
ment [69]. Synthesis of target product is designed to be the only fermentation
pathway to oxidize NADH under anaerobic condition. The cell growth of the
engineered cell is coupled with the synthesis of target product, since this is the only
way to regenerate NAD+ for continuous glycolysis to provide ATP for cell growth.
This technology has been used widely to improve the production of several bulk
chemicals by E. coli cell factories, such as D-lactate [97–99], succinate [100–102],
and ethanol [103]. In addition, this technology can also be used to improve cell’s
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physiological characteristics, especially tolerance to toxic metabolites or high
concentration of target products [104, 105].

Global transcription machinery engineering, or termed gTME, was developed by
the Stephanopoulos group at Massachusetts Institute of Technology and has been
proved to be a powerful strategy for optimization of a desired phenotype at system
level [106–109]. For optimization of a desired phenotype at systems level, gTME
has been used to improve ethanol tolerance, lycopene production, and simultaneous
tolerance to sodium dodecyl sulfate (SDS) and ethanol. To realize these purposes,
one of the components of global cellular transcription machinery (specifically rpoD
encoding the σ70) in E. coli was engineered to globally perturb the transcriptome to
help unlock complex phenotypes [109].

Aside from technologies mentioned above, some other tools, such as genome
shuffling [110–113] and trackable multiplex recombineering (TRMR) [114], have
been designed and used to optimize a target pathway at system level. Great
improvement for the chemical production properties has been achieved based on
these strategies. It should be noted that high-throughput screening methods are
required for the efficient selection.

2.5 Characterization of the Genetic Mechanism

Although metabolic evolution or other global perturbation methods are efficient for
improving the producing capability of the engineered cell, the genetic backgrounds
of strains obtained by these strategies often remain unclear. Characterization of the
genetic mechanisms relative to the improved producing capability is very impor-
tant. The fast accumulation of omics data, including genomics, transcriptomics,
proteomics, metabolomics, and fluxomics, has provided foundation for the under-
standing of the genetic mechanisms in depth [115–119], which is crucial for further
round of engineering to obtain the next-generation cell factories.

Up to now, many E. coli cell factories with abilities of producing different bulk
chemicals have been constructed and some have been applied in industrial scale.
The bio-based bulk chemicals produced by E. coli cell factories mainly include
organic acids and alcohols, which will be described in detail in the following
chapters.

3 Organic Acids

Organic acids have received attractive attentions for their increasing utilization in
food industry and great potential as platform chemicals for the manufacture of
biodegradable polymers [120, 121]. As an alternative of petroleum-based produc-
tion, microbial production of organic acids from renewable biomass has been
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accepted as a feasible process. E. coli has been widely engineered to produce
organic acids, such as acetate, lactate, pyruvate, 3-hydroxypropionate, succinate,
malate, fumarate, glucaric acid, and muconic acid (Table 1).

3.1 D-lactate

As a specialty chemical, D-lactate is widely applied in the food and pharmaceutical
industry. A potential huge market for D-lactate is to be combined with L-lactate to
produce polylactic acid (PLA), an increasingly attractive biodegradable plastic. The
commercial success of PLA will greatly depend on the production cost of
the monomers [69]. Wild-type E. coli can produce D-lactate in its mixed acid
fermentation process (Fig. 2). However, the productivity is low and several unde-
sirable metabolites are produced at the same time. To realize the production of
D-lactate in an efficient way, it is necessary to reengineer the metabolic network of
E. coli.

D-lactate-producing strains were engineered from E. coli W3110 by the
Ingram’s group by inactivating the competitive fermentation pathways, including
fumarate reductase (frdABCD), alcohol/aldehyde dehydrogenase (adhE), and
pyruvate formate lyase (pflB). A further deletion of the acetate kinase gene (ackA)
increased the cell mass and lactate productivity. D-lactate production yield of these
strains approached the theoretical maximum yield (2 mol/mol glucose) using
mineral salts medium [122]. For expanding the substrate range, a cluster of sucrose
utilization genes which were characterized and cloned from E. coli KO11 were
introduced, resulting in production of over 500 mM D-lactate from sucrose [123].
However, these biocatalysts were unable to ferment glucose or sucrose with
concentration of up to 10 % completely. Inspired by the construction of ethanol
producing strain, a derivative of E. coli B was selected as the starting strain for
D-lactate production. Based on the growth-based selection (Fig. 3), metabolic
evolution was carried out to improve strain performance. The resulting strain SZ194
produced 1.22 M D-lactate with a yield of 1.9 mol/mol using mineral salts medium.
The production capability was comparable with lactic acid bacteria [98].

In another study, E. coli strain B0013 was engineered for D-lactate production
by deletion of acetate kinase and phosphotransacetylase (ackA-pta), phosphoenol-
pyruvate synthase (pps), pflB, FAD-binding D-lactate dehydrogenase (dld), pyru-
vate oxidase (poxB), and adhE and frd genes. The resulting strain, B0013-070,
produced 125 g/L D-lactate [25]. Replacing the ldhA promoter with the λ pR and pL
promoter in strain B0013-070 led to a thermocontrollable strain B0013-070B in
which the LDH activity was twofold higher than the parent strain B0013-070 at
42 °C. When the culture temperature reached to 33 °C, the genetic switch would be
turned off and strain B0013-070B produced 10 % more biomass under aerobic
conditions than stain B0013-070 with trace D-lactate produced. This modification
reduced the growth inhibition which was caused by oxygen insufficiency in large-
scale fermentation process [23].
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3.2 3-Hydroxypropionate

3-Hydroxypropionate (3HP), a non-chiral carboxylic acid, has received much
attention for its potential applications to produce biodegradable polymer by itself or
with other compounds [124, 125]. Additionally, 3HP was an important C3 platform
chemical and can be used for the production of various commercially valuable
chemicals, such as 1,3-propanediol, acrylic acid, and malonic acid [126]. 3HP has
been identified as a metabolic intermediate naturally present in several microor-
ganisms [127–134]. More than a dozen of pathways for 3HP biosynthesis have
been proposed based on the natural metabolic pathways or in silico design [135–
137]. However, a little fraction of the pathways have been evaluated. The Park’s
group developed a recombinant E. coli strain producing 3HP from glucose involved
malonyl-CoA as an intermediate. In this strain, a mcr gene encoding the NADPH-
dependent malonyl-CoA reductase (MCR) of Chloroflexus aurantiacus DSM 635
was introduced into E. coli. The recombinant strain produced 0.064 g/L 3HP when
cultivated aerobically for 24 h using glucose as the sole carbon source. To improve
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the 3HP production, the gene cluster accADBCb encoding the acetyl-CoA car-
boxylase and biotinilase of E. coli K-12 were overexpressed and this resulted in a
twofold improvement in 3HP production. Further genetic modification was carried
out to express the gene pntAB encoding the membrane-bound transhydrogenase to
convert the NADH to NADPH which increased 3HP titer to 0.193 g/L [33].

Compared to producing 3HP from glucose, more studies have been focused on
the production of 3HP from glycerol. By heterologous overexpression of the
glycerol dehydratase (DhaB) from Klebsiella pneumobiae DSM 2026 and aldehyde
dehydrogenase (AldH) from E. coli K-12 MG1655 in E. coli BL21 (DE3), a
recombinant E. coli strain SH254 was obtained. When fermented aerobically in M9
minimal medium supplemented with glycerol as substrate in shake flask, this strain
produced 0.58 g/L 3HP with a yield of 0.48 mol/mol glycerol [138]. Further
optimization of the fermentation parameters, such as pH, IPTG concentration,
aeration rate, and substrate concentration, led to production of 31 g/L 3HP in 72 h
when a fed-batch fermentation process was used [139]. Though the titer of 3HP was
improved by optimization of the fermentation parameters, several problems,
including the imbalance between DhaB and AldH and instability of DhaB, were
still not solved. To overcome these limitations, DhaB and AldH were overexpressed
in two compatible plasmids with inducible expression systems and the glycerol
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dehydratase reactivase (GDR) was expressed at the same time. Then, by using α-
ketoglutaric semialdehyde dehydrogenase (KGSADH) from A. brasilense to
replace the AldH, a recombinant E. coli strain SH-BGK1 was constructed which
produced 38.7 g/L 3HP aerobically using a fed-batch process [140]. Modulation of
glycerol metabolism further increased 3HP titer to 57.3 g/L with a yield of 0.88 g/g
glycerol [30]. In another work, based on in silico simulation, two genes tpiA
(encoding triose phosphate isomerase) and zwf (encoding glucose 6-phosphate
dehydrogenase) involved in the central metabolism and yqhD gene (encoding
NADPH-dependent aldehyde reductase) involved in the biosynthetic pathway of
the major by-product 1,3-propanediol were identified as the engineering targets to
improve 3HP production from glycerol. Deletion of these three genes led to 7.4-fold
increase of 3HP titer compared to the parent strain [141].

3.3 Succinate

Succinate can be produced by native E. coli as a minor product [56]. In order to
produce succinate as the sole product, other competitive pathways need to be
eliminated. Strain NZN111 is an engineered E. coli, which has lactate dehydroge-
nase (ldhA) and pflB inactivated [142–144]. This strain produces undetectable lactate
and formate under anaerobic conditions [142, 143]. However, inactivation of these
NADH-consuming pathways could also cause redox imbalance within cells, thus
leading to decreased cell growth and glucose utilization [143]. Strain NZN111
consumed only 1.8 g/L glucose and produced 1.8 g/L succinate under anaerobic
conditions for 44 h [145]. A mutant strain of NZN111 (strain AFP111) was isolated,
which recovered cell growth and had increased succinate production under anaer-
obic conditions. A spontaneous mutation in ptsG gene [146–148] of NZN111, which
encodes EIIBGlc subunit of phosphoenolpyruvate (PEP): carbohydrate phospho-
transferase systems (PTS), was identified to be responsible for the increased cell
growth and succinate production [143]. This ptsG mutation could enhance PEP
precursor supply for succinate synthesis, as well as alleviating glucose repression to
the expression of several genes which are crucial to the fermentation. Several genetic
manipulations were performed to further improve succinate production of strain
AFP111. For instance, overexpression of pyruvate carboxylase (PYC) gene of
Rhizobium etli in AFP111 increased succinate titer and yield to 99.2 g/L (841 mM)
and 1.1 g/g (1.68 mol/mol), respectively, under dual-phase conditions [149].

Under anaerobic conditions, 1 molecule glucose produces 2 molecules NADH
through glycolysis, while the production of 1 molecule succinate requires two
NADH through the reductive TCA pathway. The maximal succinate yield is only
1 mol/mol glucose, which is much less than the theoretical maximum yield
(1.71 mol/mol) [150–153]. In comparison, NADH requirement for succinate syn-
thesis decreases when glyoxylate shunt pathway is utilized. It was calculated that
1.25 molecules NADH was required to synthesize 1 molecule succinate [150].
Glyoxylate shunt pathway is composed of isocitrate lyase (encoded by aceA) and
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malate synthase (encoded by aceB) [154]. In the presence of glucose, aceBAK
operon is strictly repressed by IclR regulator [155–157], and iclR deletion was
proven to efficiently activate glyoxylate shunt pathway [155]. Sanchez et al. found
that deletion of iclR in strain SBS550MG (DadhE, DpflB, Dack-pta) harboring
pyruvate carboxylase from Lactococcus lactis increased its succinate yield to
1.61 mol/mol [150]. Obtaining NADH through formate dehydrogenase is another
strategy to improve succinate yield [158]. Blazer et al. reported that overexpression
of heterologous NAD+-dependent formate dehydrogenase from Candida boidinii
increased succinate yield to 1.74 mol/mol glucose [158]. External formate sup-
plementation further resulted in 6 % increase in succinate yields [158].

Although plenty of successes were obtained in metabolic engineering of E. coli to
improve succinate production as mentioned above [143, 145, 149, 150, 158, 159],
there were several problems that remained to be improved. Many research groups
have employed dual-phase fermentation for succinate production, i.e., aerobic
growth phase followed by anaerobic fermentation phase [149, 150]. Part of the
carbon source is converted to cell mass and carbon dioxide during the aerobic phase,
which leads to decreased succinate yield. Supply of dissolved oxygen also increases
the energy costs during industrial production. In addition, rich medium is frequently
used for fermentation [149, 150], which would increase material costs and down-
stream purification costs. It is very important to use mineral salts medium and one-
step anaerobic process for succinate production. By combining metabolic engi-
neering to inactivate competitive fermentation pathways and metabolic evolution to
improve cell growth and succinate production, a high-succinate-producing strain
KJ073 was obtained by the Ingram’s group which produced 668 mM succinate with
a yield of 1.2 mol/mol using mineral salts medium and one-step anaerobic process
[160]. The genetic mechanisms for efficient succinate production of strain KJ073
were further identified [101]. PCK activity was increased due to a G-to-A transition
at −64 position relative to the ATG start codon of pck, which increased the energy
supply for cell growth and succinate production under anaerobic condition [101]. In
addition, a frame-shift mutation in ptsI gene, which encodes the EI component of
PTS system [161], was also found in KJ073, which increased PEP precursor supply
for succinate production [101]. Reverse metabolic engineering was performed to
verify the effects of these two core mutations. After increasing PCK activity and
deleting ptsI gene in wild-type E. coli ATCC 8739, succinate titer and yield
increased 3.7- and 4.6-fold compared with parent strain, respectively [162].

Besides inactivating competitive fermentation pathways, increasing energy
supply, and increasing precursor supply, the fourth key factor for efficient succinate
production is increasing reducing equivalent supply. As mentioned above, acti-
vating glyoxylate bypass and recruiting formate dehydrogenase could increase
reducing equivalent supply [150, 158]. In addition, two reducing equivalent con-
serving pathways were identified recently, which could increase succinate yield
[163]. By combining metabolic engineering and metabolic evolution, a high-suc-
cinate-producing strain HX024 was obtained (Fig. 4), which produced 813 mM
succinate with a yield of 1.36 mol/mol using mineral salts medium and one-step
anaerobic process [163]. Genetic mechanisms for high yield were then identified
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through genome sequencing and transcriptome and enzyme assay analysis. Pyru-
vate dehydrogenase (PDH) activity increased significantly, and sensitivity of PDH
to NADH was eliminated by three mutations in LpdA, which is the E3 component
of PDH [164–166]. On the other hand, pentose phosphate pathway (PPP) and
transhydrogenase SthA [167–169] were activated. More carbon flux could go
through the pentose phosphate pathway, thus leading to production of more
reducing equivalent in the form of NADPH, which was then converted to NADH
through soluble transhydrogenase for succinate production. Reverse metabolic
engineering was further performed in the parent strain. Succinate yield increased
from 1.12 to 1.5 mol/mol (88 % of theoretical maximum yield) by activating PDH,
PPP, and SthA transhydrogenase in combination. It was suggested that the theo-
retical maximum succinate yield can also be obtained if 85.7 % of the carbon source
goes through PPP, using both NADH and NADPH as the reducing equivalents
[163]. The other benefit of using the PPP for succinate production is that only half
exogenous CO2 is required, which could reduce the fermentation cost [163].

3.4 Malate

Malate, together with fumarate and succinate, has been identified as one of the 12
most valuable bulk chemicals by the US Department of Energy [126]. It can be
produced by several native microorganisms [170–174]. Since converting one
molecule pyruvate to one molecule malate only requires one NADH, the theoretical
maximum yield for malate production can be 2 mol/mol glucose. Starting from a
succinate-producing strain KJ073, the Ingram’s group developed an engineered
E. coli strain for L-malate production [175]. Inactivating fumarase isoenzymes
could not convert the succinate-producing strain to produce malate, and the
resulting strain still accumulated large amounts of succinate. Fumarate appears to be
the immediate precursor for succinate production in a fumarase-negative back-
ground. By contrast, it was surprisingly found that inactivation of fumarate
reductase alone could reforce the carbon flow into malate production. It was sug-
gested that the thermodynamic equilibrium favors the hydration of fumarate to
malate and E. coli might have a better malate-transporting capability than fumarate.
Inactivation of fumarase and malic enzymes further improve malate production.
Strain XZ-T658 was obtained which produced 163 mM malate with a yield of
1.0 mol/mol glucose. When using a two-stage process, 253 mM malate was pro-
duced within 72 h and the yield reached 1.42 mol/mol [175].

3.5 Fumarate

Production of fumarate using fermentative process has been studied a century
ago [176, 177], and the focus has been concentrated on the Rhizopus strains
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[176, 178–188]. The best reported strain can produce 126 g/L fumarate with a yield
of 0.97 g/g form glucose [189]. Recently, E. coli was also engineered by the Lee’s
group for fumarate production under aerobic conditions [190]. The carbon flux was
redirected through the glyoxylate shunt by deletion of the iclR gene, while the
fumarate production was increased by the deletion of the fumA, fumB, and fumC
genes. The engineered strain produced 1.45 g/L fumarate when glucose was used as
the substrate. The ppc gene was then overexpressed, and the fumarate production
increased to 4.09 g/L. To reach better performance, further genetic modifications
were carried out including deletion of arcA (encoding ArcA transcriptional dual
regulator) and ptsG genes to increase the oxidative TCA cycle flux, deletion
of aspA (encoding aspartate ammonia-lyase) to decrease the degradation of fuma-
rate, and replacement of the native promoter of galP by a strong trc promoter to
promote the uptake of glucose. Strain CWF812 was obtained which produced
28.2 g/L fumarate with a yield of 0.389 g/g glucose when fermented in fed-batch
for 63 h [190].

3.6 Glucaric Acid

D-Glucaric acid, a compound present in fruits, vegetables, and mammals, has been
studied for therapeutic purpose [191–193], and it has potential applications for
polymers [126]. The synthetic pathway for D-glucaric acid production from glucose
is present naturally in mammals. However, this natural pathway is composed of
more than 10 reactions and limits its construction in E. coli. To realize the pro-
duction of D-glucaric acid, the Prather’s group designed a synthetic pathway by
coexpression of ino1 encoding myoinositol-1-phosphate synthase from S. cerevi-
siae, miox encoding myoinositol oxygenase from mice, and udh encoding the uri-
nate dehydrogenase from Pseudomonas syringae in E. coli. The resulting strain
produced more than 1 g/L of glucaric acid using LB medium with 10 g/L glucose
[194]. MIOX was identified as the rate-limiting step in the whole pathway, and its
activity was strongly affected by the myoinositol concentration. To improve the flux
for glucaric acid production, two strategies were carried out. Utilization of protein
scaffold to colocalize the three heterologous enzymes in a designable complex
resulted in fivefold improvement of glucaric acid titer [195]. On the other hand,
protein fusion tags and directed evolution were used to improve MIOX activity,
leading to the production of 4.85 g/L glucaric acid from 10.8 g/L myoinositol [196].

3.7 Muconic Acid

Muconic acid (MA) is an important unsaturated dicarboxylic acid and has great
potential for the production of bioplastics [197–199]. It can also be used as the
precursor for the synthesis of important bulk chemicals, such as adipic acid,
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terephthalic acid, and trimellitic acid [197]. Biosynthesis of muconic acid in E. coli
has been studied from 1994 by the Frost’s group [200]. They described an artificial
pathway for muconic acid biosynthesis from glucose by combining the shikimic acid
pathway, which is natively present in E. coli for aromatic amino acid synthesis, with
three heterologous enzymes including 3-dehydroshikimate (DHS) dehydratase,
protocatechuic acid (PCA) decarboxylase, and catechol 1,2-dioxygenase (CDO).
Inactivation of shikimate dehydrogenase to reduce the DHS consumption and
overexpression of transketolase, 3-deoxy-D-arabinoheptulosonate 7-phosphate
(DAHP) synthase, and 3-dehydroquinate (DHQ) synthase to increase the availability
of DHS were further performed to improve muconic acid production. The resulting
strain produced 2.4 g/L muconic acid in a batch fermentation. Deregulation of the
feedback inhibition of shikimic acid pathway and overexpression of the critical
genes increased muconic acid titer to 38.6 g/L [201]. Optimization of the fermen-
tation process using fed-batch conditions further improved the titer to 59.2 g/L [202].

A novel artificial pathway for MA production in E. coli was established by
integration of the native tryptophan biosynthetic pathway with a heterologous
anthranilate degradation pathway [199]. In this pathway, anthranilate which is an
intermediate involved in the native tryptophan biosynthetic pathway was trans-
formed into MA sequentially by anthranilate 1,2-dioxygenase (ADO) from Pseu-
domonas aeruginosa and catechol 1,2-dioxygenase (CDO) from P. putida. The MA
production was optimized by screening several enzyme candidates and improving
the native tryptophan biosynthetic pathway. The resulting strain produced 389 mg/
L muconic acid using the modified M9 minimal medium with a mixture carbon
sources of glycerol and glucose [199].

Another novel MA synthetic pathway was designed via extending shikimate
pathway by introducing the hybrid of a salicylic acid (SA) biosynthetic pathway
with its partial degradation pathway [198]. A well-developed phenylalanine-pro-
ducing strain was first engineered to produce SA by heterologous expression of the
isochorismate synthase and isochorismate pyruvate lysate, leading to production of
1.2 g/L of SA. The SA was then converted into MA by introducing salicylate 1-
monoxygenase and catechol 1,2-dioxygenase. Optimization of the whole pathway
resulted in the production of MA up to 1.5 g/L after 48-h fermentation in shake
flasks [198].

3.8 Adipic Acid

As the most important dicarboxylic acid, it is estimated that the market volume of
adipic acid is about 2.6 million tons per year in global and an increase of 3–3.5 %
will be expected annually [203, 204]. The primary use of adipic acid is as precursor
for the production of polyamide nylon-6,6 [200, 203–205]. Traditionally, adipic acid
is produced by chemical catalytic pathway in industrial large-scale processes using
benzene, an important compound derived from non-renewable fossil resource, as the
principal starting compound [200, 203]. To decrease the dependence on fossil
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feedstock, many efforts have been made in the past years to develop an alternative
way to produce adipic acid from renewable biomass resources [11, 200, 201, 203,
205–211].

Although cis,cis-muconic acid can be converted to adipic acid by chemical
hydrogenation [200, 201], it is still designed to construct cell factories for pro-
ducing adipic acid directly through glucose fermentation [203, 205, 206, 208, 210].
Recently, the Zhong group at Shanghai Jiao Tong University constructed an arti-
ficial adipic acid synthetic pathway in E. coli [205]. Acetyl-CoA and succinyl-CoA
were condensed to produce the C6 backbone 3-oxoadipyl-CoA, which was then
converted to adipic acid sequentially via 3-hydroxyadipyl-CoA, 2,3-dehydroadipyl-
CoA, and adipyl-CoA. The six enzymatic steps were catalyzed respectively by the
β-ketoadipyl-CoA thiolase (PaaJ) from E. coli, 3-hydroxybutyryl-CoA dehydro-
genase (Hbd) and crotonase (Crt) from Clostridium acetobutylicum, trans-enoyl-
CoA reductase (Ter) from Euglena gracilis, and phosphate butyryltransferase (Ptb)
and butyryl kinase (Buk1) from C. acetobutylicum. The constructed strain AA1
produced 31 μg/L adipic acid when fermented in minimal R/2 medium supple-
mented with 10 g/L glucose aerobically at 30°C for 120 h. The adipic acid titer
increased to 120 μg/L when replacing Ter with butyryl-CoA dehydrogenase (Bcd)
from C. acetobutylicum, replacing Hbd with 3-hydroxyacyl-CoA reductase (PaaH1)
from Ralstonia eutropha, and replacing Crt with the putative enoyl-CoA hydratase
(ECH) from R. eutropha H16. Supplies of acetyl-CoA and succinyl-CoA precursors
were then increased to further improve adipic acid production, resulting in strain
AA7 which produced 639 μg/L adipic acid which was about 20-fold higher than
that of the starting strain AA1 [205].

4 Alcohols

E. coli cell factories have been constructed for production of a variety of alcohols,
such as 1,3-propanediol [19, 212], 1-propanol [213], 1,2-propanediol [214, 215],
isopropanol [216], n-butanol [217], isobutanol [13], 1,4-butanediol [12], and
higher-chain alcohols [13, 51, 218, 219]. Some reviews have been focused on the
elucidation of the bio-based production of alcohols using E. coli cell factories [2, 3,
217, 220], which will not be described here. This chapter will focus on recently
developed cell factories for the production of higher-chain alcohols and 1,4-
butanediol.

4.1 Higher-Chain Alcohols

Higher-chain alcohols are attractive biofuel targets because they exhibit higher
energy density, lower hygroscopicity, lower vapor pressure, and compatibility with
present transportation devices [218]. However, these compounds are not
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synthesized economically by native organisms [50]. Two different synthetic path-
ways have been created for the production of these compounds.

By the introduction of the broad-substrate-range 2-keto acid decarboxylases
(KDCs) and alcohol dehydrogenases (ADHs) genes, the amino acid synthetic
pathways can be redirected to produce higher-chain alcohols from 2-keto acids in
E. coli [221]. Isobutanol is a representative example. A synthetic pathway for
isobutanol production from glucose had been created by the Liao’s group through
combining branched-chain amino acid synthetic pathway and Ehrlich pathway with
2-keto-isovalerate serving as a precursor [13]. Overexpression of the valine
biosynthetic pathway (ilvIHCD) and the alcohol producing pathway (kivD from
Lactococcus lactis and adh2 from S. cerevisiae) resulted in production of 1.7 g/L
isobutanol. Competitive fermentation pathways, including adhE, ldhA, frdAB, fnr,
and pta, were further deleted to increase the pyruvate supply for the isobutanol
production. The resulted strain produced 2.2 g/L isobutanol with a yield of 0.21 g/g
glucose. Further improvement was carried out by replacing the native ilvIH by the
alsS gene from B. subtilis. AlsS has higher affinity for pyruvate than IlvIH, and the
replacement increased isobutanol titer up to 3.7 g/L. With a deletion of the pflB
gene, the isobutanol titer increased to 22 g/L under microaerobic conditions [13].
When fermented in a 1-L bioreactor instead of the shake flask with in situ isobu-
tanol removal using gas stripping, the isobutanol production could reach a con-
centration of more than 50 g/L in 72 h [221].

NADPH is the reducing equivalent required for the production of isobutanol.
Both keto acid reductoisomerase and alcohol dehydrogenase are NADPH depen-
dent, and two equivalents of NADPH are required for the conversion of pyruvate to
isobutanol. In contrast, the common reducing equivalent under anaerobic condition
is NADH, which is produced through glycolysis [222]. In order to solve this
cofactor imbalance problem, the cofactor specificity of keto acid reductoisomerase
and alcohol dehydrogenase enzymes was changed from NADPH to NADH, and
theoretical yield was obtained under anaerobic condition [222]. On the other hand,
membrane-bound transhydrogenase PntAB and NAD kinase were activated in
combination to increase the NADPH supply for improved isobutanol production
[35]. Activating these two enzymes increased anaerobic isobutanol yield by 39 % to
0.92 mol/mol glucose [35].

Enzymes involved in the native L-leucine biosynthesis pathway were designed to
catalyze the chain elongation, and various 2-keto acids were obtained. Diverse LeuA
mutants were generated to suit the different size of the substrates [13, 16, 51, 217,
218]. These 2-keto acids were then successively converted to aldehyde and alcohols
in turn by introducing KDCs and ADHs. By this pathway design, one carbon atom
was added to the chain in each cycle and a new pool of alcohols can be produced.

A second pathway designed for higher-chain alcohol production was based on
acetyl-CoA. Two carbon atoms were added to the chain in each cycle [217, 223–
225]. Five reactions were involved in the carbon chain elongation reactions and the
production of alcohols, which were catalyzed by the thiolase (AtoB/BktB), dehy-
drogenase (Hbd/PaaH1), dehydrase (Crt), reductase (Ter), and thioesterase (TesB),
respectively. These enzymes were not specific to all compounds with different

128 P. Liu et al.



carbon number. It is critical to find more specific enzymes to increase the efficiency
for certain products.

4.2 1,4-Butanediol

As one of the important C4 platform chemicals, 1,4-butanediol (BDO) owns a
world market exceeding 1 million tons and is used widely in the manufacture of
biopolymers, cosmetics, fine chemicals, and solvents [3, 19]. BDO is predomi-
nantly produced from crude oil and natural gas. No biosynthetic pathways have
been reported in any natural organisms. The project of constructing an E. coli cell
factory for BDO production was initiated by Genomatica [12]. All candidate
pathways from E. coli central metabolites to BDO were elucidated based on the
SimPheny Biopathway Predictor software. Rather than by known enzyme reactions,
the transformation of functional groups by known chemistry was used as the basis
for the Biopathway Predictor algorithm, and this gave a chance to identify novel
enzyme activities or to engineer enzymes with specific activities to a particular
substrate. As a result, 10,000 pathways for the BDO synthesis from common central
metabolites were identified. Then, the proposed pathways were evaluated based on
the different factors including maximum theoretical yield, pathway length, number
of non-native steps, and thermodynamic feasibility. At last, two pathways for BDO
biosynthesis, which involved 4-hydroxybutyrate as the intermediate, were proposed
as the highest priority and tested in vivo. A pathway was proved to be potential for
BDO production in which BDO was produced from succinate via six enzymatic
reactions catalyzed by two E. coli native enzymes (succinyl-CoA synthetase and
alcohol dehydrogenase) and four heterologous enzymes (CoA-dependent succinate
semialdehyde dehydrogenase, 4-hydroxybutyrate dehydrogenase, 4-hydroxybuty-
ryl-CoA transferase, and 4-hydroxybutyryl-CoA reductase). The engineered strain
produced over 18 g/L BDO from glucose in 5 days [12]. It could also produce BDO
from sucrose, xylose, and biomass-derived mixed sugar streams.

To increase the efficiency of the BDO biosynthetic pathway, butyraldehyde
dehydrogenase (Bld) and butanol dehydrogenase from Clostridium saccharo-
perbutylacetonicum were selected and used for BDO production in E. coli. Fur-
thermore, random mutagenesis and site-directed mutagenesis were carried out in
turn to improve the activity of Bld. The resulted strain could produce BDO with the
titer fourfold greater than those of strains expressing the wild-type Bld [37].

5 Perspectives

Production of bulk chemicals by E. coli cell factories from renewable biomass
resources has been proved to be a sustainable and environment-friendly process to
replace the petroleum-based process. Due to the rapid development of metabolic
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engineering, systems biology, and synthetic biology, great progress has been
achieved and many successful E. coli cell factories have been constructed. How-
ever, there are still several challenges.

Only a few bulk chemicals can be produced biologically by microorganisms.
Although several new synthetic pathways have been designed and created, most of
the bulk chemicals still do not have biosynthetic pathways. The primary reason is
that many chemical reactions do not have natural enzymes. Creation of new
enzymes to catalyze the desired chemical reaction by integrating chemistry, protein
rational design, and directed evolution will be in demand to full in the gaps existing
in the novel biosynthetic pathway [16].

The created synthetic pathway is usually not efficient due to the low catalytic
activities of some specific enzymes, especially those new enzymes. It is thus very
important to improve the catalytic capabilities of these enzymes so that they are not
rate limiting within the whole pathway. In addition, coordinated expression of
multiple genes involved in the synthetic pathway is desirable so that there will be
no metabolic imbalance problem such as exhaustion of precursor and accumulation
of toxic intermediates [226]. Product yield is an important factor to realize low-cost
production of bulk chemicals. On the one hand, redox balance is necessary to
maintain anaerobic cell growth since the only way to consume the reducing
equivalent is through the synthetic pathway of target compound. On the other hand,
enough reducing equivalent is required to reach the theoretical maximum yield.

Finally, good physiological characteristics of cell factories are necessary for
large-scale industrial production of bulk chemicals [227]. Tolerance to high
osmolality and high concentration of target chemicals can increase the final titer and
productivity. Tolerance to high temperature can reduce the energy cost and con-
tamination problems. Tolerance to low pH can produce organic acid directly so that
complex downstream purification process can be avoided to convert organic acid
salt to organic acid. Since modifying single gene usually has no effect on improving
physiological characteristics, global perturbation strategies together with high-
throughput omics analysis are needed to improve these physiological characteristics
and identify the genetic mechanisms so that bulk chemicals can be produced
biologically in a cost-comparable way compared to petrochemical process.
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Abstract The production of n-butanol, as a widely applied solvent and potential
fuel, is attracting much attention. The fermentative production of butanol coupled
with the production of acetone and ethanol by Clostridium (ABE fermentation) was
once one of the oldest biotechnological processes, ranking second in scale behind
ethanol fermentation. However, there remain problems with butanol production by
Clostridium, especially the difficulty in genetically manipulating clostridial strains.
In recent years, many efforts have been made to produce butanol using non-native
strains. Until now, the most advanced effort was the engineering of the user-friendly
and widely studied Escherichia coli for butanol production. This paper reviews the
current progress and problems relating to butanol production by engineered E. coli
in terms of prediction using mathematical models, pathway construction, novel
enzyme replacement, butanol toxicity, and tolerance engineering strategies.
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1 Introduction

While the infrastructure of the current economy is established on the petrochemical
industry, the oil crisis of the 1970s was a warning that humanity’s dependence on
oil is not sustainable [23]. It is generally accepted that crude oil will be depleted in
the twenty-first century at the speed of current consumption. The shift from a
petroleum-based economy to a biomass-based economy has become a global
objective. In the drive to find alternatives to fossil products, the production of
butanol from renewable resources attracts much attention nowadays [39].

Butanol (butyl alcohol or 1-butanol or n-butanol, C4H9OH, MW 74.12) is a
colorless liquid with a distinct odor. It is mainly used to synthesize butyl acrylate
and methacrylate esters for latex surface coatings and the production of enamels and
lacquers, butyl glycol ether, butyl acetate, and plasticizers. Additionally, butanol
can be used directly as the diluent for formulations of brake fluid and as solvent in
the production of hormones, vitamins, and antibiotics [23]. Although ethanol has
been extensively recognized as a typical biofuel, butanol, as an alternative biofuel,
has several important advantages over ethanol, such as higher energy content, lower
water absorption, better blending ability with gasoline, and direct use in conven-
tional combustion engines without modification [12].

Butanol is naturally produced via the anaerobic fermentation of biomass sub-
strates by some clostridia species; this is referred to as ABE fermentation because it
is coupled with the production of acetone and ethanol. Much progress has been
achieved over a century of study on ABE fermentation, such as the development of
genetic manipulation tools and omic analyses of the physiology of solventogenic
bacteria. However, there are still problems with butanol production by Clostridium:
(1) It remains time consuming and difficult to genetically manipulate Clostridium
strains although new tools have been developed; (2) it is difficult to improve the
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butanol yield because of the naturally coupled production of acetone and ethanol;
(3) the relatively slow growth and spore-forming life cycle are problems for
industrial fermentation; and (4) the relatively unknown genetic system and complex
physiology of the microorganism present difficulties in engineering the metabolism
for optimal production of butanol. Therefore, construction of the next generation of
butanol producers from user-friendly organisms would be an alternative way for
producing butanol with lower cost than clostridial strains [20].

However, heterologous production of butanol in non-clostridial microbes is not
as simple as simply transferring several known genes. First, the host needs to be
genetically manipulated easily to support multiple steps of engineering and many
trial-and-error experiments. Second, the butanol pathway needs to be carefully
designed and new genes from other organisms need to be tested in establishing an
efficient pathway in a new host. Third, the native pathway and carbon flux need to
be readjusted through genome engineering. Fourth, the butanol tolerance and use of
cheap substrates need to be improved. In this regard, Escherichia coli seems to be
an optimal microorganism with well-studied genetic background and rich genetic
tools. More importantly, E. coli has been proved to be the successful horses for
the microbial cell factories of some products [36]. In recent years, many groups
have reported successful butanol production in E. coli [13, 45]. Here, we reviewed
the current progress and problems relating to butanol production in non-native
microbes, especially in E. coli.

2 Theoretical Prediction to Improve Butanol Production
in E. coli Using Computational Models

The first butanol-producing microbe was found by Louis Pasteur in 1861 [23]. The
process of natural butanol production is well-known ABE fermentation in which
butanol production is coupled with the production of acetone and ethanol. Owing to
the demand for large amounts of acetone in the manufacture of cordite in World
Wars I and II, ABE fermentation peaked in the 1950s [23]. In the past more than
100 years of ABE fermentation, scientists have learned the butanol synthetic
pathway and can now transfer it to many other microbes for the heterologous
production of butanol with the help of molecular biology tools [10]. However, the
genetic modification of butanol production is not always effective, because engi-
neering of a single gene may lead to unanticipated dramatic changes in the meta-
bolic network. Comprehensive in silico models and highly accurate prediction
methods are thus desired to reduce the trial-and-error risk and to improve our
understanding of microbial physiology. In recent years, efforts have been made to
construct genome-scale metabolic models related to butanol production based on
genome annotation and metabolome analysis.
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2.1 Flux Balance Analysis (FBA)

Flux balance analysis (FBA) is a mathematical modeling approach often used by
metabolic engineers to quantitatively simulate microbial metabolism. FBA assumes
that metabolic networks will reach a steady state constrained by the stoichiometry
[25]. By performing FBA while maximizing the cell growth and butanol production
rate in Clostridium, the relationship between acetate accumulation and butanol pro-
duction was investigated. It was revealed that the rate of butanol production decreased
with a decreasing rate of acetate production [21]. Additionally, by adding reactions
involved in butanol production catalyzed by butyryl-CoA dehydrogenase (BCD),
butanal dehydrogenase, and butanol dehydrogenase to the metabolic model of E. coli,
a genome-scale FBAmodel was constructed to simulate triple reaction knockouts that
contribute to improving butanol production. The model indicated that the knockout
of adhE and pta was essential for the high production of butanol. It was confirmed
that, by disrupting ethanol and acetate production pathways, 27 % of glucose was
converted into butanol. Additionally, it has been evaluated experimentally that the
disruption resulted in 1.4-fold butanol yield of the control strain [40].

2.2 Kinetic Simulation Model

Besides FBA analysis, a kinetic model was constructed to simulate the dynamic
profiles of microbial metabolism. Shinto et al. designed three kinetic simulation
models that describe the dynamic behaviors of metabolites in ABE fermentation by
Clostridium saccharoperbutylacetonicum N1-4. The simulation results showed that
an increase in kinetic parameters (Vmax1, Km1) at R1 (glucose to fructose-6-P) had
the greatest negative impact on butanol production. However, a decrease in acetone
production was responsible for butanol production [46]. These results provide
targets for further genetic modification of butanol-producing strains.

3 Engineering E. coli for Butanol Production

The paper that James Liao group from University of California, Los Angeles,
submitted to the journal Metabolic Engineering on May 18, 2007, is the first work
on the production of butanol in a non-native microbe [3]. In the following years,
scientists from different countries reported works on the hetero-production of
butanol in different hosts and made much progress in strain improvement (Table 1).
The best heterologous butanol-producing strains are presently derived from E. coli,
which can produce 14–15 g/L butanol with a yield of 31–33 % [13, 45] and thus
have industrial advantages over clostridial strains. Here, we mainly summarize the
progress made in butanol production by E. coli.
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3.1 Establishing a Butanol Synthetic Pathway in E. coli
and Selection of Efficient Enzymes

In the initial stage of engineering E. coli for butanol production, it is natural to
transfer the whole butanol pathway from Clostridium to E. coli, which includes
seven genes thl, hbd, crt, bcd, etfA, etfB, and adhE2, catalyzing two molecules of
acetyl-CoA to one molecule of butanol in six steps (Fig. 1). However, when sci-
entists from the USA and Japan firstly transferred the clostridial butanol pathway to
E. coli through plasmids in 2007, the engineered strain produced less than 1 g/L
butanol (vs. clostridial butanol titer 10–20 g/L) [3, 19], although by-product
pathways were disrupted. The results indicate that engineering an efficient butanol-
producing E. coli is not as simple as simply expressing several clostridial genes.
Determining the rate-limiting step and selecting alternative genes to fit the E. coli
host are the key to the heterologous production of butanol (Fig. 1).

3.1.1 Thiolase

The first step in butanol synthesis is the condensing of two acetyl-CoA moles to one
acetoacetyl-CoA mole by a thiolase (encoded by the thl gene). Thiolase is a
ubiquitous enzyme that plays key roles in many vital biochemical pathways,
including beta oxidation in the degradation of fatty acids and various biosynthetic
pathways. E. coli synthesizes two distinct 3-ketoacyl-CoA thiolase enzymes. One is
a protein product of the fadA gene; the second is a product of the atoB gene. To
date, FadA has not been tested for butanol production in published work. The atoB
gene is known to be induced by growth on acetoacetate and exhibits strict substrate
specificity for acetoacetyl-CoA. More importantly, AtoB has higher specific activity
(1,078 U/mg) than clostridial Thl enzyme (216 U/mg). Hence, when the thl gene
was replaced with atoB gene, the titer of butanol increased more than 3-fold [3].
Additionally, E. coli has a yqeF gene that encodes a predicted acetyl-CoA ace-
tyltransferase. Overexpression of the yqeF gene supports a functional reversal of the
beta-oxidation cycle in the synthesis of butanol, which has a better effect than the
overexpression of atoB [13]. The Chang group at the University of California,
Berkeley, constructed a butanol synthetic pathway inspired by the efficient pro-
duction of polyhydroxyalkanoates in E. coli, which transplanted a three-gene
pathway from Ralstonia eutrophus for monomer biosynthesis (phaAB) and poly-
merization (phaC) to yield a biodegradable plastic that can be produced at 50 % dry
cell weight at near-theoretical yields. Overexpression of the phaA gene can support
butanol synthesis at 4.65 g/L in laboratory-scale shake-flask experiments [7].
Additionally, the ERG10 gene from Saccharomyces cerevisiae has been shown to
be functional in a butanol synthetic pathway in S. cerevisiae [48], but has not been
tested in an E. coli host. It should be noted that although several gene candidates
encoding acetyl-CoA acetyltransferase for butanol synthesis have been improved,
the best effect of one gene should depend on the host context and expression mode.
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Fig. 1 Pathway and genes for a heterologous butanol pathway in E. coli. aceEF.lpd: pyruvate
dehydrogenase complex from E. coli, pflB: pyruvate–formate lyase, fdh: NAD+-dependent formate
dehydrogenase from Candida boidinii, thl: thiolase from Clostridium acetobutylicum, atoB:
acetyltransferase from E. coli, phaA: polyhydroxyalkanoate synthase from Ralstonia eutrophus,
yqeF: acetyl-CoA C-acetyltransferase from E. coli, fadA: acetyl-CoA acyltransferase from E. coli,
hbd: 3-hydroxybutyryl-CoA dehydrogenase from C. acetobutylicum, fadB: fused 3-hydroxybu-
tyryl-CoA epimerase from E. coli, phaB: acetyoacetyl CoA reductase from R. eutrophus,crt:
3-hydroxybutyryl-CoA dehydratase from C. acetobutylicum, phaJ: (R)-specific enoyl-CoA hydra-
tase from R. eutrophus, bcd-etfAB: butyryl-CoA dehydrogenase complex from C. acetobutylicum,
ccr: crotonyl-CoA reductase from Streptomyces collinus, ter: NADH-dependent crotonyl-CoA
from Treponema denticola, ydiO: acyl-CoA dehydrogenase from E. coli, adhE2: bifunctional
acetaldehyde-CoA/alcohol dehydrogenase (CAP0162) from C. acetobutylicum, adhE1: bifunc-
tional acetaldehyde-CoA/alcohol dehydrogenase (CAP0035) from C. acetobutylicum, mhpF:
acetaldehyde-CoA dehydrogenase II from E. coli, fucO: L-1,2-propanediol oxidoreductase
from E. coli. * phaB and phaJ should be used together
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3.1.2 3-Hydroxybutyryl-CoA Dehydrogenase
and 3-Hydroxybutyryl-CoA Dehydratase

Most published work directly uses the hbd gene (3-hydroxybutyryl-CoA dehydro-
genase) and crt gene (3-hydroxybutyryl-CoA dehydratase) from C. acetobutylicum
for the two reactions of acetoacetyl-CoA to 3-hydroxybutyryl-CoA and 3-hydroxy-
butyryl-CoA to crotonyl-CoA, respectively, in E. coli [55]. The native bifunctional
fadB gene (fused 3-hydroxybutyryl-CoA epimerase) in E. coli was also improved to
be able to catalyzing the two reactions [18]. Besides, the phaB (acetyoacetyl CoA
reductase) and phaJ ((R)-specific enoyl-CoA hydratase) for the production of poly-
hydroxyalkanoates from R. eutrophus also could be used for above two reactions [7].
It is worthy to note that phaB and phaJ should be used together, because of the
stereoisomerism specificity of these enzymes [7]. However, no evidence indicates
which enzyme is the best for the synthetic butanol pathway in E. coli.

3.1.3 Butyryl-CoA Dehydrogenase

The fourth step of butanol synthesis is the reduction of crotonyl-CoA to butyryl-CoA
by BCD, which needs EtfAB as an electron carrier. Studies have indicated that BCD
catalysis is involved in clostridial ferredoxins, which may not fit the cellular context
of E. coli. In practice, all artificial butanol pathways containing BCD in E. coli
produced a limited titer of butanol. In the first case of constructing butanol-producing
E. coli by the Liao group, BCD-EtfAB was replaced with Ccr (encoding a crotonyl-
CoA reductase) from Streptomyces coelicolor. However, the resulting E. coli strain
produced less butanol [3]. The Chang group also tested the effects of the ccr gene
(from S. collinus) on butanol production. They found that the butanol titer is related to
the expression strength of the ccr gene [7], which indicates that this step is rate
limiting in the butanol pathway in a non-native E. coli host. Studies have also
indicated that the Ccr-catalyzed reduction of crotonyl-CoA to butyryl-CoA is a side
reaction of the native reductive carboxylation reaction to form ethylmalonyl-CoA,
confirming the Ccr activity is low for butanol production [7]. The biological reduction
reaction of enoyl-CoA is ubiquitous in nature, such as in fatty acid synthesis and the
beta-oxidation pathway of fatty acid; the reaction requires flavin as factors and is
reversible. According to the principles of thermodynamics, the direct hydride transfer
from NAD(P)H to the enoyl-CoA that increases the barrier for the reverse oxidation
reaction and thus potentially kinetically traps crotonyl-CoA in the synthetic butanol
pathway can be achieved by eliminating the less-downhill intermediate state pro-
duced in the substrate reduction by the flavin cofactor [7]. Fortunately, a crotonyl-
CoA-specific trans-enoyl-CoA reductase (Ter) from Euglena gracilis was improved
to catalyze the irreversible oxidation of crotonyl-CoA to butyryl-CoA in the presence
of NAD+ or NADP+. The Liao group investigated ter genes from Treponema den-
ticola, Treponema vincentii, Flavobacterium johnsoniae, and Fibrobacter succin-
ogenes and found that the ter gene from T. denticola was the best [45]. The Chang
group also selected the ter gene from T. denticola according to enzymatic mechanism
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analysis for their butanol pathway, which resulted in a butanol titer of 4.65 g/L
without removing any by-product pathways [7]. The engineered E. coli containing
this ter gene constructed by the Liao group could produce 15 g/L butanol [45].

3.1.4 Aldehyde/Alcohol Dehydrogenase

The final two steps of butanol synthesis are the reduction of butyryl-CoA to
butyraldehyde by aldehyde dehydrogenase and the subsequent reduction to butanol
by alcohol dehydrogenase, consuming two NADH molecules. In the native butanol-
producing model of the bacterium C. acetobutylicum, the two steps can be catalyzed
by one enzyme, bifunctional aldehyde/alcohol dehydrogenase, which is encoded by
the adhE1 gene (active in the solvent production phase) or adhE2 gene (active in the
alcohol production phase). Using the same promoter for the expression of the two
genes in E. coli, compared with the adhE1 strain, the adhE2 strain has 8-fold activity
for butyrate dehydrogenase but no increase for butanol dehydrogenase activity,
leading to 4-fold butanol production [19]. The adhE2 gene was also compared with
the adhE gene from E. coli. The results showed that versus adhE, the adhE2 showed
1.5-fold activity when using butyryl-CoA as substrate, and 6-fold selectivity of
butyryl-CoA: acetyl-CoA [3]. Although adhE2 was successfully used for butanol
production in E. coli, ethanol is still one of the main products (ethanol:butanol ratio
exceeding 1:10), thus limiting the butanol yield. Hence, more gene candidates of
aldehyde/alcohol dehydrogenase may be screened to reduce the ethanol titer and
decrease the ethanol:butanol ratio in future work to improve the strain.

3.2 Optimization of the Gene Expression in the Butanol
Pathway

In the initial configuration of a heterologous pathway, the gene expression profile is
usually not optimal for maximal carbon flux. Hence, fine tuning of the gene is an
essential step in the construction of an efficient microbial cell factory. Different
methods of controlling gene expression have been developed, such as the use of a
promoter library, the use of an RBS strength prediction algorithm, and the MAGE
fine-tuning method. The Yang group from the Institute of Plant Physiology and
Ecology at Chinese Academy of Sciences used the strong promoter Alper PLTetO1
or the weak promoter Alper BB to express the thl gene and used the strong pro-
moter Braatsch20 or the weak promoter Braatsch10 to express other genes (one
operon) of the butanol pathway in E. coli. The results showed that the combination
of Alper PLTetO1-thl and Braatsch10-operon is best and provided a butanol titer
that was 3- to 5-fold higher than that of other combinations [49]. There have been
few other published works on the systematic fine tuning of genes for butanol
production, which should be considered one of the main directions of constructing
high-carbon-flux butanol pathways.
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3.3 Engineering Reducing Power Balance for Efficient
Butanol Production

In the biosynthetic pathway from glucose to butanol, a precise redox balance can be
achieved with a maximal theoretical butanol yield of 41.1 % (w/w). However, such
balance is difficult to achieve in the practical engineering of E. coli. The main
problem relates to the conversion of pyruvate to acetyl-CoA. If the reaction is
catalyzed by the PDH complex (encoded by aceEF.lpd genes), two NADH mol-
ecules are generated that can provide the redox balance of butanol synthesis.
However, the PDH complex is inactive in the anaerobic condition owing to the
anaerobic sensitivity of E3 component Lpd (dihydrolipoamide dehydrogenase); an
active PDH complex is essential for butanol production. To solve this problem, the
Chang group overexpressed aceEF.lpd genes in a plasmid, resulting in a 3-fold
increase in PDH activity, a 53 % increase in the NADH concentration, and a 1.6-
fold increase in the butanol titer [7]. Another research group from Northern Illinois
University employed the same strategy with the aim to engineer a homobutanol
fermentation pathway in E. coli; the resulting strain only produced a measurable
amount of butanol under anaerobic conditions [17], indicating that other factors
should be optimized to couple this strategy. In previous studies, the Ingram group
from the University of Florida found an anaerobic active lpd mutant lpd101
(E354K) in the process of the laboratory evolution of E. coli [53], and the Zhang
group from the Tianjin Institute of Industrial Biotechnology at the Chinese Acad-
emy of Sciences found another anaerobic active lpd mutant lpdA* (C242T, C823T,
and C1073T) in an adapted succinate-producing E. coli [59]. However, these lpd
mutants have not been used for butanol production in E. coli to date, which should
be an efficient strategy for obtaining NADH for butanol production. For the
anaerobic growth of E. coli, the cell mainly uses the pyruvate formate-lyase
(encoded by the pflB gene) to catalyze pyruvate into acetyl-CoA and formate. The
formate is secreted or converted to carbon dioxide and hydrogen by native formate-
hydrogen lyase complex. Hence, the reducing power from pyruvate is wasted in the
form of formate or hydrogen. It is known that formate can be converted into carbon
dioxide and NADH by the specific formate dehydrogenase (encoded by the fdh
gene) from yeast. The Liao group successfully used NADH obtained from formate
by overexpression of the fdh gene from Candida boidinii as the driving force, to
improve the butanol titer and yield, with the reduced formation of by-products [45].
It is worth noting that the Gonzalez group from Rice University obtained a butanol
yield of 33 % (vs. max. 41 %) in E. coli with active reversal of the beta-oxidation
cycle, without manipulating the reaction of pyruvate to acetyl-CoA [13]. The
mechanism of reducing the power supply in the above strain may provide new
insights into improving butanol production by E. coli. Although the above cases
and strategies improve the capability of butanol production, the best yield of
butanol produced by engineered E. coli was only 80 % of the maximal value,
indicating that barriers remain to be solved.
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3.4 Removing by-product Pathways to Supply Sufficient
Precursors for Butanol Production

Butanol production by clostridial strains is naturally coupled with the production of
acetone, ethanol, and small amounts of acetate and butyrate, resulting in a low yield
of butanol and high feedstock cost. The main purpose of engineering E. coli for
butanol production is to improve the butanol yield from sugars, reducing the
feedstock cost. According to the well-studied metabolic pathway of E. coli, the key
genes for the production of by-products are known, namely frdABCD for succinate,
ldhA for lactate, pta-ack for acetate, and adhE for ethanol. In most butanol-pro-
ducing E. coli strains, these genes were disrupted to provide adequate precursors for
butanol production. It is notable that the ldhA gene was not disrupted in the
engineered E. coli with active beta-oxidation cycle of the Gonzalez group, which
could still produce butanol with 33 % yield [13]. Although the typical by-product
pathways were disrupted, known and unknown by-products were still produced by
the engineered strains more or less. To solve this problem, more genes of the
corresponding by-products need to be disrupted, and the butanol pathway needs to
be further optimized to trap more carbon flux from other pathways.

3.5 Using Cheap Substrates for the Low Cost of Butanol
Production

Butanol produced from biomass as a bulk chemical or biofuel must have a low
production cost to compete with products of crude oil. It is thus important to select
cheap feedstocks for butanol production. In constructing butanol-producing E. coli,
scientists tested different cheap substrates for butanol production, which included
palmitic acid, ionic liquid-treated switchgrass, glycerol, and xylose (Table 1).
However, butanol titers from these substrates are lower than 2 g/L. The low titers
can be explained that the tested strains were not the best strains, and insufficient
effort was made in engineering the substrate utilization. The use of cheap feedstock
for butanol production by E. coli should be the key to an economical industrial
process and thus needs to be strongly promoted.

4 Butanol Toxicity and Engineering Butanol Tolerance
in E. coli

Although E. coli can convert sugars (glucose and xylose) to butanol at a relatively
high level, it cannot tolerate 2 % (v/v) butanol [27]. E. coli is unable to produce
butanol at a very high level as a result. Considering the relationship between
butanol tolerance and butanol production by Clostridial strains [16, 29, 30, 34],
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butanol toxicity to E. coli is considered a bottleneck for butanol production. It is
thus important to develop a butanol-tolerant strain in E. coli for the production of
high-titer butanol at levels needed for economic efficiency.

4.1 Butanol Toxicity to Microbes

The toxicity of butanol, as a solvent, to cells begins with the butanol impact on the
cell membrane. Cell membranes are composed of a phospholipid bilayer inter-
spersed with proteins. In addition to providing structural integrity and maintaining a
barrier to the extracellular environment, they facilitate transport in and out of the
cell and are responsible for signal transduction, communication, and energy pro-
duction [37]. When cells are exposed to butanol, the butanol accumulates in the
phospholipid bilayer, the hydroxyl moiety accumulates near the phospholipid polar
headgroup, and the aliphatic chains are intercalated between the fatty acyl chains of
the phospholipids [54]. The hydroxyl group of the butanol spends more time
hydrogen bonded to the phosphate group of the lipid than the more hydrophobic
longer-chain n-alkanols, which are more deeply embedded in the bilayer. As a
result, butanol generates larger disordering in the phospholipid bilayer than the
other n-alkanols [56]. Hereafter, the membrane loses its integrity, and the structural
and functional properties of the membranes are affected. An increase in perme-
ability to protons and ions has been observed. Consequently, dissipation of the
proton motive force and impairment of intracellular pH homeostasis occur. In
addition to the effects of lipophilic compounds on the lipid part of the membrane,
proteins embedded in the membrane are affected. The effects on the membrane-
embedded proteins probably result to a large extent from changes in the lipid
environment [47]. In addition, it has been shown that butanol can affect cells by
damaging and denaturing biological molecules, including damage to DNA and lipid
damage by oxidative and related mechanisms [37]. These results provide insights
into butanol toxicity to E. coli, from which promising strategies for improving the
tolerance to butanol can be obtained.

4.2 Mechanisms of Butanol Tolerance

4.2.1 Omic Analyses Revealing Molecular Mechanisms of Butanol
Tolerance

Although butanol is toxic to microbes, some species or strains can tolerate butanol
to some degree. As shown in Table 2, Pseudomonas putida strains possess a high
tolerance to butanol and can grow in 6 % (vol/vol) butanol [43]. Some Lactoba-
cillus and Pediococcus species can tolerate butanol of up to 3 % or more. The
tolerance mechanisms are useful in engineering butanol-tolerant strains. In recent
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years, system biotechnological approaches have been widely used to investigate the
molecular mechanism of butanol tolerance.

Comparative proteomic analyses revealed that glycerol metabolism genes (glpA
and glpF), numerous stress genes (dnaK, groES, groEL, hsp90, hsp18, clpC, and
htrA), the solventogenic operon aad–ctfA–ctfB, and other solventogenic genes were
up-regulated in response to butanol stress [1] in the native butanol producer
Clostridium acetobutylicum. Most were up-regulated in advance (acidogenic phase)
[34]. This suggests that the strain Rh8 may have developed a mechanism to prepare
itself for coping with butanol challenges before butanol was produced, leading to
increased butanol production [34]. Additionally, the butanol-tolerant mutant strain
was shown to have evolved a more stabilized membrane structure and to have
developed a cost-efficient energy metabolism strategy, to cope with the butanol
challenge [33]. Further, comparative genomic analysis indicated a surprisingly high
ratio of rRNA mutations that might contribute to improved butanol tolerance [5].
This suggests that strain Rh8 might mutate some rRNA genes to change the
structure and function of the whole ribosome. Engineering the factor involved in the
translation process can therefore be considered a new strategy of improving
microbial stress tolerance worthy of testing [5]. In addition, it was found that in
response to butanol on the membrane, C. acetobutylicum synthesized increased
levels of saturated acyl chains [52]. The growth of cells in the stationary phase

Table 2 Butanol tolerance of some species

Genus Species Strain Butanol
tolerance (%)

Reference

Bacillus sp. SB-1 3 (v/v) Curr Sci India, 2002,
82: 622–623

Enterococcus casseliflavus IMAU10148 3.5 (v/v) Lett Appl Microbiol,
2010, 50: 373–379

Enterococcus faecium IB1 2.5–3 (w/v) Appl Biochem
Biotech, 2012, 168:
1672–1680

Lactobacillus brevis 3 (w/v) Appl Microbiol
Biotechnol, 2010,
87: 635–646

Lactobacillus delbrueckii 2.5 (v/v) Appl Biochem
Biotech, 2009, 153:
13–20

Lactobacillus plantarum E4 3 (v/v) Lett Appl Microbiol,
2010, 50: 373–379

Pediococcus acidilactici IMAU20068 3.5 (v/v) Lett Appl Microbiol,
2010, 50: 373–379

Pediococcus pentosaceus IMAU20032 3.5 (v/v) Lett Appl Microbiol,
2010, 50: 373–379

Pseudomonas putida DOT-T1E, S12,
VLB120

6 (v/v) Appl Environ
Microbiol, 2009, 75:
4653–4656
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coincides with a gradual increase in the percentage ratio of saturated to unsaturated
fatty acids. An increased synthesis of saturated fatty acids may provide a more
stable membrane environment under butanol stress [4].

Besides clostridia, species that tolerate a high concentration of butanol were
used to investigate the mechanism of butanol tolerance. The most interesting
findings were solvent efflux pumps and the ability to shift from cis isomers to trans
isomers. For example, P. putida strains contain mainly palmitoleic acid and vac-
cenic acid as trans isomers and are directly synthesized from the cis isomer within
1 min of exposure to the solvent with no shift in the position of the double bond.
Because organic solvents increase membrane fluidity, P. putida strains shifting
their cis-to-trans ratio could counteract this alteration [41]. Efflux pumps are
membrane transporters and play an important role in cell survival by exporting a
wide range of substrates, including bile salts, antimicrobial drugs, and solvents.
The efflux pump srpABC from P. putida S12 has been shown to export hexane,
octanol, and several other hydrocarbons. Three efflux pumps (TtgABC, TtgDEF,
and TtgGHI) are found in P. putida DOT-T1E and are collectively known as the
toluene tolerance genes [14].

These results suggest that the molecular mechanism of butanol tolerance is
complex; however, the results suggest candidates to be engineered to improve
microbial tolerance to butanol. Some candidates have been confirmed by genetic
modification, as summarized below.

4.2.2 Investigation of Candidate Targets Contributing to Butanol
Tolerance

1. Glycerol metabolism genes
The expression of the gldA gene that encodes glycerol dehydrogenase can be
reduced by antisense ribonucleic acid (RNA). It has been shown that the butanol
tolerance of C. beijerinckii is increased by the reduced activity of glycerol
dehydrogenase [31].

2. Heat-shock proteins (HSPs)
According to the above studies, many stress-responding proteins, including
HSPs, are induced by butanol. The HSP system is a cellular stress response
system that works during the folding and degradation of proteins. Overex-
pression of HSP groESL in C. acetobutylicum ATCC824 resulted in prolonged
metabolism and increased butanol production and tolerance [50, 51]. Overex-
pression of HSPs grpE and htpG improved the butanol tolerance of C. acet-
obutylicum but did not increase butanol production [32]. Expression of HSP33
from solvent-tolerant Bacillus psychrosaccharolyticus in C. acetobutylicum
ATCC824 did not confer increased solvent tolerance during growth, but
increased the total solvent titer by 22 % [9]. This suggests that most HSPs
contribute to butanol tolerance, which might be applied in engineering a buta-
nol-tolerant E. coli strain.
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3. Transcriptional regulator related to solvent production
Spo0A is a multivalent transcription factor regulator. Expression of spo0A in
C. acetobutylicum promoted expression of the solvent formation genes in the
stationary phase, induced the conversion of acid into solvent, and provided
increased tolerance and solvent production under butanol stress [2]. By geno-
mic-library enrichment and DNA microarray analysis, CAC1869 categorized as
a singleton transcriptional regulator was found. Overexpression of CAC1869 in
C. acetobutylicum ATCC824 increased butanol tolerance by 81 % and pro-
longed the metabolic activity [8].

4. Other targets contributing to butanol tolerance
Glutathione (GSH) is also involved in protein stabilization, antioxidation, and
detoxification; so, a study was conducted by introducing GSH synthetic genes
gshAB into C. acetobutylicum DSM1731. The engineered strain DSM1731(pI-
TAB) produced GSH and exhibited improved butanol tolerance and increased
butanol production capability [58]. Furthermore, the gene SMB_G1518 in
C. acetobutylicum DSM1731 that codes the cysteine-rich zinc-finger domain
putatively interacting with alcohol and the close gene SMB_G1519 were shown
to be possible negative regulators involved in butanol tolerance [22].

4.3 Engineering E. coli to Improve Butanol Tolerance

On the basis of molecular mechanisms of butanol tolerance and confirmed strate-
gies for Clostridium, efforts were made to improve the butanol tolerance of E. coli
(Table 3).

4.3.1 Overexpression or Deletion of Genes to Improve the Butanol
Tolerance of E. coli

Butanol is known to affect the membrane by increasing the membrane fluidity. For
E. coli, several transcriptional analyses have been performed to clarify the stress
caused by butanol. The results indicate an increase in reactive oxygen species
during butanol stress. The free radicals directly attack the membrane by lipid
peroxidation [44].

To relieve the oxidative stress in the host cell, metallothioneins (MTs), which are
known as scavengers of reactive oxygen species (ROS), were engineered in E. coli
hosts for both cytosolic and outer-membrane-targeted (osmoregulatory membrane
protein OmpC fused) expressions. Cytosolic expression was conducted for the
alcohol tolerance measurements of the engineered E. coli strains of MTs from
human (HMT), mouse (MMT), and tilapia fish (TMT), while the OmpC-fused
MT strains (OmpC-HMT, OmpC-MMT, and OmpC-TMT) were expressed for
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membrane-targeted MTs. The abilities of these engineered E. coli to scavenge
intracellular or extracellular ROS were examined, and TMT was found to perform
best among the three MTs, growing in a medium with 1 % (v/v) butanol. Addi-
tionally, the membrane-targeted fusion protein, OmpC-TMT, improved host tol-
erance to 1.5 % butanol, above the tolerance of 1 % for TMT [11].

Efflux pumps play an important role in solvent tolerance. In E. coli, the
AcrAB-TolC system acts as an efflux pump, with AcrB being the inner membrane
transporter, AcrA being the membrane fusion protein, and TolC being the outer
membrane protein. A library of heterologously expressed efflux pumps was
examined and none of the pumps were able to increase E. coli tolerance to butanol
[15]. Many studies have suggested that efflux pumps are ineffective at exporting
short-chain alcohols.

Table 3 Engineering strategies to improve butanol tolerance in E. coli

Strategy Results on butanol tolerance Reference

Expression of cytosolic and
outer-membrane-targeted
metallothioneins (MTs)

From 0.5–1 % (v/v) to 1.5–2 % Biotechnol
Biofuels, 2013,
6: 130

Overexpression of groESL GroESL overexpression strain
demonstrated a 2.8-fold increase
in integrated growth under curve
(IGUC) over the control strain with
a challenge of 0.75 % (v/v)

Metab Eng, 2013,
15: 196–205

Overexpression of entC From 0.5 % (v/v) to 0.66 % PloS One, 2011, 6
(3): e17678

Overexpression of feoA From 0.5 % (v/v) to 0.75 % PloS One, 2011, 6
(3): e17678

Deletion of astE From 0.5 % (v/v) to 0.74 % PloS One, 2011, 6
(3): e17678

Evolution Only 6 g/L (0.74 %, v/v) was tested,
both E. coli SA481 and TW306
(mutant strains) showed an increased
tolerance to butanol relative to
JCL260 (parent strain)

Mol Syst Biol,
2010, 6(1): 1–11

Mutation of RNAP alpha
subunit

Mutant strain grew faster and
exhibited a higher accumulated cell
mass than the control in the presence
of 0.9 % (v/v) butanol

Appl Environ
Microbiol, 2009,
75(9): 2705–2711

Utilization of artificial
transcription factors (ATFs)

Among 106 ATF transformants
screened, 75 ATF transformants
survived in LB medium containing
1.5 % (v/v) butanol, when cultured
in a range of 1–2 % butanol

Biotechnol Bioeng,
2011, 108(4):
742–749

Mutation of cyclic AMP
receptor protein (CRP)

When butanol concentration
increased from 0.8 % (v/v) to 1.2 %,
the growth rate of a mutant MT5
(0.18 h−1) became twice that of the
wild type (0.09 h−1)

Appl Microbiol
Biotechnol, 2012,
94(4): 1107–1117
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A molecular chaperone is a cellular stress response molecule that works during
the folding and degradation of proteins, with HSPs being well-known examples.
Overexpression of groESL (a heat-shock gene) in E. coli provided an effective
outcome. Cultures of 0.75 % butanol were the only challenged samples in which the
strain 10-β(pACYC184) showed a net increase in cell density above the starting
point, doubling across the entirety of the experiment, while 10-β(pAC-groESL)
doubled more than twice in the same time frame. In 0.75 % butanol, the overex-
pressed groESL demonstrated a 2.8-fold increase in integrated growth under the
curve over the control [60]. In addition, the Hsp33 of B. psychrosaccharolyticus
overexpressed in E. coli increased the E. coli’s tolerance to isopropyl alcohol,
demonstrating that a psychrophilic protein is functional at higher temperatures and
confers a tolerant phenotype [24]. This protein might be functional for improving
butanol tolerance in E. coli as well.

An enrichment strategy involving the serial transfer of batch cultures in
increasing butanol concentrations (0, 0.9, 1.3, and 1.7 % butanol) along with
respective controls was performed recently. The overexpressed genes that conferred
the largest increase in butanol tolerance, entC and feoA, were related to iron
transport and metabolism and increased the butanol tolerance by 32.86 ± 4.0 % and
49.16 ± 3.3 %, respectively (compared with the initial butanol tolerance of 0.5 %).
The gene whose deletion resulted in the largest increase in resistance to butanol was
astE, with butanol tolerance being enhanced by 48.76 ± 6.3 % [42].

4.3.2 Transcriptional Engineering of E. coli to Improve Butanol
Tolerance

To select a butanol-tolerant E. coli strain, transcriptional engineering of the bacterial
RNA polymerase alpha subunit was studied. Results showed a mutant strain with a
mutant RNA polymerase alpha subunit grew well in LB medium containing 0.9 %
(v/v) butanol [26].

Lee et al. developed a new method of increasing the butanol tolerance of E. coli
with artificial transcription factor (ATF) libraries that consist of zinc-finger DNA-
binding proteins and an E. coli cyclic AMP receptor protein. Using these ATFs,
they selected a butanol-tolerant E. coli that can tolerate butanol up to 1.5 %
(v/v), with a concomitant increase in heat resistance [28].

Zhang et al. demonstrated that the butanol tolerance of E. coli can be greatly
enhanced through random mutagenesis of global transcription factor cyclic AMP
receptor protein. Four mutants (MT1–MT4) with elevated butanol tolerance were
isolated from error-prone PCR libraries through enrichment screening. A DNA
shuffling library was then constructed using MT1–MT4 as templates, and one
mutant (MT5) that exhibited the best tolerance ability among all variants was
selected. In the presence of 0.8 % (v/v, 6.5 g/l) butanol, the growth rate of MT5 was
found to be 0.28 h−1 while that of wild type was 0.20 h−1. When the butanol
concentration increased to 1.2 % (9.7 g/l), the growth rate of MT5 (0.18 h−1)
became twice that of the wild type (0.09 h−1) [57].
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4.3.3 Evolution Engineering of E. coli Strains to Improve Butanol
Tolerance

For E. coli, the ethanol-caused stress is well studied; these results were used for the
construction of ethanol-producing strains. Nevertheless, butanol-resistant mutant
strains are not so well understood owing to a series of unclear mechanisms.
Experimental evolution is an effective method used for chemical tolerance while
fermentation is limited by chemical products. However, the phenotype cannot be
clearly explained sometimes because of the complex mechanisms.

Researchers isolated three E. coli clones capable of growth in 2 % (w/v)
isobutanol in glucose media and two clones capable of growth in 1.75 % isobutanol
in xylose media, representing 60 and 40 % improvements in tolerance, respectively,
compared with the wild-type strain [35]. On the basis of the similarity of isobutanol
and butanol, we suppose this strategy also works for butanol tolerance.

Atsumi et al. employed a method of sequential transfer to the isobutanol
production host strain, E. coli JCL260. JCL260 was initially inoculated into LB
broth containing 4 g/L isobutanol. After 15 sequential transfers, the isobutanol
concentration in the medium had increased to 6 g/L. The isobutanol concentration
then reached 8 g/L after the next 15 transfers. After a total of 45 transfers, we
isolated the largest single colony, denoted SA481, on an LB agar plate with 8 g/L
isobutanol. SA481 showed increased growth compared with JCL260 in the pres-
ence of 6 and 8 g/L isobutanol, while maintaining similar growth in the absence of
isobutanol. The study demonstrated the isobutanol-tolerant mutants also had
increased tolerance to butanol (6 g/L) and 2-methyl-1-butanol (3 g/L).

5 Discussion and Perspectives

E. coli has been improved to be an excellent butanol producer through metabolic
engineering of a new synthetic pathway. The butanol yield of 33 % by E. coli is a
great advantage over the use of clostridial strains. The maximal butanol titer was
15 g/L, which is lower than the maximal titer of 20 g/L produced by some clos-
tridial strains, and the butanol productivity is lower than that of clostridial strains.
Therefore, more effort should be made to improve the performance of E. coli.

Besides E. coli, other species, such as B. subtilis [38], S. cerevisiae [48],
P. putida [38], and L. brevis [6], have been used as the host to produce butanol.
However, none of these species produce more than 3 g/L of butanol. It is suggested
that both the enzymes involved in the butanol synthetic pathway and the matching
of the pathway with the host are important in engineering an efficient butanol
producer.

Besides the metabolic pathway, the butanol tolerance of host strains is a critical
factor affecting butanol production performance. Butanol tolerance is a complex
mechanism related to mutagenic changes. Although much progress on the mecha-
nism of butanol toxicity has been achieved and new strategies for improving butanol

Engineering Escherichia coli Cell Factories … 159



tolerance developed, such work has not been performed on a butanol-producing
strain. The further improvement of the butanol titer may depend on butanol tolerance
engineering. Researchers are now using genomics, transcriptomics, proteomics, and
metabonomics as tools to analyze the global changes in response to butanol chal-
lenge. They hope to understand the tolerance mechanisms clearly and connect the
butanol tolerance with yield in E. coli. We suppose the system approach will improve
butanol production through metabolic engineering in E. coli.

Finally, cheaper feedstocks such as glycerol and cellulose hydrolysates should
be considered, and this will require additional genetic engineering or metabolic
evolution of a butanol-producing strain.
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Microbial Cell Factories for Diol
Production

W. Sabra, C. Groeger and An-Ping Zeng

Abstract Diols are compounds with two hydroxyl groups and have a wide range of
appealing applications as chemicals and fuels. In particular, five low molecular diol
compounds, namely 1,3-propanediol (1,3-PDO), 1,2-propanediol (1,2-PDO),
2,3-butanediol (2,3-BDO), 1,3-butanediol (1,3-BDO), and1,4-butanediol (1,4-BDO),
can be biotechnologically produced by direct microbial bioconversion of renewable
materials. In this review, we summarize recent developments in the microbial pro-
ductionofdiols, especially regarding theengineeringof typicalmicrobial strains as cell
factory and the development of corresponding bioconversion processes.
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1 Introduction

At the beginning of the twentieth century, before petroleum was introduced as raw
material, the chemical industry had to rely on coal and renewable resources. Until
1930, the most important bulk products of that time, such as fuels (ethanol, buta-
nol), organic acids (acetic acid, citric acid, lactic acid) and other basic chemicals,
were biotechnologically produced from biomass. With the development of the
petroleum industry, many of these biotechnological processes were replaced by
chemical synthesis routes based on petroleum or natural gas. Nowadays, over
80 million tons of industrial chemicals are manufactured globally each year from
fossil-based feedstocks [1]. These petrochemicals, which encompass building
blocks, intermediate chemicals, and derived final products like polymers, are valued
at over $2 trillion and provide the materials and products that impact and enable
virtually every aspect of our daily existence [1]. However, these great benefits
historically have come at great cost. While the chemicals themselves play a positive
role in society, the petroleum-based processes used to manufacture chemicals
engender challenges that can jeopardize the economy, the environment, and overall
global security. Nowadays, the rapid advances in plant biotechnology, molecular
biology, and new tools and concepts such as systems and synthetic biology, and
biorefinery of renewable biomaterials have created new opportunities and markets
for many biotechnologically produced (bio)chemicals. Many chemicals, which
could only be produced by chemical processes in the past, could potentially be
generated biologically from renewable resources. The microbial production of diols
is a prominent example of success of the so-called white or industrial biotechnology
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in recent years. Diols are compounds with two hydroxyl groups which have a wide
range of important applications as chemicals and fuels. They are considered as
platform green chemicals for many industries. In particularly, the microbial pro-
duction of 1,3-propanediol (1,3-PDO), 1,2-propanediol (1,2-PDO), 2,3-butanediol
(2,3-BDO) and, more recently 1,4-butanediol (1,4-BDO) and 1,3-butanediol
(1,3-BDO) has received much interest in industrial biotechnology. These diols
can be produced from different renewable feedstocks and even waste materials from
biofuel production (Fig. 1) [2].

The production of 1,3-PDO and 1,4-BDO has reached commercial scales. They
are especially useful as biomonomers for the polyesters polypropylene terephthalate
(PPT) and polybutylene terephthalate (PBT). Both PPT and PBT have the potential
to steal market share from the classic polyester polyethylene terephthalate
(PET) [3]. Pilot plant-scale production of 1,2-PDO and 2,3-BDO has also been
reported. All these diols are of immense industrial interests because they are either

Fig. 1 Major routes for bioproduction of diols from different feedstocks (modified after [2]).
3-HPA 3-hydroxypropionaldehyde, GAP glyceraldehyde 3-phosphate, DHAP dihydroxyacetone
phosphate
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established chemicals presently produced from fossil resources in large production
volumes (e.g. more than 1.5 Mio. t per year for 1,2-PDO and about 1.3 Mio. t per
year for 1,4-BDO), or large market potentials [2]. Despite their large impact, rel-
atively few publications are available for the biotechnological production of
1,2-PDO, 1,3-BDO, and 1,4-BDO. On the other hand, 1,3-PDO and 2,3-BDO have
been most intensively studied in the last few years and several comprehensive
reviews for the microbial production of these diols have been published [2, 4–7]. In
this review article, microbial factories for the different diols and the pathways
involved are illustrated. The current state of the art of strain improvement including
synthetic pathways is also summarized.

2 Butanediol Production

Butanediol is a four-carbon diol having its hydroxy groups at various positions.
2,3-BDO is the only naturally occurring BDO, produced by several facultative and
anaerobic bacteria. On the other hand, no natural metabolic pathways or
micro-organisms are known which can produce 1,4-BDO or 1,3-BDO from sugar
or other biomass. Although the market for synthetic 2,3-BDO is presently still very
small, there is a shift towards the use of biobased 2,3-BDO. 1,4-BDO, the most
widely used BDO compound, is currently produced from fossil fuel feedstocks. In
the following, we summarize recent development in the microbial production of the
different types of butanediol.

2.1 2,3-Butanediol

2,3-Butanediol (2,3-BDO) is one of the promising bulk chemicals which exhibits a
wide range of potential applications [8–10]. It is used as the starting material for
bulk chemicals such as methyl ethyl ketone, gamma-butyrolactone, and
1,3-butadiene [11]. Nowadays, the manufacture of 2,3-BDO is growing by an
annual rate of 4–7 % due to the increased demand for many of its derivatives
[12, 13]. 2,3-BDO is widely used in chemical, food, fuel, aeronautical, and other
fields. Due to the presence of two chiral centres, 2,3-BDO has three isomers: levo
(2R, 3R) and dextro (2S, 3S) forms with optical activity and the meso-form with no
optical activity.

The optically active forms of 2,3-BDOs are very valuable chemicals in the
directed asymmetric synthesis of chiral chemicals using boronic esters. Moreover,
chiral compounds are especially important to provide chiral groups in drugs, in
high-value pharmaceutical or for liquid crystals manufacture [14, 15]. The various
applications of this polymer are summarized elsewhere [5, 16].

Although the first commercial production of 2,3-BDO was biotechnological one
operated in Germany in the middle of the last century, currently the commercialized
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process for its synthesis is based entirely on a chemical route. However, the syn-
thetic (petroleum-based) 2,3-BDO does not have a very large market due to its
unique structure and costly chemical synthesis. Also, there is no efficient method to
convert the intermediate into downstream derivatives such as butadiene, methyl
ethyl ketone, and butenes. Therefore, 2,3-BDO has not been produced on a large
scale and is currently available as a laboratory chemical and is being sold as a
small-volume intermediate for some niche applications like food flavouring.
Moreover, its high price led also to inadequate development of its application [17].
Therefore, biobased 2,3-BDO is considered to be a highly attractive market and is
expected to provide immense opportunities to the main players involved in the
market.

2.1.1 Micro-organisms of Potential Significance for 2,3-BDO
Production

Bacteria effectively producing 2,3-BDO belong mainly to the Enterobacteriaceae
family. Their representative species are Klebsiella pneumoniae, K. oxytoca, and
E. aerogenes. Pseudomonas chlororaphis and Paenibacillus polymyxa belonging to
the families Pseudomonadaceae and Paenibacillaceae, respectively, have received
attention due to the formation of a pure optically active stereoisomer (L-form) in
plant rhizospheres. In general, the highest 2,3-BDO concentrations were obtained
with pathogen (risk group 2) micro-organisms (Table 1) and thus not desirable for
industrial-scale production. Interestingly, Jurchescu et al. [18] reported recently the
production of 2,3-BDO by Bacillus licheniformis DSMZ 8785 grown on glucose in
fed-batch cultivation. The maximum 2,3-BDO concentration obtained was
144.7 g/L, which was comparable to that achieved by the risk group 2 strains.
Moreover, by using thermophilic B. licheniformis strains, high concentrations (103–
115 g/L) of 2,3-BDO could be produced either from glucose [19, 20] or from plant
polysaccharide inulin in a simultaneous saccharification and fermentation process
[20]. Advantages of the thermophilic process include less contamination risk at high
temperature and more efficient utilization of the plant substrate by simultaneous
saccharification [19]. Indeed, species of Bacillus or Paenibacillus appear to be more
suitable for commercial 2,3-BDO production. While a mixture of levo and meso
(1:1 ratio) was formed by B. licheniformis, P. polymyxa has the ability to form
almost exclusively the levo-isomer (over 98 %) when grown under anaerobic
conditions [13, 21–25]. Recently, Fu et al. [26] showed that NADH played a vital
role for chirally pure D-2,3-BDO production in Bacillus subtilis grown under lim-
ited oxygen conditions. Although the final concentrations in the 2,3-BDO fer-
mentation are lower than those of B. licheniformis, the optical purity of the
produced diol could be of interest for the fine chemical industry and specific
synthesis. Under microaerobic conditions, the 2,3-BDO productivity of this bac-
terium is higher, but the optical purity decreases, since the meso-form is increas-
ingly formed [23].
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2.1.2 Metabolic Pathways of 2,3-BDO Biosynthesis

Several bacteria, yeasts, or even algae have the capability to produce 2,3-BDO, but
the observed yields are often quite different [5, 34, 35]. The 2,3-BDO biosynthetic
pathway has been intensively studied in bacteria (Fig. 2). 2,3-BDO synthesis is
typically a part of a mixed-acid fermentation pathway observed under anaerobic or
microaerobic growth conditions of different micro-organisms (Fig. 2). In addition to
2,3-BDO and depending on the micro-organism and cultivation conditions, other
end products are formed, such as ethanol, acetate, lactate, formate, and succinate. In
order to enhance the 2,3-BDO yield (theoretical maximum yield 0.5 g/g on glu-
cose), most of the work done was concentrated on an efficient channelling of
pyruvate to 2,3-BDO and not to the different by-products. The formation and
selectivity of 2,3-BDO stereoisomers and in particular the control of their purity
have not been completely understood. Consequently, various metabolic pathways
have been proposed (Fig. 3).

Acetoin is the precursor of 2,3-BDO and is formed in bacteria from pyruvate
through several enzymatic reactions. Under anaerobic conditions, α-acetolactate
synthase catalyses the condensation of two pyruvate molecules with a single
decarboxylation to form α-acetolactate that is converted to acetoin by α-acetolactate
decarboxylase. Under low oxygen concentration, α-acetolactate can undergo a
spontaneous decarboxylation, leading to the formation of diacetyl. Subsequently, a

Fig. 2 Different pathways involved in the formation of 2,3-BDO in bacteria (after [5, 35]). THF
tetrahydrofolate
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NADH-linked diacetyl reductase converts the latter to acetoin. Finally, 2,3-BDO of
different isomeric forms is formed from acetoin by the action of different acetoin
reductase enzymes with different stereospecificities, or by a cyclic pathway (the
so-called butanediol cycle), the existence of which has been reported in different
bacteria as shown in Fig. 3 [14, 36, 37]. Recently, autotrophic 2,3-BDO synthesis
from CO2 and/or CO plus H2 was shown to exist in different acetogenic Clostridium
species [35, 38]. Wood–Ljungdahl pathway was shown to be involved in which CO
and/or CO2 feeds the methyl and carbonyl branches of the pathway. In the methyl
branch, CO or CO2 is fixed in a sequence of tetrahydrofolate (THF)- and
cobalamin-dependent reactions into a methyl group, which is then combined with
CO (used either directly or after enzymatic reduction of CO2) to form acetyl-CoA,
in which the latter is catalysed by the CODH/ACS (carbon monoxide
dehydrogenase/acetyl-CoA synthase) complex. Acetyl-CoA serves as a precursor
for growth and 2,3-BDO production [35] (Fig. 2).

In the BDO cycle (Fig. 2), acetoin is oxidized to diacetyl by acetoin dehydro-
genase, and then, 2 diacetyl molecules are converted to acetylacetoin and acetate by
the enzyme acetylacetoin synthase. Acetylacetoin is further reduced to acetylbu-
tanediol with different stereospecificities by either NAD(P)H- or NADH-linked
acetylacetoin reductase. Different 2,3-BDO stereoisomers are then formed by the
action of acetylbutanediol reductase. Through this butanediol cycle, 2 forms of

Fig. 3 Mechanisms of the formation of 2,3-BDO stereoisomers (modified after [5])
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stereoisomers are formed in B. cereus as reported by Ui et al. [39]. Interestingly, in
P. polymyxa grown under microaerobic conditions, diacetyl is converted to S-
acetoin by a NAD(P)H-linked diacetyl reductase. Anaerobically, this bacterium
produces 98 % of the levo-form through the catabolic 2,3-BDO formation route
(Figs. 2, 3). Moreover, an acetoin racemase catalysing the conversion between the
different forms of acetoin was proposed for the same bacterium [39]. Recently,
Chen et al. [14] elaborated the mechanism of the different stereoisomer formation in
K. pneumonia. They reported that glycerol dehydrogenase exhibited 2R,3R-bu-
tanediol dehydrogenase activity and was responsible for levo-butanediol synthesis
from R-acetoin. This enzyme also contributed to meso-2,3-butanediol synthesis
from S-acetoin. Butanediol dehydrogenase was the only enzyme that catalyses the
conversion of diacetyl to S-acetoin and further to dextro-butanediol (Fig. 3).

2.1.3 Pathway Engineering and Synthetic Pathway for 2,3-BDO
Formation

Despite the intensive research done on enhancing 2,3-BDO production by its native
risk group 2 bacteria (e.g. see [11, 40, 41]), the concerns associated with the
utilization of potential pathogenic bacteria and/or the inefficient utilization of cel-
lulosic sugars have led many scientists to engineer more safer strains. Oliver et al.
[42] have developed a 2,3-BDO biosynthetic pathway in the photosynthetic
cyanobacterium Synechococcus elongatus. The strain still has a limited productivity
(2.38 g/L 2,3-BDO), and more research is needed to reach a desirable titre suitable
for industrial application. Efforts were also done to enhance the production of
optically active 2,3-BDO in native strains. A mutant of P. polymyxa with consti-
tutive synthesis of the α-acetolactate synthase was constructed [21]. The mutant
obtained grew more slowly than the wild type but produced fourfold more
2,3-BDO. By knocking out some by-product-producing genes in Enterobacter
cloacae, Li et al. [11] were able to produce 119 g/L of enantiomerically pure
2,3-BDO using lignocellulosic hydrolysates.

Moreover, E. coli was extensively used as a host for many metabolic engineering
studies for the production of 2,3-BDO, especially for the production of optically
active one. Until recently, the synthetic pathways constructed in E. coli for enan-
tiomerically pure 2,3-BDO using different stereospecific dehydrogenases from
diverse species gave relatively low concentration of 2,3-BDO [5, 43]. Recently,
applying a systematic metabolic engineering approach, Xu et al. [17] optimized the
production of 2,3-BDO in recombinant E. coli strains. 2,3-BDO biosynthesis gene
clusters were cloned from several native 2,3-BDO producers, including B. subtilis,
B. licheniformis, K. pneumoniae, Serratia marcescens, and E. cloacae, inserted into
the expression vector pET28a, and compared for 2,3-BDO synthesis. The best
strain was then studied in fed-batch fermentation and was found to produce 74 g/L
within 62 h [17].

Since no natural producers for the dextro-2,3-BDO (2S,3S) have been found,
biosynthesis of this diol enantiomer has been achieved using engineered E. coli [32,
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44]. Li et al. [32, 44] obtained 26.8 g/L of highly pure (>99 %) (2S,3S)-2,3-BDO in
a fed-batch culture from diacetyl. Moreover, through introducing NADH regener-
ation enzymes into E. coli, a higher product titre (31.7 g/L) of (2S, 3S)-2,3-BDO
was obtained [32].

Many industrial biotechnological processes are moving towards the use of yeast
as a platform. Engineered yeast strains were also reported that are capable of
producing 100 g/L of enantiomerically pure levo-2-3-BDO from a mixture of
glucose and galactose with a yield over 70 % of the theoretical value [33, 45]. The
high titre and yield of the optically active 2,3-BDO produced make the engineered
yeast strain promising hosts for a cost-effective production of biobased 2,3-BDO.

2.2 1,4-Butanediol

1,4-Butanediol (1,4-BDO) is an important commodity chemical used to manufac-
ture over 2.5 million tons of valuable products annually. The major use of
1,4-butanediol is in the production of tetrahydrofuran (THF) and PBT [46]. THF is
used to produce spandex fibres and other performance polymers, resins, solvents,
and printing inks for plastics. PBT is an engineering-grade thermoplastic that
combines excellent mechanical and electrical properties with robust chemical
resistance. The automotive and electronics industries heavily rely on PBT to pro-
duce connectors, insulators, wheel covers, gearshift knobs, and reinforcing beams.
There is also growing demand in the apparel industry for renewable, biobased
spandex. 1,4-BDO is also used as a plasticizer (e.g. in polyesters and cellulosics), as
a carrier solvent in printing ink, a cleaning agent, an adhesive (in leather, plastics,
polyester laminates, and polyurethane footwear), in agricultural and veterinary
chemicals, and in coatings (in paints, varnishes, and films). 1,4-butanediol is also
reportedly used as a solvent in cosmetic formulations and as a humectant in
pharmaceuticals [47]. Recently, Diaz et al. [48] reviewed the various biodegradable
polymers that can be synthesized from 1,4-BDO and dicarboxylic acids.
Application of a series of polymers that cover a wide range of properties, namely
materials from elastomeric to rigid characteristics that are suitable for applications
such as hydrogels, soft tissue engineering, drug delivery systems, and liquid
crystals, is reported.

In nature, no metabolic pathway and no micro-organisms are found so far that
can produce 1,4-BDO from sugar or other biomass. Therefore, fossil fuel-based
feedstocks such as acetylene, butane, propylene, and butadiene are the current
sources for its production. Recently, using genome-scale metabolic model of E. coli
and biopathway prediction algorithms, the company Genomatica has established
unnatural synthetic pathways and correspondingly engineered E. coli strains for
1,4-BDO bioproduction from sugars such as glucose, xylose, sucrose, and
biomass-derived mixed-sugar streams [46, 49]. In one pathway, sugar is first

Microbial Cell Factories for Diol Production 175



converted into succinyl-CoA which is then further converted into 1,4-BDO over
4-hydroxybutyrate and other intermediates (Fig. 4), and a strain capable of pro-
ducing 18 g/L 1,4-butanediol was engineered. The engineered E. coli has an
enhanced anaerobic operation of the oxidative tricarboxylic acid cycle, thereby
generating more reducing power to drive the synthetic 1,4-BDO pathway.
According to Genomatica, they have done extensive work to optimize the yield and
the rate of 1,4-BDO production, to minimize the by-products, and to enhance the
1,4-BDO tolerance of the engineered strain. Yim et al. [46] proposed that by rising
the rates of key steps in the pathway, removing metabolic inefficiencies and sub-
stantially reducing by-products may increase the titre further. Burk [1] stated that
the commercial production of 1,4-BDO from sugar will require much less energy
and release significantly less carbon dioxide and is expected to have a substantial
cost advantage relative to the current petrochemical process. Indeed, systems
biology and fermentation process engineering approaches can identify and address
bottlenecks that are obstacles to commercialization like achieving higher cell
densities with improved specific productivity [46]. Recently, strains able to produce
30–40 g/L of 1,4-BDO in a continuous bioreactor were developed and patented by
Genomatica [50].

Fig. 4 1,4-BDO biosynthetic pathways introduced in E. coli (modified after Yim et al. [46]). Solid
lines show reactions occurring naturally in E. coli, whereas dotted lines represent introduced
synthetic reaction steps
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2.3 1,3-Butanediol

1,3-Butanediol (1,3-BDO) is used as a chemical intermediate in the manufacture of
polyester plasticizers, as a solvent for flavouring, and as a humectant in pet foods
and tobacco. Its uses in cosmetics have been reviewed by the Cosmetic Ingredient
Review which concluded that 1,3-butanediol is safe as normally used in cosmetics
[51]. (R)-1,3-BDO, a non-natural alcohol, is a valuable building block for the
synthesis of various optically active compounds such as pheromones, fragrances,
and insecticides by direct incorporation into the target molecules, or is used as
chiral template in the Lewis acid-mediated reactions of acetals with nucleophiles
[52]. (R)-1,3-BDO is especially interesting as a starting material of chiral azetidi-
none derivatives and key intermediate of penems and carbapenems for industrial
synthesis of ß-lactam antibiotics. Because these antibiotics are the mostly used
antibacterial agents in clinical practice worldwide, the demand for R-1,3-BDO has
been drastically increased, and as a consequence, the production method of
R-1,3-BDO has been intensively studied [53–55]. So far, 1,3-BDO has been syn-
thesized as a racemic mixture of R- and S-forms, mainly from petroleum-based
chemicals such as a prochiral precursor, 4-hydroxy-2-butanone. Moreover, Eguchi
and Mochida [56] attempted a kinetic resolution of 1,3-BDO by lipase-catalysed
diacylations in organic solvent, resulting in (R)-1,3-diacetoxybutane with 23.4 %
yield and 98.6 % enantiomeric purity. Using whole cells of recombinant E. coli
expressing exogenous dehydrogenase from Candida parapsilosis, Daicel Chemical
Industries Ltd. produce R-1,3-BDO with 48.4 % yield and 95 % enantiomeric purity
[57]. Recently, Kataoka et al. [53] constructed an effective synthetic production
route of 1,3-BDO from glucose in E. coli (Fig. 5). The high demand on reducing
equivalents and cofactors for the production of 1,3-BDO (Fig. 5) reflects the
importance of the aerobic catabolism of glucose for reducing equivalent regener-
ation. Hence, Kataoka et al. [54] optimized 1,3-BDO in an engineered E. coli by
strict regulation of the overall oxygen transfer coefficient (kLa) during the culti-
vation. With optimized fermentation conditions, this recombinant E. coli strain was
able to produce up to 9 g/L of 98.5 % enantiomeric purity of R-1,3-BDO. Although
the titre reported by Kataoka et al. [53] was more than 8-fold higher than that
reported in the patent published earlier in 2009 [58], still much work has to be done
to reach an acceptable concentration suitable for commercialization.

3 Propanediol Production

Propanediol is a three-carbon diol having its hydroxy groups, at the first and the last
carbon atom, in case of 1,3-PDO, or at the first and the second carbon atom in
1,2-PDO. 1,2-PDO is a chiral molecule and mostly available as a racematic mix-
ture. Both 1,3-PDO and 1,2-PDO offer broad application spectra, either directly as
solvents or as platform chemicals for a broad product spectrum. Even though a
chemical synthesis is possible, the interest in biological production of propanediols
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increases. Fermentation processes need less pressure, ambient temperature, and no
expensive catalysts. Furthermore, they allow a sustainable process by transferring
waste streams of biodiesel production or lignocellulosic residues into valuable side
products.

3.1 1,3-Propanediol

Because of the attractive physical and chemical properties, and hence the various
applications of 1,3-PDO, the interest in such polymer increased significantly in the
last few years. On the one hand, it is used directly as solvent and antifreeze
component in varnish, adhesives, or resins [6], as polyglycol-type lubricant, and in
cosmetic products [59]. On the other hand, it is a very suitable monomer for
synthetic reactions like polycondensation. 1,3-PDO is well known for the pro-
duction of polytrimethylene terephthalate (PTT), biodegradable polyester which is
utilized fibre not only in textiles and carpets but also in coatings. Furthermore, it can
be used for the production of other biodegradable plastics polyesters, polyethers,
and polyurethanes [60].

Till recently, biotechnology could not economically compete with the chemical
synthesis of 1,3-PDO. In 2004, however, DuPont constructed a biochemical plant in
Loudon for manufacturing 1,3-propanediol using E. coli with a synthetic pathway

Fig. 5 Schematic diagram of 1,3-BDO biosynthetic pathways from glucose in an engineered
E. coli (modified after [53, 54])
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from glucose. The plant was commissioned in November 2006. Very recently, the
two companies METabolic Explorer (France) and SK Chemicals (South Korea)
recently announced a joint agreement to manufacture 1,3-propanediol from crude
glycerol. Together, they will market it in Europe and Asia to fulfil the expanding
global demand for 1,3-PDO (www.metabolic-explorer.com, www.skchemicals.com,
2014). Biotechnological plants for 1,3-PDO from glycerol were also built in China. It
is not clear if any of these plants are in operation.

3.1.1 Micro-organism of Potential Significance for 1,3-PDO
Production

1,3-PDO is one of the natural products of the anaerobic degradation of glycerol in
many bacteria. Therefore, and as by-products of biodiesel industry, crude glycerol
was intensively used for the production of 1,3-PDO. However, the productive
strains should be used that can tolerate impurities normally found in crude glycerol
(salts, free fatty acids, and methanol [61]). The production of 1,3-PDO from
glycerol is mainly performed by micro-organisms of the families Clostridiaceae
and Enterobacteriaceae, and several species of Klebsiella, Clostridia, Citrobacter,
and Enterobacter are known to convert glycerol to 1,3-PDO under anaerobic
conditions. The most-studied and well-known species are K. pneumoniae and
Clostridium butyricum, because of their high substrate tolerance as well as high
yield and productivity. Although C. butyricum is strictly anaerobic and K. pneu-
monia is facultative anaerobic (easier to handle), species of Clostridia are more
interesting for industrial application. K. pneumoniae is classified as an opportunistic
pathogen, and hence, special safety precautions are needed to use K. pneumonia for
fermentation. Recently, in a cocultivation of cyanobacteria with K. pneumoniae,
Wang et al. reported the production of 1,3-PDO from CO2 [62]. Moreover, it was
shown that 1,3-PDO can be produced in an unsterile process from raw glycerol
using either mixed culture [63] or pure culture of C. butyricum [64] and C. pas-
teurianum [65]. This new development makes it economically very competitive.
Moreover, the incorporation of the 1,3-PDO production into a biorefinery concept
can further increase the ecological advantage and the commercial chance of the
glycerol-based process. Friedmann and Zeng [66] proposed to use a mixed culture
to produce 1,3-PDO and methane from glycerol. This concept was successfully
demonstratedwithin aEuropean7thFramework researchproject (www.propnergy.eu)
in laboratory and pilot scale. The basic idea was to use acidogenic and methano-
genic bacteria for converting the by-products simultaneously into methane.
Alternatively, the by-products can be degraded in a following biogas bioreactor.
Formerly, a theoretical and metabolic flux study of syntrophic-like growth of
C. butyricum and Methanosarcina mazei, a methanogenic archeon, under anaerobic
conditions was carried out to analyse the several possible scenarios, especially to
examine the preference of M. mazei in scavenging acetate and formate under
conditions of different substrate availability, including methanol as a cosubstrate in
biodiesel-derived raw glycerol [67]. Zhou et al. [68] studied the bioconversion of
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glycerol to 1,3-PDO with a mixed population in a microbial bioelectrochemical
system (BES). Though the mixed population used in this study was less effective,
the use of BES system for delivering the necessary reducing power for 1,3-PDO
production represents an interesting development. More recently, Choi et al. [69]
showed that C. pasteurianum, a promising 1,3-PDO producer as mentioned above,
can directly use electrons from cathode for the regeneration of reducing power in
glycerol fermentation. However, the electron flow from the cathode was relatively
low and the effect on the glycerol fermentation was not significant. In fact,
microbial electrochemical processes for biosynthesis are still poorly understood
[70, 71]. The use of a mixed culture in BSE is even more complicated. In general, it
is essential to better understand the regulation and metabolic interactions and to
control the dynamics of microbial consortia suitable for such processes and to
inhibit the 1,3-PDO degradation.

Mixtures of glucose and glycerol have also been used for the production of
1,3-PDO by using members of Lactobacillaceae. Lactobacilli have only the
reductive conversion and need an additional substrate for the growth and generation
of the reducing equivalents. L. reuteri, L. brevis, L. buchneri, L. collonoides, and L.
panis were reported to produce 1,3-PDO in mixed substrate fermentation [72].
Pflügl et al. [73] reported the production of 42 g/L 1,3-PDO from glycerol by L.
diolivorans. However, after the addition of glucose, the 1,3-PDO production
increased up to 74 g/L [73]. Recently, Sabra et al. [74] reported the simultaneous
production of 1,3-PDO and n-butanol in mixtures of glucose and glycerol in dif-
ferent ratios using C. pasteurianum. On the other hand, with glucose as mono-
substrate, several approaches with genetically modified organisms have been
reported (see Sect. 4.1.2). An overview of the potential 1,3-PDO productive strains
is given in Table 2.

3.1.2 Biosynthetic Pathways and Pathway Engineering of 1,3-PDO

The natural pathway for the production of 1,3-PDO in different micro-organisms is
shown in Fig. 6. Generally, the pathway is divided into two parallel routes, a
reductive route for the production of 1,3-PDO (A) and an oxidative route (B) where
glycerol is metabolized via glycolysis into pyruvate and energy is produced. Only
about 5 % of the glycerol is used for biomass production, when it is the sole carbon
source [59].

In the reductive route, glycerol is dehydrated into 3-hydroxypropionaldehyde
(3-HPA) by glycerol dehydratase. 3-HPA is subsequently reduced to 1,3-PDO by
1,3-propanediol oxidoreductase (PDOR) under consumption of nicotinamide ade-
nine dinucleotide (NADH2). This reducing equivalent is generated in the oxidative
route through the synthesis of pyruvate and the transformation of pyruvate into
acetyl-CoA. Different micro-organisms convert pyruvate into different by-products
(Fig. 6). Indeed, the yield of 1,3-PDO per glycerol depends on the availability of
NADH2. The availability is not only determined by the micro-organism itself but
also dependent on the process conditions of the fermentation [89]. Hence, the yield
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of 1,3-PDO depends on the combination and stoichiometry of the reductive and
oxidative pathways. Consequently, the maximum yield of 1,3-PDO formation from
glycerol in clostridia represents 0.67 mol/mol and is achieved under conditions
where acetic acid is the main by-product and not butyric acid, ethanol, or butanol
[89–91]. If no hydrogen and butyric acid are produced at all during the fermenta-
tion, the theoretical yield can be further increased to 0.72 mol/mol [89, 90, 92]. The
1,3-PDO yield from glycerol can be additionally enhanced with an in vitro
approach using crude enzymes from different organisms [93]. These systems feature
several biomanufacturing advantages, such as fast reaction rate, easy product sep-
aration, broad reaction condition and tolerance to toxic substrates or products [94].
Nevertheless, the cost and stability of enzyme and coenzymes restrict the use of
such systems in industrial scale.

Intensive work has been done to genetically modify micro-organisms to convert
glucose to 1,3-PDO in one micro-organism. In the DuPont PDO process, a synthetic
pathway was successfully developed to produce PDO from glucose, in which the
glycerol synthesis pathway from S. cerevisiae (catalysed by glycerol 3-phosphate
dehydrogenase (DAR1) and glycerol 3-phosphate phosphatase (GPP1/2) and the
metabolic pathway of converting glycerol to PDO from K. pneumonia (glycerol
dehydratase, encoded by the genes dhaB1, dhaB2, and dhaB3) were integrated into
E. coli (Fig. 7, [95]). The last step, the formation of 1,3-PDO is realized by a
1,3-propanediol oxidoreductase isoenzyme from E. coli (YqhD). Continuous strain
development was made by DuPont/Genencor, and the most fundamental changes

Fig. 6 Metabolic pathway of glycerol fermentation
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done were probably the elimination of D-glucose transport by the phosphotrans-
ferase system (PTS) and the downregulation of glyceraldehyde 3-phosphate
dehydrogenase (gap) together with reactivation of tpi. Finally, the yield could be
increased to 135 g/L with a productivity of 3.5 g/L h [95].

Still, in such a production system, the substrate suicide of glycerol dehydratase
(GDHt) that could limit the productivity has to be overcome [97]. Recently, Chen et al.
[96] constructed a new non-glycerol-derived synthetic 1,3-PDO synthesis in E. coli
(Fig. 7). With protein engineering of glutamate dehydrogenase, they extended the
pathway of homoserine, a natural intermediate of cellular amino acid metabolism. At
first, homoserine is converted by deamination into 4-hydroxy-2-ketobutyrate, fol-
lowed by decarboxylation into 3-hydroxypropionaldehyde (3HPA). Like in the
conventional pathway, 3HPA is subsequently transformed by alcohol dehydrogenase
into 1,3-PDO. The theoretical maximum yield (1.5 mol 1,3-PDO/mol glucose) of the
new 1,3-PDO pathway is the same as that of the DuPont route. Since homoserine
synthesis is a common pathway in most of the bacteria, the proposed route can be
engineered into selected hosts with the more favourable ability to utilize different and
cheap sugars. Moreover, the proposed pathway does not utilize GDHt and thus can
avoid the serious problems associated with vitamin B12 and substrate suicide. This
non-natural pathway is thus very appealing for 1,3-PDO production.

Fig. 7 Engineered E. coli strains for the production of 1,3-PDO from glucose.
a Glycerol-dependent synthetic pathway [95] and b non-glycerol-dependent pathway [96].
Dotted arrows indicate introduced synthetic pathway steps
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3.2 1,2-Propanediol

1,2-propanediol (1,2-PDO), generally called propylene glycol, is a major com-
modity chemical with a global demand estimated to be around 1.36 Mio. t/a for
several industries [98]. It appears as a colourless hygroscopic liquid with low
volatility and an oily consistency. This industrial important compound is mainly
utilized as solvent, antifreeze, de-icer, and heat transfer fluids [99]. Furthermore, it
could be applied as colour compound and flavour and fragrance carrier in foods,
beverages, cosmetics, and pharmaceuticals, or even as tobacco humectants [100].
The interest in 1,2-PDO increases since it is less toxic than products based on
ethylene glycol for humans and animals. The US Food and Drug Administration
(FDA) has determined 1,2-PDO to be “generally recognized as safe” for use in
food, cosmetics, and medicines [98].

3.2.1 Microbial Cell Factories for the Production of 1,2-PDO

The biological route for producing 1,2-PDO from sugars is known since many
years. Early studies on Thermoanaerobacterium thermosaccharolyticum [101,
102], Bacteroides ruminicola [103], C. sphenoides [104], L. Buchneri [105]), and
E. coli [99] have demonstrated 1,2-PDO formation. In comparison with other diols,
the 1,2-PDO yields are much lower, either from sugars or from glycerol [92]. The
biosynthesis of 1,2-PDO requires the conversion of the main carbon source into
DHAP with the glycolytic pathways (Fig. 8). Therefore, due to higher reduction
degree of glycerol, the yield of 1,2-PDO is higher than that from glucose (theo-
retical maximum yield of 0.63 and 0.72 g/g from glucose and glycerol, respec-
tively). In either way, the biosynthesis consumes redox equivalent and ATP [99].

There are two possible pathways for the biosynthesis of 1,2-PDO. The first one
metabolizes deoxy sugars (methyl pentoses (Fig. 8a)), whereas the second one
converts DHAP into methylglyoxal (Fig. 8b) and further to 1,2-PDO. The deoxy
pathway is well studied in E. coli and is reviewed by Bennett and San [106]. At
first, L-rhamnose is converted into L-rhamnulose-1-phosphate, which is subse-
quently split into dihydroxyacetone phosphate and S-lactaldehyde by the enzyme
RhaD (L-rhamnose dehydrogenase). Fucose, on the other hand, is first isomerized
into L-fuculose and transformed into L-fuculose-1-phosphate by the enzyme L-
fuculose kinase. Another enzyme, fucA (L-fuculose-1-phosphate aldolase), cleaves
it into dihydroxyacetone phosphate and L-lactaldehyde. Depending on the redox
conditions, the lactaldehyde can be either reduced to 1,2-PDO or oxidized to lactic
acid. Anaerobic conditions lead to conversion into S-1,2-PDO, catalysed by a
NAD-oxidoreductase fucO (S)-1,2-propanediol oxidoreductase [106]. Since deoxy
sugars are quite expensive as substrate, the deoxy pathway is considered to be
uneconomical as an industrial process.
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In T. thermosaccharolyticum, the second pathway is found. At first, DHAP is
produced from glucose, xylose, mannose, or cellobiose. DHAP is then converted
with methylglyoxal synthase into methylglyoxal (MG). Subsequently, MG is
reduced to R-1,2-PDO with aldose reductase or glycerol dehydrogenase. If glucose
is fermented only into R-1,2-PDO, acetate, and CO2, a theoretical yield of 0.42 g R-
1,2-PDO/g glucose is possible. In E. coli, MG is converted into acetol with the
NADPH- or NADH-dependent lactaldehyde oxidoreductase, and alcohol or alde-
hyde dehydrogenases. E. coli also converts MG into R-lactaldehyde with
NADH-dependent glycerol dehydrogenase. On the contrary, the yeast S. cerevisiae
produces S-lactaldehyde from MG, which is subsequently converted into S-
1,2-PDO by a NADPH-dependent aldose reductase. However, the MG production
in S. cerevisiae is non-enzymatic and spontaneous, and the final 1,2-PDO titre is
quite low [101].

Recently, Clomburg and Gonzales [99] developed a new strain of E. coli with
increased production of 1,2-PDO. The functional pathway was engineered by
combining different strategies (Fig. 9a): (I) to ensure DHAP availability, they
changed the PEP-dependent DHAK (dihydroxyacetone kinase) with the
ATP-dependent DHAK from Citrobacter freundii; (II) they overexpressed the
genes for 1,2-PDO synthesis from DHAP; and (III) competitive pathways for
acetate and lactate were deleted. Other side products were maintained to ensure the
necessary redox balance and ATP generation. The recombinant E. coli strain pro-
duced 5.6 g/L 1,2-PDO with a yield of 0.21 g/g glycerol [99]. More recently, Koch
et al. [107] established a recombinant E. coli to enhance 1,2-PDO production from
several carbon sources with three newly integrated and highly expressed enzymes.

Fig. 8 a Metabolic pathways of deoxy sugar fermentation into 1,2-propanediol by E. coli and
b the various routes of the conversion of methylglyoxal to 1,2-PDO in different micro-organisms
(modified after [106])
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This new pathway avoids the toxic intermediate methylglyoxal and use the natural
formation of lactate. The latter one is transferred into lactyl-CoA by lactate-CoA
transferase and then into lactaldehyde by lactyl-CoA reductase. In the last step
1,2-PDO is formed with the help of lactaldehyde reductase (also 1,2-propanediol
oxidoreductase). Due to this, a maximum yield of 0.55 g PDO/glycerol and addi-
tional ATP can be achieved.

Furthermore, in a more sustainable approach, Li and Liao [108] described a
photosynthetic conversion of carbon dioxide with a newly engineered cyanobac-
terium S. elongatus PCC 7942 (Fig. 9b). For the production of 1,2-PDO, genes for
methylglyoxal synthase (mgsA), glycerol dehydrogenase (gldA), and aldehyde
reductase (yqhD) from E. coli have been inserted. Additionally, the alcohol
dehydrogenase (sADHs) from C. beijerinkii is induced into the cyanobacterium.
The NADPH pool of S. elongates itself was taken into account for the 1,2-PDO
production that requires many reducing equivalents. Therefore, the
NADPH-specific secondary alcohol dehydrogenase was newly implemented in the
pathway, resulting in the production of 150 mg/L 1,2-PDO from environmental
CO2 and light. Despite the progresses made in the implementation of metabolic
engineering strategies and developing different new strains, the low reaction rate
and product concentration are the most important barriers in its industrial
production.

(a) (b)

Fig. 9 Synthetic pathways for the production of 1,2-PDO: a from CO2 by Synechococcus
elongates (according to [108]) and b from glycerol by E. coli. Red crosses indicate deleted
pathways, and dashed lines represent intermediate steps. (modified after [99])
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4 Recovery of Diols

The production of diols suitable for chemical or pharmaceutical applications is only
achievable by using suitable separation and purification steps (downstream pro-
cessing) after the fermentation. The downstream processing is one of the most
influencing factors, contributing up to 50–70 % of the total product costs [109].
Thus, to have a suitable downstream process is of major interest for an economic
and sustainable production of biobased diols. Xiu and Zeng [109] reviewed
extensively the downstream processing of 2,3-butanediol and 1,3-propanediol fer-
mentation broths. In the following, the main steps and challenges of recovering
diols are briefly mentioned and some of the recent studies are then highlighted.

4.1 Recovery of Butanediol

The principle process of product recovery is almost the same for all diols. After
cultivation, the final fermentation broth is a multicomponent mixture not only
consisting of water, residual substrate and salts, and side products (e.g. alcohols,
organic acids), but also consisting of cells and cell debris in addition to the target
product. The initial step is the separation of biomass, which can be performed via
centrifugation, filtration, or flocculation [110]. Residual salts may cause fouling on
heating devices or inactivation of catalysts. Therefore, they may need to be
removed, e.g., by electrodialysis, salting out, or ion exchange chromatography. The
excess amount of water in the broth can be reduced by evaporation. The last step to
obtain high purification grades is mainly conducted via distillation.

Difficulties in the recovery of butanediol-like 2,3-BDO are mainly caused by the
high boiling point (180 °C for 2,3-BDO) and high hydrophilicity. Extractive sep-
aration is hampered by its low selectivity and a relatively low distribution coeffi-
cient towards extracting solvents. Promising solvents studied include ethyl acetate,
tributyl phosphate, diethyl ether, n-butanol, dodecanol, and oleyl alcohol. For
example, Anvari and Kayati used the non-toxic oleyl alcohol for an in situ
extraction, but separated only 68 % of the total 2,3-BDO produced by K. pneu-
monia [111]. Improvement of extraction methods represents the combination of
solvent extraction and salting-out techniques. The salting-out technique is based on
a system of two aqueous phases: one with a hydrophilic solvent and one with highly
concentrated salts. The increased ionic strength in the salt phase forces more diols
to dissolve in the solvent phase, which is in this case an extractant. Li et al. [112]
use a mixture of 32 % (w/w) ethanol and 16 % (w/w) ammonium sulphate to
recover 91.7 % of 2,3-BDO next to 99.7 % of cells and 91.2 % of proteins. With
34 % (w/w) 2-propanol and 20 % (w/w) ammonium sulphate, Sun et al. [113]
separated 93.7 % of 2,3-BDO. Also here, 99 % of the cells could be removed and
reused for a new inoculation, which has a positive effect on the process economics.
With butanol and potassium, phosphate salts up to 99 % of the 2,3-BDO can be
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separated, as revealed by an Aspen Plus simulation performed by Birajdar et al.
[114]. However, the 2,3-BDO has to be separated again from the extractants by
evaporation, which means additional downstream units with additional costs. The
purification of 2,3-BDO directly by distillation is hampered due to the high boiling,
and it might be only used to enhance the concentration. Qureshi et al. [115]
described a vacuum membrane distillation process, where the membrane retains the
2,3-BDO and let the more volatile compounds (water, ethanol) pass through. The
concentration could be increased from 40 to 430 g/L. However, medium compo-
nents caused membrane fouling, and the water flux decreased at higher 2,3-BDO
concentrations [115]. A newly developed process combines reactive extraction and
reactive distillation. Li et al. [116] used n-butyraldehyde (BA) as reactant and
extractant at the same time. It reacts with 2,3-BDO to 2-propyl-4,5-
dimethyl-1,3-dioxolane (PDD), which is extracted by BA itself. Both BA and
PDD are transferred into a reactive distillation column, where the catalysts sul-
phuric acid and hydrochloric acid cleave PDD again into BA and 2,3-BDO. Li et al.
were able to recover 90 % of the 2,3-BDO with purity higher than 99 %.

4.2 Recovery of 1,3-Propanediol and 1,2-Propanediol

The downstream processing of 1,2-PDO and 1,3-PDO from fermentation broth is
similar, but could be even more challenging than the recovery of butanediol
because of their higher boiling points (188 and 233 °C, respectively).

Liquid–liquid extraction could be more advantageous for PDO because it is
selective and more energy efficient than distillation. Malinowsky tested different
solvents, such as the series of pentanol until nonanol and hexanal until decanal, and
other organic solvent. The best results were achieved with aliphatic alcohols and
aldehydes, but the distribution of PDO in the solvents has been very low. Thus, large
amounts of solvents would be required [117]. Li et al. [118] described the extraction
and salting-out method using ethanol and sodium carbonate. They could separate
97.9 % of the 1,3-PDO and were able to separate 99.1 % of cells and other fer-
mentation products, such as organic acids, in one step with this method.
A combination of methanol and dipotassium hydrogen phosphate leads to a slightly
higher 1,3-PDO recovery of 98.1 % [119]. In addition, the main side product
2,3-BDO, as well as organic acids, could also be recovered. Müller et al. [120] used
ionic liquids as extractants in combination with phosphate salts. Despite the fact that
high distribution coefficients for 1,3-PDO could be achieved, extraction with ionic
liquids is too expensive and not available for in situ processes due to their high
toxicity for the bacteria. Another possibility is the reactive extraction of 1,3-PDO
with formaldehyde or acetaldehyde into 2-methyl-1,3-dioxane. The extraction of the
product is enabled by the organic solvent extractants ο-xylene, toluene, or ethyl-
benzene [121]. In a recent approach, Matsumoto et al. [122] use 1-butanal as reactant
and toluene as diluent together with a hydrophobic acidic ionic liquid as a catalyst
for the acetalization of 1,3-PDO into a dioxan. With this method, 96 % of the

Microbial Cell Factories for Diol Production 189



1,3-PDO could be converted and extracted [122]. Possible drawbacks of this method
are undesired reactions of reactant and fermentation by-products, forming further
undesired components and causing loss of reactant. The reactive extraction of
1,2-PDO from aqueous environment was described by Broekhuis et al. [123].
1,2-PDO reacts with acetaldehyde to form 2,4-dimethyl-1,3-dioxolane. In the next
step, dioxalan is cleaved via hydrolysis into 1,2-PDO and acetaldehyde. Again, the
last step in purification comprises a distillation column. Separation and purification
combined in one operation unit can be realized in adsorption processes. With a
sulphonate exchange resin, Hilaly and Binder were able to separate 95 % of the
1,3-PDO with a purity of 87 %. This process, however, had a high water demand,
resulting in high energy cost [124]. For further cost reduction, Wang et al. [125] used
a low-cost cation exchange resin based on polystyrene with high adsorption capacity
to recover 1,3-PDO from fermentation broth. Other possibilities are adsorption on
silica resin [126] or on beta zeolites [127]. In general, they are very selective, exhibit
a simple design, are easy to operate, and are environmentally friendly because the
absorbance material can be recovered [125]. However, they are difficult to be
implemented in large-scale processes, due to high exchange surfaces and subsequent
large pressure loss, together with high tendencies for fouling [109]. In addition,
every adsorption process also requires a desorption step with additional costs.

5 Concluding Remarks

As summarized above, significant progresses have been made in the biosynthesis of
different diols from various substrates. Quite clearly, for some of the diols, the
microbial inherent weaknesses, such as the low product yield, slow reaction rate,
high separation cost, and intolerance to toxic products, are the largest obstacles to the
cost-competitive biotechnological production (e.g. 1,2-PDO and 1,3-BDO). A more
profound comprehension of cell factories’ physiology and stress responses would
necessarily offer improved tools (at either genetic, metabolic, or system levels) to
favour high diol yield and high-quality production. In the past few years, steps taken
towards these goals enhanced the bioproduction process economics of some diols
significantly. Biobased 1,3-PDO, 1,4-BDO, and 2,3-BDO are successful examples.
Still, providing low-cost production process limits the competitiveness of some
processes, and hence, much R&D efforts are further needed which may include:

1. Production of high-quality diols suitable for high-value products. This requires
system-level understanding of the synthetic pathways to target the formation of
desired isomers of diols within cell factories. Pure compounds of optically active
2,3-BDO, 1,3-BDO, 1,4-BDO, or 1,2-PDO are considered as high-value prod-
ucts. It is worth mentioning that chiral synthesis or separation remains a costly
step in chemical synthesis, and hence, using enzymes or cells to synthesize
compounds with high enantiomeric purity represents an alternative and effective
approach.
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2. Formation of multiproduct in a biorefinery approach will reduce the process
costs significantly. Hence, several conversion technologies (thermochemical,
biochemical, etc.) are combined together to reduce the overall cost, as well as to
have a better flexibility in product generation and to provide its own power.
Examples are the simultaneous production of 1,3-PDO and biogas in unsterile
process or the coproduction of 1,3-PDO and butanol.

3. Development of robust microbial cell factories with wide substrate utilization
specificities that can dominate in wide number of niches. Lignocellulosic resi-
dues that are plentiful and cheap have been widely investigated but their
recalcitrance to degradation challenge the production of diols biotechnologi-
cally. Hence, adapted cell factories to inhibitors and environmental stresses in
such raw substrates are then crucial for forthcoming diol production.

4. Exploring new derivatives or uses of diols that will open new markets. Whereas
bioprocesses for 2,3-BDO are well established in terms of productivity, yield,
and titre, the market size for 2,3-BDO itself is still relatively small.

5. Downstream processing of diols is technically feasible, and a relatively high
purification grade can be achieved, though the costs could be rather high. As a
cost-effective method, in situ product recovery integrated with the fermentation
process should gain more attention in the future.

Designing new-generation bioprocesses increasingly depend on engineering
process-compatible cell factories. The latter, whether through genetic or physio-
logical manipulations, can be greatly assisted by metabolic engineering. To achieve
these goals, more fundamental knowledge is needed about metabolic pathways,
control mechanisms, and process dynamics to optimally design integrated systems.
Chemical engineers, metabolic engineers, and microbial physiologist will have to
work for such integrated process. We argue that only by developing cost-efficient
processes through integration of fermentation and downstream processing, the
microbial production of diols can fulfil their potentials as platform chemicals.
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1 Introduction

Higher fungi or macrofungi, consisting of the divisions ascomycetes, basidiomy-
cetes, and imperfect fungi, refer to the fungi with hyphae well-developed, septate,
and usually at some stage of development interwoven into a compact tissue espe-
cially in the fruiting body. Studies of higher fungi help us not only to find new
edible and officinal resources but also to understand their complicated biology.
Several thousand years ago, people used higher fungi as medicinal and food
sources, but at that time, their functional components were unknown. In recent
decades, a large number of useful substances from higher fungi have been isolated,
identified, and characterized, which could reduce blood pressure, enhance immu-
nity, and possess anticancer and anti-HIV and other pharmacological activities.
Some new bioactive compounds reported in recent years are shown in Table 1, and
most of them are secondary metabolites, which are organic compounds not directly
involved in the normal growth, development, or reproduction of an organism but
often play an important role in plant defense against herbivory and other inter-
species defenses. These compounds can be used as potential lead compounds for
new drug development. However, bioactive secondary metabolites produced by
higher fungi are generally of very low productivity and are thus unable to meet the
requirement for (pre-)clinical study and large market supply. Furthermore, these
metabolites are usually of complicated chemical structures and very difficult to
synthesize chemically at high efficiency. Higher fungus cell factories, therefore,
have received increasing attention to achieve large-scale industrial production of
their unique and important natural compounds.

Microbial cell factories are the basis of biochemical conversion from low-cost
raw materials and/or agro-industrial by-products into valuable medicine, chemicals
and energy, or detoxifying harmful/toxic chemicals. When a beneficial compound
from higher fungi is identified, we need to reveal its biosynthetic pathway and to
improve its biosynthesis by genetic or metabolic engineering. Also, its large-scale
efficient production using fermentation technology is necessary for industrial
application. The framework in constructing higher fungus cell factories is shown in
Fig. 1.

Cell factories of higher fungi have been more and more widely applied to
produce value-added compounds. For example, the higher fungus Ganoderma lu-
cidum is used for the production of ganoderic acid, a potential antitumor terpenoid;
the key biosynthetic genes in its pathway upstream were overexpressed, and the
fermentation process parameters were optimized, and a new two-stage fermentation
strategy was also developed to achieve a high yield of the product [41–44]. In order
to better understand the significance of cell factories of higher fungi, in the fol-
lowing, this article is outlined from the construction and analysis of high-fungus
cell factories to their production of useful metabolites.
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Table 1 New bioactive compounds recently reported in higher fungi

Higher fungi Compounds Bioactivities References

Terpenoids

Ganoderma
boninense

Ganoboninketals A-C Anticancer [1]

Stereum hirsutum Three hirsutane-type sesquiterpenoids Antimicrobial and
anticancer

[2]

Inonotus rickii Inonotic acid A [3]

3-O-Formyl inonotic acid A

Inonotic acid B

3,6-Dihydroxycinnamolide Anticancer

Pleurotus
cornucopiae

Antibacterial [4]

Granulobasidium
vellereum

2-Hydroxycoprinolone [5]

8-Deoxy-4a-hydroxytsugicoline

8-Deoxydihydrotsugicoline

Naematoloma
fasciculare

Four new lanostane triterpenoids Anticancer [6]

Flammulina
velutipes

Enokipodins E-J Antifungal activity [7]

Sterpurols A Anticancer and
antioxidant

Sarcodon
scabrosus

Secoscabronine M Anticancer [8]

Scabronine M Anticancer [9]

Neonothopanus
nambi

Nambinones A-C Anticancer [10]

1-Epi-nambinone B

Nambinone D

Aurisin K Antimalarial and
anticancer

Armillaria Melleolide sesquiterpene aryl esters Anticancer [11]

Ganoderma
lucidum

Lucidenic acids A-C, N Anticancer [12]

7-O-Ethyl ganoderic acid O Anticancer [13]

3α,22β-Diacetoxy-7α-hydroxyl-5α-lanost-8,
24E-dien-26-oic acid

Anticancer [14]

3-O-Acetylganoderic acid B Antimicrobial, anti-HIV,
antitumor, antioxidation

[15]

8β,9α-Dihydroganoderic acid C

3-O-Acetylganoderic acid K

Ethyl 3-O-acetylganoderate B

Ethyl ganoderate J

(continued)
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Table 1 (continued)

Higher fungi Compounds Bioactivities References

Heterocyclics

Hericium
erinaceus

Erinacerins C-L Anticancer [16]

Isohericenone Anticancer [17]

3-Hydroxyhericenone F, Hericenone I and J Endoplasmic reticulum
(ER) stress-suppressive
activity

[18]

Sarcodon
leucopus

Sarcoviolin beta and episarcoviolin beta Antioxidant and
anticancer

[19]

Phellinus ribis Phelliribsin A Anticancer [20]

Trifolium
nigrescens

4″′,5,5″,7,7″-Pentahydroxy-3′,3″′-
dimethoxy-3-O-beta-D-glucosyl-3 ″,4′-
O-biflavone

Antioxidant and
tyrosinase inhibitory
activities

[21]

Neolentinus
lepideus

5-Methoxyisobenzofuran-4,7(1H,3H)-dione,
1,3-Dihydroisobenzofuran-4,6-diol

Antibacterial [22]

Lasiosphaera
fenzlii

4,6-Dihydroxy-1H-isoindole-1,3(2H)-dione,
4,6-Dihydroxy-2,3-dihydro-1H-isoindol-1-one

Anticancer [23]

Macrolepiota
neomastoidea

Macrolepiotin Anticancer [24]

Amanita exitialis N-2-(1-Methoxycarbonylethyl)guanosine Anticancer [25]

Ganoderma
colossum

Ganomycin 1 Anti-HIV [26]

Xylaria sp.
PSU-F100

Xylarisin 132 Antibacterial [27]

Xylaria sp.
(#2508)

Xylopyridine A DNA-binding affinity [28]

Phellinus linteus Phellifuropyranone A Anticancer [29]

Cortinarius
brunneus

N-Glucosyl-1H-indole derivatives [30]

Cortinarius
subtortus

(Iso)-Quinoline alkaloids Antioxidant [31]

Miscellaneous

Cordyceps taii Deacetylcytochalasin C
Zygosporin D

Anticancer [32]

Lentinus
polychrous

6-Methylheptane-1,2,3,4,5-pentaol Anticancer [33]

Tuber indicum Four novel cerebrosides Antifatty liver,
antitumor

[34]

Cordyceps
jiangxiensis

Jiangxienone Anticancer [35]

Hericium
erinaceums

Hericenone L Anticancer [36]

Cantharellus
cibarius

(10E, 14Z)-
9-Oxooctadeca-10,14-dien-12-ynoicacid

Anticancer [37]

(continued)
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2 Genetic Manipulations of Higher Fungi

Initially, the designing strategies of higher fungus cell factories by genetic engi-
neering were mainly aimed at single gene modification and/or an individual path-
way, which may not efficiently change the metabolic flux. With the advance of
metabolic engineering and synthetic biology, the focus has gradually shifted to
polygenic modifications and multimetabolic pathways. This has resulted in the shift
in designing strategies of metabolic engineering from conventional deletion or
overexpression of endogenous genes in individual metabolic pathways to current
combinatorial approaches with manipulation of key gene expression of metabolic
networks in an entire cell [45] (Fig. 2), while control of environmental factors
(Fig. 2) could provide useful epigenetic information and cellular physiological and
metabolic responses to cultivation conditions (especially in large-scale cultivation)
with aid of omics analysis (Fig. 1). Recently, higher fungi as cell factories for the
production of secondary metabolites have attracted extensive interests around the
world. While compared with the achievement of the cell factories of Escherichia

Table 1 (continued)

Higher fungi Compounds Bioactivities References

Thelephora
aurantiotincta

Thelephantin O Anticancer [38]

Tuber indicum 5α-Androst-16-en-3α-ol Increase the sexual
arousal of human
female, adjust moods,
mediate human
menstrual synchrony

[39]

Thelephora vialis Vialinin A Antioxidant and
anticancer

[40]

Fig. 1 Framework in constructing higher fungus cell factories for useful secondary metabolite
production
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coli and yeasts, the studies on higher fungi are obviously lagging behind, which
requires more research inputs urgently. In this section, the tools for constructing
high-fungus cell factories, including genetic transformation methods, gene over-
expression, gene silence, and gene deletion, will be overviewed as follows.

2.1 Genetic Transformation Methods

The development of genetic transformation technology provides a powerful tool for
the study of gene expression and gene function. Establishment of an efficient
transformation system is an important premise for functional analysis of genes. The
genetic transformation technology has been applied to various mushrooms, such as
Agaricus bisporus [46], Flammulina velutipes [47], Volvariella volvacea [48],
Ganoderma weberianum [49], and Tremella fuciformis [50]. Over the years, there
have been great advances in transformation methods of higher fungi. For example,
Agrobacterium-mediated transformation was successfully applied to higher fungi,
which was originally used in plants. Here, the development of transformation
technology in higher fungi is to be overviewed, including polyethylene glycol
(PEG)-mediated transformation, electroporation transformation, Agrobacterium
tumefaciens-mediated transformation, and restriction enzyme-mediated DNA inte-
gration. The comparison of those four methods is shown in Table 2.

Fig. 2 Strategies for improving cell factories of higher fungi
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2.1.1 PEG-Mediated Transformation

The PEG protoplast transformation method has been applied to G. lucidum [51],
Pleurotus nebrodensis [54], Lentinus edodes [55], etc. In the past, the efficiency of
this transformation process was generally low and the exogenous gene was difficult
to integrate into the genome by this method, and many transformants lost their
resistance phenotype after several-week growth in the absence of selection pressure
[56]. However, after many efforts, this method has been improved and become one
of main ones in higher fungi.

Li et al. [51] developed an efficient PEG-mediated transformation method for
Pleurotus ostreatus. Heparin, ATA, and spermidine were used to improve the
transformation efficiency. As a result, 80–180 colonies could be obtained per μg of
DNA per 107 protoplasts with the hygromycin B phosphotransferase gene (hph) as
a selection marker, which was much higher than previously reported [57]. And
120–150 and 85–100 transformants per µg of DNA per 107 protoplasts were also
obtained in G. lucidum and L. edodes, respectively. That means the PEG-mediated
transformation could be a useful tool for genetic engineering in mushrooms.

Yu et al. [58] transformed a homogenous 3-hydroxy-3-methylglutaryl coenzyme
A reductase (HMGR) gene into G. lucidum by PEG-mediated transformation
method. The gene sdhB mutation was used as a selection marker. A total number of
15–20 transformants per µg plasmid DNA were obtained. What’s more, they found
that the transformants could maintain the resistance phenotype after five passages of
cultivation on a non-selection medium. Southern blot analysis confirmed that the
sdhB gene was stably integrated at multiple sites in the genome.

High efficiency, convenience, and genome integration are the merits of the
PEG-mediated transformation method in the genetic engineering of higher fungi.
However, the genes integrated into the genome are usually of multiple copies, and
the protoplast preparation is also time-consuming.

2.1.2 Electroporation Transformation

Electroporation transformation has also been used in higher fungi, such as T. fuc-
iformis [59], L. edodes [60], F. velutipes [61], and G. lucidum [62]. Compared with
other transformation methods, it is simple, rapid, and of wide application range. In

Table 2 Comparison of four transformation methods

Method Applicability Efficiency Operability References

PEG-mediated transformation Ordinary Ordinary Ordinary [51]

Electroporation transformation High Ordinary High [52]

Agrobacterium tumefaciens-
mediated transformation

Ordinary Low Low [44]

Restriction enzyme-mediated
DNA integration

Low High Ordinary [53]
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the past, electroporation transformation required protoplast preparation, which was
tedious, but recently, scientists have developed a modified method for basidiospores
or mycelial fragments. Kuo et al. [63] did transformation by electroporation of
basidiospores or mycelial fragments in F. velutipes. While the basidiospores or
mycelial fragments also need lysing enzymes to incubate for 2 h, it is much easier
than protoplasting. The efficiency using basidiospores could be 30–150 transfor-
mants per μg DNA in L. edodes [60]. The resistance was stable for at least 6 months
during subcultivation. Southern blotting analysis confirmed that the gene was stably
integrated into the genome.

The modified electroporation transformation has many advantages. It is simple
and cheap and does not require protoplasts. For some mushrooms, it is difficult to
obtain a sufficient number of protoplasts and the regeneration efficiency from
protoplasts was also very low. Thus, this method was more widely applicable than
others under these circumstances. However, the method also has limitations [61].
During basidiospore isolation, contamination frequently happens. Moreover, mul-
tiple copies may be generated via random integration. It is not surprising that
electroporation transformation is yet to be improved.

2.1.3 Agrobacterium Tumefaciens-Mediated Transformation

In 1995, Bundock used A. tumefaciens-mediated transformation (ATMT) in
Saccharomyces cerevisiae for the first time [64]. De Groot et al. [65] applied
ATMT to filamentous fungi—Dictyostelium discoideum. Recently, some higher
fungi have been transformed by this method, including A. bisporus [66, 67], F.
velutipes [68], Heterobasidion annosum [69], P. nebrodensis [70], V. volvacea
[71], and G. lucidum [44]. The ATMT method has the following advantages: a wide
range of transformation recipients, high degree of stability, and high proportion of
single-copy transformants [44]. For the fungi lacking sexual stages, the exogenous
gene single-copy transformation is very important. This made ATMT become one
of the common higher fungal transformation methods.

Xu et al. [44] applied the Agrobacterium-mediated transformation to G. lucidum
and obtained 10–15 transformants per 107 protoplasts. All tested transformants
maintained resistance stably and the transformants showed 100 % mitotic stability
for the sdhB selection marker. Most of the integrated DNA had a single copy in the
genome.

The efficiency of ATMT was dependent on species, and this method was also
reported to be unable to obtain transformants [72]. Many factors can affect the
efficiency of this transformation, such as the conditions of protoplasts and A.
tumefaciens, the ratio of the number of bacteria to protoplasts, and cocultivation
temperature. Zhang et al. [73] tested different transformation parameters in
Hypsizygus marmoreus. Their results showed that 25 °C and 2 days of coculture
was best. Kemppainen et al. [74] studied the mechanism of ATMT and found no
obvious sequence similarities between genomic sites and T-DNA (the transferred
DNA of the tumor-inducing (Ti) plasmid of A. tumefaciens). About 75 % of the
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integrations took place at the predicted locus in the model mushroom Laccaria
bicolor.

ATMT has the irreplaceable advantage in the single-copy DNA integration, so
this method has been developed rapidly these years [75]. But it should also be
improved due to limitations such as low applicability and fluctuant transformation
efficiency. As a transformation method affects the fate of transformed DNA, it
should be paid attention to during the design of metabolic engineering strategies.
For example, the PEG method could be best in the case where multiple copies of a
gene should be randomly integrated into the genome [76]. On the other hand, when
targeted integration or gene deletion is expected, the ATMT method would be the
choice [77].

2.1.4 Restriction Enzyme-Mediated DNA Integration (REMI)

The mechanism of REMI is that added restriction enzymes in the mixture enter
recipient cells, recognize genome/plasmid enzyme cutting sites, and realize the
cutting and integration, and then, incisions are connected by DNA ligase. The
earliest REMI was established in yeasts [78], and it has a wide range of application
[79]. Recently, with increasing studies on higher fungi, REMI has also been applied
to G. lucidum [80], C. cinereus [81], L. edodes [82], Pleurotus eryngii [53], and
others. For example, Noh et al. [53] transformed the enhanced cyan fluorescent
protein (ECFP) gene in P. eryngii via REMI, resulting in 10–40
hygromycin-resistant transformants per μg of the Hind III-digested DNA and 106

protoplasts. Southern blot analysis revealed that the gene was integrated to the
genome.

One of the advantages of REMI is that it can generate various mutants [83]. This
advantage has been used to analyze the genes related to the mutant characteristics.
For example, by using REMI, Nakazawa et al. [84, 85] obtained a lot of mutants
and found that the Cc.rmt1 gene encoded a putative arginine methyltransferase and
the Cc.ubc2 gene affected clamp cell morphogenesis and nuclear migration of C.
cinerea.

REMI can also be used for the site of insertion and selection marker and pro-
vides great convenience for screening. But, it also needs protoplast preparation and
requires the addition of PEG and CaCl2 for higher transformation efficiency.
Cutting sites of the restriction enzyme are random; at the same time, to obtain
sufficient number of transformants, the REMI system needs to select the optimal
transformation enzyme, plasmid, and recipient cells. Thus, this method has not been
widely applied, compared to the ATMT and PEG methods described above.

As another transformation method, the particle bombardment method has also
been used as a transformation tool in higher fungi, as reported by Sunagawa and
Magae [86] and Sunagawa et al. [87]. But, because of requiring a special instrument
—particle bombardment gun—this method is not the first choice.
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2.2 Selectable Marker

A resistance marker is generally used for selection of positive transformants. The
commonly used resistance markers in higher fungi are of drug resistance, so that the
positive transformants could grow in the culture medium with the presence of drug
(s). Until now, the most widely used marker is hygromycin B phosphotransferase
(hph) gene derived from bacteria and the transformants would obtain hygromycin
resistance. Interestingly, our recent work [44] found that the mutated sdhB gene
encoding an iron-sulfur protein subunit of succinate dehydrogenase, which suc-
cessfully conferred carboxin resistance upon transformation, was a suitable resis-
tance marker, and the efficiency of transformants screening in carboxin resistance
was within the range of other reported cases. But, the use of hygromycin resistance
was found unsuccessful to obtain a positive transformant in the system.

2.3 Gene Overexpression

The exogenetic genes may exist stably in cells through transformation. However,
the low gene expression level is a bottleneck to the construction of cell factories.
Thus, in this case, the gene overexpression is critical to successful metabolic
engineering. Upregulation expression of key genes can effectively improve the level
of downstream metabolite synthesis. Recently, gene overexpression has been
applied to gene engineering of higher fungi in developing useful cell factories.

Xu et al. [44] overexpressed the HMGR gene which is a key enzyme in the
synthetic pathway of ganoderic acids in G. lucidum, by using a homogenous gpd as
a promoter. As shown in Fig. 3, the ganoderic acid content reached twofold in the
overexpressed cells compared to the wild type (control). The accumulation of
intermediates, such as squalene and lanosterol, was also increased. The results
showed the promising potential of metabolic engineering of the ganoderic acid
pathway via the transgenic system.

Zhou et al. [88] improved the production of individual ganoderic acids by engi-
neering the biosynthetic pathway of ganoderic acids in G. lucidum through over-
expressing the gene of squalene synthase (SQS), which catalyzes the following
reaction: 2 farnesyl diphosphate + NAD(P)H⇆ squalene + 2 diphosphate + NAD(P)
(+). The constructed SQS strain may be a suitable basis for further development of an
industrial process for hyperproduction of the antitumor secondary metabolite (Fig. 4).

The direct expression of a target gene is one way of overexpression, while the
promoter engineering is another way to optimize the expression of target genes.
Chai et al. [89] adopted promoter engineering to enhance the biosynthesis of β-
glucans in P. ostreatus, in which β-glucan synthase is its key enzyme. After
changing the β-glucan synthase promoter into a strong one from Aspergillus
nidulans, the product level was increased up to 32 %, which is the first report of
successful swapping of promoters in higher fungi.
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Fig. 4 Kinetic profiles of cell growth and residual sugar (a), content of total GAs (c),
accumulation of GA-Me and GA-T (b), and GA-S and GA-Mk (d) in the WT strain and the
SQS-overexpressed strain. The error bars indicate the standard deviations from three independent
samples, d days [88]

Fig. 3 Kinetic profiles of cell growth (a) and ganoderic acid content (b) in the wild-type strain
(open circle), the strain transformed with a void plasmid (open square), and the
tHMGR-overexpressed strain (open triangle). The error bars indicate the standard deviations
from three independent samples. Asterisks statistical significance (P < 0.05) compared to the WT
strain, d days [44]
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The above-mentioned strategies are mainly related to changing promoters by
introducing endogenous or heterogonous promoters to increase the expression of
key genes in biosynthetic pathways. In another aspect, Lin et al. [90] reported that
heterogonous protein expression in the enoki mushroom F. velutipes was notably
enhanced by polycistronic strategy to express multiple copies of a single gene. This
strategy can realize not only single gene copy but also coexpression of multiple
genes.

Many efforts have been made to enhance the expression of targeted genes in
higher fungi by promoter engineering, increasing gene copy number, etc.
Coconi-Linares et al. [91] overexpressed three peroxidases in a single
Phanerochaete chrysosporium strain, which increased the production yield of lig-
ninolytic enzymes up to 4 times. However, the gene expression level is still difficult
to control precisely, making the regulation of the metabolic flux of higher fungus
cell factories not so easy.

2.4 Gene Silencing

Gene silencing, or gene knockdown, reduces the expression of a targeted gene [92].
By this, we can downregulate the metabolic branch pathway and decrease the flux
to unfavorable metabolic pathway, and ultimately enhance the metabolic flux
toward the targeted product biosynthesis. These years, gene silencing has been
applied to C. cinereus [93], A. bisporus [94], L. bicolor [95, 96], L. edodes [97],
and G. lucidum62. The results show that the gene silencing technology is important
to efficient biosynthesis of useful metabolites and it also helps the characterization
of gene functions in higher fungi [98].

RNA interference (RNAi) is an RNA-dependent gene silencing process that
could inhibit the expression of specific genes at the posttranscriptional stage by
introducing small double-stranded interfering RNAs [99]. Mu et al. [62] cosilenced
the genes of orotidine 5′-monophosphate decarboxylase (URA3, as a reporter) and
laccase in G. lucidum. Their results showed that the highest rate of URA3 silencing,
reaching 81.9 %, was obtained by using the dual promoter vector.

RNAi is usually used for gene functional analysis. Godio et al. [100] proved that
a squalene epoxidase gene (erg1) from basidiomycete Hypholoma sublateritium
was involved in the biosynthesis of clavaric acid (an antitumor triterpenoid) and
ergosterol. When erg1 was cloned and expressed with the gpdA promoter from A.
bisporus, the production of clavaric acid was increased, while silencing erg1 gene
by antisense RNA resulted in the reduction of clavaric acid production and
appeared an ergosterol-dependent phenotype (Fig. 5).

Different from gene knockout, the efficiency of gene silencing cannot reach
100 %, but at least 70 % of the targeted RNA could be depleted. However, this
‘limitation’ also has an advantage over the gene knockout in cases where essential
genes under investigation are still required [101].
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2.5 Gene Deletion

Gene deletion, the same as gene knockout or gene inactivation, is an important tool
in learning about genes with unknown or incompletely known functions. This
method usually occurs by homologous recombination. As a result, after recombi-
nation, no expression of targeted genes can be detected.

Gene deletion strategy has made a breakthrough in mushroom-forming fungus in
recent years. In the past, gene inactivation was only reported in the mushroom
Schizophyllum commune by homologous recombination, where the deletion effi-
ciency was only 3.25 % for most targeted genes [102]. The low efficiency of
homologous integration is the main obstacle to apply this method to other higher
fungi. Recent progresses were made by the group of de Jong [103] and Ohm [104].
At first, they constructed a dedicated deletion vector pDelcas consisting of two
antibiotic resistance cassettes. The nourseothricin resistance was located between
the genes to be deleted, while the phleomycin resistance was an amplification of an
ectopic integration. These transformants were screened out by using a fast colony
PCR to confirm gene knockouts. Other scientists found that the inactivation of ku80
and/or ku70 which was related to the non-homologous end joining (NHEJ) could
increase the frequency of the targeted gene knockout by homologous recombination
[105]. Then, de Jong et al. [103] developed a constructive method to delete ku80
gene and used the resulting strain for inactivation; finally, 7 out of 10 transformants
were deleted, in which the efficiency of their gene disruption was greatly increased.

This improved system has been used in functional gene analysis in S. commune.
van Peer et al. [106] deleted the spc14 gene, which is related to the septal pore cap
(SPC), and found that SPC was an organelle functioning in vegetative growth and
mushroom formation. Ohm et al. [107] found that 5 transcription factor genes were
related to the regulation of mushroom formation by deleting these genes in Δku80

Fig. 5 Production (a) and content (b) of clavaric acid in cultures of H. sublateritium and the
different transformants in minimal medium containing asparagine/glutamate as nitrogen source.
WT, the wild-type strain; erg1over-21, the erg1-overexpressed strain 21; erg1over-43, the
erg1-overexpressed strain 43; erg1a1-23, the erg1-silenced strain 23; erg1a1-4, the erg1-silenced
strain 4 [100]
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strain with pDelcas vector. In addition, Berends et al. [108] inactivated the alg3
gene in S. commune by introducing pDelcas vector, and as a result, Man(3)GlcNAc
(2) protein-linked N-glycans was predominantly produced.

Nakazawa et al. [109] also found the frequency of gene disruption was enhanced
by inactivation of ku70 gene in C. cinerea. Salame et al. [110] disrupted a targeted
gene based on the Δku80 strain and found the redundancy among genes of man-
ganese peroxidases (MnPs) in P. ostreatus [111, 112].

3 Omics Analysis of Higher Fungus Cell Factories

Omics analysis, including genomics, transcriptomics, proteomics, and metabolo-
mics, is an important approach to find new functional genes, proteins, metabolic
networks, and metabolic products. Combining with bioinformatics, it has a great
advantage to identify gene functions and to understand metabolite biosynthetic
mechanisms. As we know, there are still many bioactive compounds of higher
fungi, whose biosynthetic pathways are not yet identified. The development of
omics analysis plays a significant role in elucidating biosynthetic pathways of
metabolic products, and it is complementary to the traditional methods of drug
candidate screening and identification. By omics technologies, scientists can further
design, modify, and reconstruct higher fungus cell factories based on the obtained
findings and implications, which can improve the rationality and validity of met-
abolic engineering and synthetic biology.

3.1 Genomic Analysis

More and more higher fungi genomes have been released due to technological
progress. The development of genome sequencing in higher fungi provides
opportunities for research and development of their metabolic products, as the
genome information facilitates the discovery and biosynthetic study on bioactive
compounds from higher fungi.

Recently, genomic information of a couple of higher fungi is obtained, including
common edible mushroom such as A. bisporus [113], F. velutipes [114], V. volv-
acea [115], Omphalotus olearius [116], S. commune [117], Lignosus rhinocerotis
[118], Mycena chlorophos [119], medicinal mushroom G. sinese [120], G. lucidum
[121], and Cordyceps militaris [122].

F. velutipes, as an important edible mushroom, is also a rich source of secondary
metabolites and enzymes which affect wood-degrading machinery and ethanol
production. By sequencing and analyzing F. velutipes genome, 58 potential
enzymes for ethanol production were identified, which provided new possibilities to
use F. velutipes for ethanol fermentation [114].
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Fig. 6 Possible synthetic pathway of ganoderic acids [121]. 1 HMG-CoA synthase (hmgs);
2 HMG-CoA reductase (hmgr); 3 mevalonate-5-pyrophosphate decarboxylase (mvd); 4 farnesyl
pyrophosphate synthase (fps); 5 squalene synthase (sqs); 6 squalene epoxidase (se); 7 lanosterol
synthase (ls)
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Zhu et al. reported the genome sequence of Ganoderma sinense and found that
most of G. sinense gene clusters were silenced under common culture conditions.
DNA methylation and small RNA-mediated reversible gene silencing tightly
maintained this control, suggesting epigenetics may play critical roles in the reg-
ulation of G. sinense secondary metabolism [120].

Chen et al. [121] analyzed the genome of G. lucidum, which has been used as a
drug with antitumor, antiaging, antiviral, and immunomodulatory activities since
ancient times in East Asia [123]. Its triterpenoids—ganoderic acids and ganoderan
—are known as main bioactive compounds [124]. Although the ganoderic acids are
known to be synthesized via the mevalonate pathway (MVP) [125], it remains a
mystery about the detailed modification of the lanosterol skeleton, which may be
related to cytochrome P450 superfamily (CYPs). The predicted biosynthetic path-
way of ganoderic acids is shown in Fig. 6. Sequencing analysis of G. lucidum
genome revealed possible 16 CYPs involved in the terpenoid synthesis, which was
favorable to the identification of ganoderic acid synthetic pathway and to the
massive production of the triterpenoids as well as to the heterogonous expression
via synthetic biotechnology. Then, Liu et al. [126] performed comprehensive
annotation for these genes, which were analyzed from the genome of G. lucidum.
Their work showed the genes related to triterpene biosynthesis and wood degra-
dation. Recently, Qian et al. [127] identified simple sequence repeats (SSRs) or
microsatellites in G. lucidum and analyzed their frequency and distribution in
different genomic regions. Xu et al. [128] used qRT-PCR in G. lucidum gene
analysis. Li et al. [129] identified and characterized long intergenic noncoding
RNAs (lincRNA) in the mushroom. The study about the genome of G. lucidum will
definitely promote the future R&D toward pharmacological and industrial
applications.

3.2 Transcriptomic Analysis

Transcriptome is the set of all RNA molecules—mRNA, rRNA, tRNA, and other
noncoding RNA transcribed in one cell or a cell population. It can be applied to the
total set of transcripts in a given organism or to the specific subset of transcripts
present in a particular cell type. Different from the genome which is roughly fixed
for a given cell line, the transcriptome may vary significantly with external envi-
ronmental conditions. As all mRNA transcripts in a cell are included, the tran-
scriptome reflects the genes being actively expressed at any given time, except for
mRNA degradation phenomena. The study of transcriptomics, also called as
expression profiling, examines the mRNAs expression level in a given cell popu-
lation, often using high-throughput techniques based on DNA microarray tech-
nology, or using next-generation sequencing technology known as RNA
sequencing (RNA-Seq) to study the transcriptome at the nucleotide level.
Transcriptomic analysis has been used in higher fungi C. militaris [130], G. luci-
dum [131], L. edodes [132], V. volvacea [133], and P. ostreatus [134].
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Xu et al. [135] did comparative transcriptome analysis of G. lucidum using
suppression subtractive hybridization (SSH) technique to identify differentially
expressed genes in liquid static culture versus shaking culture. As a result, 147
unigenes significantly expressed in static culture were identified, including those
related to asexual sporulation and signal transduction (Fig. 7). Zhu et al. [136]
screened for RNA editing sites at the genomic level in G. lucidum and revealed the
role of transcriptional plasticity in the mushroom growth and development and in
the regulation of secondary metabolic pathway.

RNA-Seq is a recently developed method for transcriptome profiling by
deep-sequencing technologies [137], which has advantages: detected transcripts
correspond to genomic sequences and it has a low background signal. Thus,
RNA-Seq has become a main method for transcriptomic analysis. Yu et al. [138]
analyzed the transcriptome of G. lucidum via Illumina high-throughput technology.
Their studies performed the functional genes involved in the terpenoid biosynthesis
pathway and wood degradation. Plaza et al. [139] reported that the exposure of
different fungi tissues to different types of antagonists shaped the expression pat-
terns of defense loci in a tissue-specific manner. Yang et al. [140] found enzymes
related to saponin biosynthesis in the termite mushroom Termitomyces albumino-
sus, including 22 glycosyltransferase and 6 cytochrome P450 s genes by de novo
sequencing and transcriptome analysis.

Ophiocordyceps sinensis, or called Cordyceps sinensis, has thousands of years
of history as a traditional Chinese medicine because of its regulation function on
human body [141]. In recent years, the main active ingredients of O. sinensis were
identified. Transcriptome analysis by Xiang et al. [142] found that 121 genes might
be involved in the regulation of signal transduction and transcription level of O.
sinensis. They also analyzed the adenosine kinase, adenylate kinase, and 5′-
nucleotidase probably related to the phosphorylation and dephosphorylation in the
cordycepin biosynthesis, and the work provided useful information for identifying
the cordycepin biosynthetic pathway.

Fig. 7 Functional categories of 147 cDNA sequences in the G. lucidum SSH-cDNA library [135]
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3.3 Proteomic Analysis

Proteomic analysis is the systematic identification and quantification of the com-
plete complement of proteins of a biological system such as a cell, tissue, or
organism at a specific time point. Cell metabolic activities are directly/indirectly
regulated by proteins. Therefore, proteomic analysis can help us better understand
the cellular metabolism. But not all of the protein spots can be identified by pro-
teomic analysis. Proteome study is still under development in higher fungi although
some proteomic analyses were conducted in recent years in Termitomyces heimii
[143], A. bisporus [144], Pleurotus tuber-regium [145], Antrodia cinnamomea
[146], and G. lucidum [147].

Zhang et al. [148] investigated the mechanism of the effect of Tween 80 on the
exopolysaccharide production by P. tuber-regium using proteomic analysis. They
identified 32 differentially expressed proteins by one-dimensional gel electropho-
resis, and the ATP:citrate lyase isoform 2 could stimulate exopolysaccharide pro-
duction. Wang et al. [149] used high-throughput sequencing analysis to obtain the
transcriptome and proteome of Agrocybe aegerita mycelia and fruiting bodies. A.
aegerita possesses multiple pharmacological activities such as antitumor, antiaging,
and reducing blood lipids [150]. The work helped in revealing the polysaccharide
and sterol synthetic pathway, and it was also found that the polysaccharide was
highly biosynthesized in fruiting bodies. The information provided important clues
for establishing the mushroom cell factories toward future application.

3.4 Metabolomic Analysis

Metabolome refers to the complete set of small-molecule metabolites (usually less
than 1 kDa in size), such as metabolic intermediates, hormones and other signaling
molecules, and secondary metabolites, to be found in a biological sample. Like
transcriptome and proteome, metabolome is dynamic and changing from second to
second. Metabonomics, as a scientific study of chemical processes involving
metabolites, is the quantitative measurement of dynamic multiparametric metabolic
responses of living systems to pathophysiological stimuli or genetic modifications.
Thus, metabolic profiling can give an instantaneous snapshot of the cell physiology.
One of the challenges of systems biology and functional genomics is to integrate
proteomic, transcriptomic, and metabolomic information to provide a better
understanding of cellular biology.

The metabolomic study can not only find difference in external and internal
environment disturbance response, but also distinguish different phenotypes; thus, it
is an important technology in omics research. With technology development, such
as sophisticated nuclear magnetic resonance (NMR), gas chromatography–mass
spectrometry (GC/MS), and high-performance liquid chromatography–mass
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spectrometry (HPLC-MS), high-throughput metabolomics analysis has become
possible on higher fungi metabolites.

Some scientists used metabolite profiles for the chemotaxonomy of higher fungi
[151]. What’s more, metabolomic study was also used for the analysis of different
developmental stages or growth environments of higher fungi. For example, Park
et al. [152] investigated the metabolic profiling of mycelia and fruiting bodies of
Cordyceps bassiana by H-1 NMR spectroscopy and multivariate data analysis.

Metabolomic analysis is usually done by combining with other omics technol-
ogies such as transcriptomic and proteomic analyses to obtain more in-depth results.
Matsuzaki et al. [153] performed the proteomic and metabolomic analyses of the
benzoic acid metabolism of Phanerochaete chrysosporium. Bak et al. [154] used a
polyomics-based analysis including metabolomics, proteomics, and transcriptomics
of P. chrysosporium and tried to understand the metabolic and regulatory mecha-
nisms of lignocellulose depolymerization.

4 Production of Useful Metabolites by Higher Fungus Cell
Factories

As we know, during the long-term evolution, higher fungi have formed a special
mechanism of metabolism in resisting unfavorable environments and becoming
self-defense and survival during the entire life cycle. Diversified secondary
metabolites with various bioactivities could be produced by higher fungi, such as
terpenoids, heterocyclics, polysaccharides, polyketides, and polyphenols, which
provide an abundant resource for drug discovery.

4.1 Terpenoids

Terpenes, as main bioactive compounds isolated from mushrooms, are known as an
important category of naturally occurring bioactive metabolites produced by many
higher fungi [116]. In particular, sesquiterpenoid, diterpenoid, and triterpenoid are
typical representatives of terpenes with various interesting biological activities.

Ganoderic acids (GAs), a kind of highly oxygenated lanostane-type tetracyclic
triterpene, are important secondary metabolites of G. lucidum. The production titer
and productivity of GAs have reached great advancement in recent decade, as
shown in Table 3. For example, Zhang and Tang [155] developed a novel
three-stage light irradiation strategy for the efficient production of GAs and
Ganoderma polysaccharides in submerged fermentation of G. lucidum. The max-
imal GA production was 69 % higher than the two-stage culture. Tang et al. [156]
enhanced the GA production up to 754.6 mg/L through a pH-shift and DO-shift
integrated fed-batch fermentation process. Liang et al. [42] found phenobarbital, a
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P450 inducer, could enhance the production of total and individual GAs in
two-stage cultivation. Zhao et al. [157] reported that nitrogen limitation led to more
accumulation of GAs and upregulation of the biosynthetic genes.

Recently, signal transduction engineering of fungal secondary metabolism is
receiving great interest for efficient production of valuable metabolites. Xu and
Zhong [158] found that the calcineurin signal transduction was significant to GAs
biosynthesis by G. lucidum (Fig. 8). Addition of calcium ion to static liquid cultures
of G. lucidum resulted in the enhanced production of GAs, and the total GAs and
individual GA-Mk, GA-S, GA-T, and GA-Me reached 3.7-, 2.6-, 3.2-, 4.5-, and
3.8-fold improvement compared to control, respectively. The group further reported
that Na+ addition [159] and Mn2+ addition [160] could both enhance the GAs
accumulation.

Fig. 8 Proposed Ca2+

induction mechanism in GA
biosynthesis via calcineurin
signaling [158]

Table 3 Typical studies on fermentation production of ganoderic acids

Strain Ganoderic
acid

Titer
(mg/L)

Productivity
[mg/(L h)]

Reference

G. lucidum CGMCC 5.616 Total GAs 210–1900 21–160 [158, 160–162]

G. lucidum CGMCC 5.616 Mk 0.71–260 0.088–22 [88, 158–160, 162]

G. lucidum CGMCC 5.616 T 0.71–240 0.089–20 [88, 158–160, 162]

G. lucidum CGMCC 5.616 S 0.81–270 0.10–17 [88, 158–160, 162]

G. lucidum CGMCC 5.616 Me 0.37–110 0.046–9.3 [88, 158–160, 162]

G. lucidum SB97 Total GAs 500 110 [163]

Ganoderma sinense
SCIM 0701

Total GAs 260 37 [164]

Ganoderma applanatum
ACCC-52297

Total GAs 293 65 [165]

G. lucidum SCIM 0006 Me 12 0.69 [166]

G. lucidum 5.26 Total GAs 680 75 [167]

G. lucidum 5.26 T 19 2.1 [167]
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Dou et al. [168] studied the oxygen supply effect on the biomass and helvolic
acid production in submerged fermentation of C. taii. Helvolic acid belongs to a
member of fusidane skeleton triterpenoid family, which has a significant bacteri-
cidal activity, but few studies were performed about its fermentation production.
The results showed that the value of initial volumetric oxygen transfer coefficient
(KLa) greatly affected the production of both biomass and helvolic acid.

4.2 Heterocyclics

Heterocyclic compounds, or heterocyclics, are those whose one or more of the ring
carbon atoms are replaced with a different element such as oxygen, nitrogen, and
sulfur. Many types of heterocyclics from higher fungi have been isolated, and their
structures and biological activities have been analyzed. These include indoles,
pyridines, cytochalasins, quinolines, flavonoids, and nucleosides, and their anti-
cancer, anti-HIV, antibacterial, and other pharmacological activities have been
reported [169].

Cordycepin, 3-deoxyadenosine, is a major bioactive compound of C. militaris,
which has various pharmacological activities, including antitumor, immunomodu-
latory, anti-inflammatory, and antibacterial ones [170]. The biosynthetic pathway of
cordycepin has not been completely elucidated; however, many efforts have been
made to enhance its production. Mao et al. [171] found that NH4

+ had a significant
effect on cordycepin production. Das et al. [172] improved the productivity of
cordycepin in C. militaris by mutation using high-energy ion beam irradiation. In
the work by Fan et al. [173], the influence of ferrous sulfate on the production of
cordycepin was studied in shake flask cultures. The results indicated that the highest
cordycepin titer was about 70 % higher than that without ferrous sulfate addition.
This work might also be useful for further understanding the cordycepin
biosynthesis.

Lovastatin is a member of the drug class of statins found in oyster mushrooms
[174], used in combination with diet, weight loss, and exercise for lowering cho-
lesterol in those with hypercholesterolemia to reduce risk of cardiovascular disease.
Statistical experimental designs were used to optimize the lovastatin production by
submerged fermentation of P. ostreatus [175]. The maximum lovastatin production
reached 114.82 mg/L, which was 50 times higher than that obtained under the
conditions without optimization.

Flavonoids, a class of secondary metabolites which have antioxidant effects and
inhibitory activities on melanin biosynthesis, mostly exist in plants but have also
been reported in higher fungi [176]. The Vitreoscilla hemoglobin, an
oxygen-binding protein, could enhance cell growth, and it was used to alleviate
oxygen limitation during submerged fermentation. Zhu et al. [177] expressed the
Vitreoscilla hemoglobin gene (vgb) by REMI in Phellinus igniarius, which resulted
in the improved growth and production of both total flavones. The metabolites
reached 11.43 and 1.33 g/L, respectively, in bioreactor cultivations.
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4.3 Polysaccharides

Macrofungal polysaccharides have been well known as part of traditional diet and
medicine. The polysaccharides comprise a variety of biopolymers, such as β-glu-
cans, providing a mechanism for cell protection or attachment to others [178]. The
fungal polysaccharides mainly include exopolysaccharides (EPS) and intracellular
polysaccharides (IPS), which could be produced by submerged mycelial cultures
with a variety of medical applications. Until now, many polysaccharides have been
isolated from various mushrooms, such as Morchella conica [179], G. applanatum
[180], Laetiporus sulphureus [181], and C. taii [182], which have many bioactiv-
ities including antitumor [183], antioxidant [184], immunomodulatory [185],
cytostatic, and antibacterial properties. Large-scale production of polysaccharides is
very important for application, and some reports have been published on how to
enhance its production such as optimization of culture conditions [186], addition of
metabolic inducers [189], and genetic modifications [89].

Hwang et al. [187] investigated the optimum culture conditions in submerged
culture of L. sulphureus var. miniatus, an edible mushroom. Interestingly, the most
suitable initial pH for the metabolite synthesis was 2.0, which is rare in submerged
cultures of macrofungi. In addition, supplementation of deep seawater (DSW) was
also used for cultivation of higher fungi, and DSW was found to efficiently increase
the mycelial growth and EPS production. As a result, the maximum mycelial
growth (4.1 g/L) and EPS production (0.6 g/L) were achieved. Their work also
showed that the EPS of L. sulphureus could increase cell proliferation and promote
insulin secretion. Cui and Zhang [188] found that Mg2+, Mn2+, sodium dodecyl
sulfate (SDS), and Tween 80 significantly enhanced the EPS production during
two-stage submerged cultivation of C. militaris. The highest EPS production
reached 3.28 g/L under the optimal condition. The results showed that additions of
metal ion and surfactant could be used for enhancing the EPS production by C.
militaris.

Xu et al. [189] overexpressed the gene of phosphoglucomutase (PGM) which is
a key enzyme in the biosynthetic pathway of nucleotide sugar precursors. This
enzyme catalyzes the conversion of glucose-6-phosphate into glucose-1-phosphate
representing a branch point in carbohydrate metabolism. The maximum IPS content
and EPS production in G. lucidum overexpressing the PGM gene reached
23.67 mg/100 mg dry weight and 1.76 g/L, respectively, which was higher by
40.5 % and 44.3 % than by the wild-type strain (Fig. 9). Ji et al. [190] improved the
polysaccharide production by engineering the biosynthetic pathway in G. lucidum
by overexpressing the homologous UDP glucose pyrophosphorylase (UGP) gene.
The maximum IPS content and EPS production in the strain were 24.32 mg/100 mg
dry weight and 1.66 g/L, respectively (Fig. 10). Their results showed the feasibility
to enhance polysaccharide production by altering the expression of genes involved
in precursor supply.
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4.4 Polyketides

Polyketides (PKs), as a class of secondary metabolites, are structurally a very
diverse family of complex organic compounds produced by certain living organ-
isms in order to impart to them some survival advantages. They often possess
biological activities and pharmacological properties such as antibacterial,
anti-cancer, and antimalarial activities [191]. Polyketides are biosynthesized by
polyketide synthases (PKSs) through the decarboxylative condensation of
malonyl-CoA-derived extender units in a similar process to fatty acid synthesis
[192]. In recent years, polyketides have been isolated from many higher fungi such
as Cordyceps species and Cortinarius purpurascens [193].

Many fungal secondary metabolites are regulated by epigenetic modification,
which not only affects metabolite titers, but also activates cryptic gene clusters

Fig. 9 Kinetic profiles of IPS content (a) and EPS production (b) in fermentation of the WT strain
(blank circles) and the PGM strain (dark circles). The error bars indicate the standard deviations
from three independent samples [189]

Fig. 10 Kinetic profiles of IPS content (a) and EPS production (b) in fermentation of the WT
strain (blank circles) and the UGP strain (dark circles). The error bars indicate the standard
deviations from three independent samples [190]
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[194]. The application of epigenetic modification to higher fungi is becoming a new
strategy for strain improvement and a powerful method to obtain novel natural
products. For example, Strauss et al. [195] significantly enhanced the production of
bisabolene-type sesquiterpenoids and xanthones analogs from Aspergillus sydowii
by addition of 5-azacytidine, a chemical epigenetic modifier. As higher fungi can
produce a variety of unique secondary metabolites including polyketides, the epi-
genetic modification could help to enhance the production titer and efficiency of
those interesting metabolites.

Asai et al. [196] found that addition of epigenetic modification chemicals such as
histone deacetylase (HDAC) inhibitor or DNA methyltransferase inhibitor could
significantly enhance polyketide production by Cordyceps annullata, and a couple
of new aromatic polyketides were isolated, such as indigotides C-F,
13-hydroxyindigotide A and 8-O-methylindigotide B [197].

5 Summary and Future Perspectives

Higher fungi have been used as both medicinal and edible materials for thousands
of years in East Asia and many other regions around the world. Nowadays, with the
quick development of biological science and related engineering fields, the research
on higher fungi is deepening rapidly. As described above, many unique important
bioactive components have been found, which is important to the development of
higher fungus cell factories for industrial applications.

The technologies such as gene transformation, overexpression, silencing, and
deletion are gradually applied to the studies of the construction of higher fungus cell
factories. The combination of different gene editing methods will help to explore
gene functions and promote the identification and optimization of metabolic
pathways. However, some problems also need to be solved. The gene transfor-
mation methods have not yet mature, and their transformation efficiency and
transformant stability still need improvement as well. The gene deletion and
silencing have to be extended to more species. Meanwhile, the rapid development
of bioinformatics will help to understand molecular characteristics of higher fungi
and biosynthesis pathways of various secondary metabolites, which is important to
large-scale commercial production.

Recently, omics technologies including genomics, transcriptomics, proteomics,
and metabolomics play an important role in studies on behaviors and mechanisms
of higher fungi. Whole genome transcription analysis will enable researchers to
accurately evaluate the relationship between phenotype and expression of genes,
helping understand the cellular metabolism. It also contributes to the identification
of target genes for strain improvement and accelerates the rational design and
construction of higher fungus cell factories. Because the regulation of all levels of
cellular activity/metabolism is interacted with each other, single omic analysis
technology has apparent limitations. Thus, the integrated utilization of omics
technologies is important in obtaining complete information, which will deepen the
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understanding of complex biological systems and speed up the identification of
target sites in metabolism. In order to have more rational and efficient improvement
on cell/organism breeding, scientists of different professional backgrounds need to
cooperate intimately with each other, especially with tools of bioinformatics and
mathematics to simulate and design new biosynthesis systems, so as to enhance the
existing bioproduct production and new bioproduct synthesis.

Without doubt, the establishment of cell factory platform has a big impact on
large-scale production of useful metabolites by higher fungi. Through gene trans-
formation, gene overexpression and other biological technologies, we can deepen
our understanding on the synthetic mechanism and pathways of secondary
metabolites, so as to realize the reconstruction of metabolic pathways and the
massive accumulation of targeted metabolites. However, due to the short history of
higher fungi research, their genetic technologies have yet to be improved to ensure
exogenous genes or homologous genes expressed efficiently and stably in higher
fungal cells; gene overexpression, silencing, and knockout technology also need to
be applied widely in higher fungi. Furthermore, the construction of higher fungal
cell factories needs the integration of genomics, gene technology platforms, and
bioinformatics technologies, to have a better understanding about metabolic path-
ways and cellular metabolic mechanisms. Here, many new bioactive products may
be found through these approaches, and the metabolic pathway can be improved to
achieve efficient biomanufacturing of valuable metabolites. The expression of
heterogonous genes in higher fungi, which resulted in the synthesis of other
products, is also under development. Synthetic biology as an emerging discipline
has become more and more popular due to its enormous potential, and how to better
apply synthetic biology into higher fungi is becoming one of the targets in our
future research. As the higher fungi are getting more and more global attention in
recent years with their expanding markets, therefore research and development on
higher fungal cell factories are anticipated to meet the growing demand of market
by further promoting useful metabolites production.
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