ALGEBRA

CLASSICAL, MODERN, LINEAR & BOOLEAN

R.M. KHAN

Contents

Part I : CLASSICAL ALGEBRA

Chapter 1	Complex Numbers	3-21				
	Complex number, Imaginary conjugates, Modulus and Amplitude, Square root, Geometrical representation, Cube roots of unity					
Chapter 2	De Moivre's Theorem	22-44				
	De Moivre's theorem, Applications (solution of equations; expansion of $\cos n\theta$, $\sin n\theta$, $\cos \alpha$, $\sin \alpha$; real factors of a polynomial)					
Chapter 3	Sine, Cosine, Logarithm and Exponential Values of Complex Numbers					
1924-1571	Binomial theorem, Exponential series, Euler's exponential values of sine and cosine, Logarithm of a complex number, Definition of a^z , Inverse circular functions, Hyperbolic functions, Expansion of $\cos^n \theta$ and $\sin^n \theta$, Gregory's series					
Chapter 4	Polynomial	68-82				
	Polynomial, Synthetic division, Remainder theorem, Euclid's algorithm, H.C.F., Theorems, Maximum and Minimum values of the polynomial					
Chapter 5	Equation and Transformations	83–115				
	Equation, Fundamental theorem, Imaginary roots, Roots as quadratic surds, Relation between roots and coefficients, Multiple roots, Transformation of equations, Reciprocal equations					
Chapter 6	Symmetric Functions of Roots	116-128				
	Symmetric functions of roots, Orders and weights, Sums of powers of the roots, Newton's theorem					
Chapter 7	The Cubic and the Biquadratic Equation					
	Cubic equation, Equation of squared differences of the roots, Criteria of roots, Cardan's solution, Biquadratic equation, Euler's solution and criteria of roots, Descartes' solution, Ferrari's solution					
Chapter 8	Binomial Equation and Special Roots	155-161				
	Binomial equation, Properties of roots of $x^n - 1 = 0$, Special roots of unity, Number of special roots					
Chapter 9	Location of Roots	162–188				
	Harriot-Descartes' rule of signs, Some theorems, Rolle's theorem, Integral and fractional root, Limits of roots, Incomplete equations, De Gua's rule, Fourier's theorem, Budan's statement, Strum's functions and theorem					

	Chapter 10	Inequalities	189-222
		Schwartz and Cauchy's inequality, Theorem on means, Theorem	
		on weighted means, m th Powers Theorem, Maxima and Minima, $\left(1+\frac{x}{m}\right)^m < \left(1+\frac{x}{n}\right)^n$ and $\left(1-\frac{x}{m}\right)^{-m} > \left(1-\frac{x}{n}\right)^{-n}$ when $x < m$, Weierstrass's inequality, $\frac{x^m-1}{m} \geqslant \frac{x^n-1}{n}$ as $m \geqslant n$, $mx^{m-1}(x-y) > x^m - y^m > my^{m-1}(x-y)$ when $m < 0$ or	
		$mx^{m-1}(x-y) > x^m - y^m > my^{m-1}(x-y)$ when $m < 0$ or	
		> 1 , $\frac{\sum x_i a_i^m}{\sum x_i} \ge \left(\frac{\sum x_i a_i}{\sum x_i}\right)^m$ as m does not or does lie between 0	
		and 1, $\frac{\sum a_i^{x+y}}{n} \gtrsim \frac{\sum a_i^x}{n} \cdot \frac{\sum a_i^y}{n}$ as x and y have the same or opposite	
		signs, Holder's inequality, Jensen's inequality, Jensen's theorem, Minkowski's inequality	
,	Chapter 11	Determinant	223-274
		General definition of a Determinant, Properties of Determinants, Minors and Cofactors, Addition of Determinants, Laplace's theorem, Multiplication of Determinants, Adjoint Determinant, Reciprocal Determinant, Jacobi's theorems, Symmetric Determinant, Skew Symmetric and Skew Determinant, Cramer's rule, Equations	
	Chapter 12	Matrix	275-319
		Definition, Types of matrices, Matrix algebra, Matrix multiplication, Kinds of matrices (idempotent, nilpotent, periodic, involuntary), Transposition, Symmetric and Skew symmetric matrices, Adjoint and reciprocal matrices, Inverse of a matrix, Orthogonal matrix, Complex matrix, Minor, Submatrix, Elementary matrix, Equivalent matrix, Rank and nullity, Normal form, Echelon form, Congruent matrix	
	Chapter 13	Sequence	320-346
		Sequence, Bounds, Monotonic sequences, Convergent sequence, Theorems on convergent sequences, Theorems on monotonic sequences, Limit points, Cauchy's general principle of convergence,	
		$u_n = \left(1 + \frac{1}{n}\right)^n$, Cauchy's limit theorems	
	Chapter 14	Infinite Series	347–377
		Geometric series, Properties of infinite series, General principle of convergence, Series of positive terms, Abel's or Pringsheim's theo-	
		rem, Comparison test, Test of $\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$, Cauchy's root test, Cauchy's condensation test, Cauchy's or Maclaurin's integral test, Kummer's test, D'Alembert's test, Raabe's test, De-Morgan's and Betrand's test, Gauss's test, Cauchy's logarithmic test, Alternating	a Links
		series, Rearrangement of terms, Power series	
	Chapter 15	Summation of Series	378-407
		Arithmetic series, Geometric series, Mixed series, Binomial series, Exponential series, Logarithmic series, Recurring series, Σu_n and $u_n = v_n - v_{n-1}$, Σu_n as $u_n =$ product of r factors in A.P., Σu_n as $\frac{1}{u_n} =$ product of r factors in A.P., Method of differences, Summation of trigonometrical series	

Chapter 16 Difference Equation

Argument, Entry, Interest function, Operator E. 0

Chapter 17 Continued Fraction
General continued fraction

ple continued fraction curring or periodic confraction, Symmetric congents of a recurring of Applications

Part II:

neous and non-homogene

Chapter 1 Elementary Discu

Venn diagrams, Set ops ment, symmetric diffeduality), De-Morgan's lence class, Partitions, of mappings, Invene Transposition, Index be permutation

Chapter 2 Integers

Natural number, Penduction, Whole number common divisor, LC. numbers, Unique fact modulo, Residue cits rem, Linear congiuen

Chapter 3 Groups

Operation, Groupon groups, Integral por Modulo system, Or on subgroup, Centre and alternating) gro Cosets, Lagrange's groups, Quotient of Kernel of a homon phism, Cayley's the

Chapter 16 Difference Equation

408-427

Argument, Entry, Interval, Difference, Factorial notation, Factorial function, Operator E, Operator D, Difference equation (homogeneous and non-homogeneous)

Chapter 17 Continued Fraction

428-466

General continued fraction (terminating and non-terminating), Simple continued fraction, Convergent, Intermediate convergent, Recurring or periodic continued fraction, Simple recurring continued fraction, Symmetric continued fraction, Determination of the convergents of a recurring continued fraction with one recurring element, Applications

Part II: ABSTRACT ALGEBRA

Chapter 1 Elementary Discussions of Set

469-508

Set, Types of sets, some theorems, Power Sets, Universal set, Euler-Venn diagrams, Set operation (union, intersection, disjoint, complement, symmetric difference, product, cardinal number, principle of duality), De-Morgan's laws, Relations, Equivalence relation, Equivalence class, Partitions, Mapping, Function and relation, Composite of mappings, Inverse mapping, Permutation, Cyclic permutation, Transposition, Index laws, Theorems on permutation, Even and odd permutation

Chapter 2 Integers

509-537

Natural number, Peano's axioms, Order relation, Principle of induction, Whole number, Integers, Divisibility in integers, Greatest common divisor, L.C.M., Existence and Uniqueness of GCD, Prime numbers, Unique factorization theorem, Module system, Congruent modulo, Residue classes, Fermat's Little Theorem, Wilson's Theorem, Linear congruence, Phi-function

Chapter 3 Groups

538-591

Operation, Groupoid, Composition table, Group, Theorems on groups, Integral power of an element, Semigroup, Theorems on Modulo system, Complex and subgroup of a group, Theorems on subgroup, Centre of group, Cyclic group, Permutation (symmetric and alternating) groups, Groups of symmetries, Klein-four-group, Cosets, Lagrange's theorem, Fermat's Little theorem, Normal subgroups, Quotient or factor group, Homomorphism and isomorphism, Kernel of a homomorphism, Fundamental theorem of homomorphism, Cayley's theorem, Theorems on isomorphism

Pari

Chapter 1 Boolean Alge Definition, Unio order relation, S form, Conjuncti

Chapter 2 Switching Ci States, Basic ne tion, Represent circuit

UNIVERSITY QUESTIONS

CALCUTTA UNIVERSITY

BURDWAN UNIVERSITY
NORTH BENGAL UNIVE

applications

Cayley-Hamilton theorem, Diagonalisation of matrices, Orthogonal diagonalisation, Real quadratic form, Congruence matrices, Reduction to canonical form, Rank, Index, Signature, Geometrical

Part IV : BOOLEAN ALGEBRA

Chapte	er 1	Boolean Algebra Definition, Uniqueness, Principle of duality, Some results, Partial order relation, Subalgebra, Boolean functions, Disjunctive normal form, Conjunctive normal form, Conversion								775–792	
Chapte	er 2	Switching Circuits							793-801		
		States, Basic network, Relation between circuit and Boolean function, Representation of a circuit by a function or a function by a									
		circui	t								· Part
INDEX	K										1-5
UNIVI	ERSIT	ry Qu	ESTIO	NS:							
CALCUTTA UNIVERSITY										1	
В	URDW	AN UN	IVERSI	TY							67
N	ORTH	BENG	AL UNI	VERSITY							131